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Anomalous diffusion is frequently described by scaled Brownian
motion (SBM), a Gaussian process with a power-law time depen-
dent diffusion coefficient. Its mean squared displacement is
(x3(8)) ~ 2 ()t with () ~ t** for 0 < a < 2. SBM may provide
a seemingly adequate description in the case of unbounded diffusion,
for which its probability density function coincides with that of fractional
Brownian motion. Here we show that free SBM is weakly non-ergodic
but does not exhibit a significant amplitude scatter of the time averaged
mean squared displacement. More severely, we demonstrate that under
confinement, the dynamics encoded by SBM is fundamentally different
from both fractional Brownian motion and continuous time random
walks. SBM is highly non-stationary and cannot provide a physical
description for particles in a thermalised stationary system. Our findings
have direct impact on the modelling of single particle tracking experi-
ments, in particular, under confinement inside cellular compartments or
when optical tweezers tracking methods are used.

The passive, thermally driven diffusion of fluorescently labelled
molecules or optically visible submicron particles is routinely
measured inside living cells and complex liquids by methods
such as single particle tracking' and fluorescence correlation
spectroscopy.” Often the observed diffusion patterns deviate from
the laws of Brownian motion and display anomalous diffusion
characterised by the mean squared displacement (MSD)

(X)) ~ 2Kt (1)
with the anomalous diffusion coefficient K, of dimension cm?* s~
Depending on the magnitude of the anomalous diffusion exponent
one distinguishes subdiffusion (0 < o < 1) and superdiffusion
1<a<2)?
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description of anomalous diffusion

Jae-Hyung Jeon,? Aleksei V. Chechkin®® and Ralf Metzler*®“

In biological contexts one often invokes the concept of apparent
subdiffusion, which is in fact a transient crossover between free
normal diffusion with o = 1 and the thermal plateau of the MSD in
confinement.® However, there is clear experimental evidence of
long-ranged subdiffusion (1) in living biological cells*” > and in
artificially crowded or structured liquids."*™"” The physical mechan-
isms for such anomalous diffusion are very varied, even considering
the most common approaches: we mention the continuous time
random walk approach,>'® in which subdiffusion is effected by
multiple trapping or sticking events with an emerging power-law
distribution of waiting times, as seen in the data of ref. 9, 10 and 12.
Alternatively, subdiffusion arises in fractal geometries with their
dead ends and bottlenecks across spatial scales,'® an additional
mechanism pinpointed in ref. 12. We also mention diffusion
processes in which the anomaly arises from the spatial dependence
of the diffusion coefficients,?*2* or from interaction of the tracer
particle with a structured environment.?*2¢

A special role play the Gaussian models for anomalous diffusion
which belong to two families, that can best be distinguished on
the Langevin equation level. The Mandelbrot-van Ness fractional
Brownian motion (FBM) follows the stochastic equation x(¢) = {ggn(?),
where (f(¢) represents fractional Gaussian noise characterised by
the covariance ((ggn(t:)lon(tz)) =~ (e — 1)|t; — t,|* > which has
long-ranged negative or positive correlations, respectively, for
subdiffusion (0 < & < 1) or superdiffusion (1 < a < 2).>”*® FBM
and the closely related fractional Langevin equation motion are
physically related to the motion in a viscoelastic environment.>®
In various experiments this type of motion was identified as
single or partial component.®"*%3°

Here we focus on the second family of Gaussian anomalous
diffusion models, namely, scaled Brownian motion (SBM).*'
SBM is governed by the Langevin equation

xX(1) = V24 (1) x L(2), (2)
where ((¢) is white Gaussian noise with normalised covariance
(L(#1)C(t2)) = O(t1 — tp). The prefactor in eqn (2) is the power-law
time dependent diffusion coefficient
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H(t) = ak, ™, (3)

which decreases or increases in time for 0 < o < 1 and 1 <
o < 2, respectively. SBM is used to model anomalous diffusion
in a wide range of systems,”>™ in particular, in FRAP experi-
ments.*® In terms of the time dependent diffusivity, the MSD
(1) can be rewritten as (x*(f)) ~ #'(t) x t. Originally, the
diffusion process with a time dependent diffusivity was intro-
duced by Batchelor in the description of relative diffusion in
turbulence.*

For unconfined SBM the probability density function is the

Gaussian®!
[ x?
P(x,t) =\/— — . 4
(x.1) 4K, t* x eXp( 4Km) )

It has exactly the same form as the free PDF of FBM,>! if only
both processes are started at the origin. Despite this deceiving
similarity, we show that SBM is fundamentally different from
FBM and all other anomalous diffusion models mentioned
above. Most importantly, we show that it cannot represent a
physical model for anomalous diffusion in stationary or ther-
malised systems. Concurrently, the remarkable properties of
SBM revealed here may have other relevant applications, as
briefly discussed below.

Time averaged mean squared
displacement for unconfined SBM

While we are used to think of a diffusion process in terms of the
MSD (1) calculated as the spatial average of x> over the prob-
ability density function P(x,t), single particle tracking experi-
ments typically provide few but long individual time series x(£).
These are evaluated in terms of the time averaged MSD>

1 rt—A4 2

32(4) = —J (s’ + )~ x())ar, ()
—4),

where ¢ is the length of the time series (measurement time) and

A the lag time. In an ergodic system for sufficiently long ¢

ensemble and time averages provide identical information,

formally, (x?(4)) = lim,_. 8°(4) for different trajectories are
identical. For anomalous diffusion the behaviour of the MSD
(1) and the time averaged MSD (5) may be fundamentally

different. Simultaneously &°(4) for different trajectories may
become intrinsically irreproducible. This phenomenon of irre-

producibility and disparity (x?(4))# lim,_.., 6*(4) is usually
called weak ergodicity breaking® and was discussed in detail
for the subdiffusive CTRW.>*1"*
For SBM the mean of the time averaged MSD over multiple
—_ N
trajectories i, <62(A)> = N~'3762(4) can be derived from the
i=1

Langevin eqn (2), yielding®

| A I+o | A I+
2Katl+o¢ t t

@%M>_(1+U t—A )
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In the limit 4 « ¢, we recover the behaviour®’
=5 Y|
(8(@) ~ 2K, 7)

and when the lag time 4 approaches the measurement time ¢
the limiting form

oK,

ng(f . a(o— 1)K,

3[2701

(=47 (8

(3°(4)) ~ 2K,

describes a cusp around 4 = t. Result (6) is important to deduce

the full behaviour of 6*(4) when 4 approaches ¢, as shown in
Fig. 5 in the Appendix.

In Fig. 1 we show results from simulations of the SBM process
for both sub- and superdiffusion, observing excellent agreement
with the analytical findings. We also see that the scatter between
individual trajectories is very small. Such scatter is a characteristic
for anomalous diffusion models and can be used, e.g., to reliably
distinguish FBM from subdiffusive CTRW processes.***® For

CTRW subdiffusion we find pronounced scatter between §°(4)
from individual trajectories even in the limit of extremely long
trajectories t — c0,”*%*" while for FBM the scatter vanishes for
longer ¢, a signature of the ergodic nature of FBM.>**%*%% The

amplitude scatter of individual 57 can be characterised in terms of
the dimensionless variable ¢ = 6%(4) / <52(A)>. If £ has a narrow
distribution around ¢ = 1 and the width decreases with increasing
t, the process is usually considered ergodic. This width is char-

acterised in terms of the ergodicity breaking parameter EB =
(&%) — (&), For SBM it was found*’

4L,(4/0)", 0<a<1/)2
EB — %(A/z) In(t/4), a=1/2 )
4o
m(A/z), x> 1/2

with the integral 7, = [ydy[°dx[(x + 1)* = (x + »)*]".* The EB
parameter for SBM thus clearly decays to zero for increasing ¢. For
o =1 we obtain the known form EB = 34/t for Brownian motion.
The 4/t scaling also characterises FBM for o < 3/2.°° Our analysis
for SBM shows that the scatter distribution ¢(¢) is indeed narrow
and bell shaped, albeit it is broader than the Gaussian form
predicted for FBM in ref. 46 (see Fig. 6). It decreases with the ratio
A/t and thus indicates a reproducible behaviour between indivi-

dual trajectories. The coexistence of the disparity °(4) # (x?(4))
and asymptotically vanishing ergodicity breaking parameter,
lim,_, ,EB = 0 is a new class of non-ergodic processes the more
detailed mathematical nature of which remains to be examined.

From the analysis so far for free motion we can see that the
SBM process has a truly split personality. Thus, on the one
hand SBM’s PDF is identical to that for free FBM. On the other

hand, however, in contrast to the ergodic behaviour §*(4) =
(x*(4)) of FBM for sufficiently long ¢,">** SBM exhibits weak

ergodicity breaking 6°(4)#(x*(4)), as demonstrated by
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Fig.1 MSD and time averaged MSD for SBM with o = 1/2 (top) and o = 3/2
(bottom). The simulations of the SBM-Langevin egn (2) show excellent
agreement with the analytical results, eqn (1) and (6). We also show results
for the time averaged MSD for 20 individual trajectories. Apart from the
region where the lag time 4 approaches the length t of the time series and
statistics worsen, there is hardly any amplitude scatter between individual 5%

comparison of eqn (7) with eqn (1). This scaling form & ~
A/1'~* exactly matches the result for CTRW subdiffusion®***' or
diffusion processes with space-dependent diffusivity.>>* Unlike
the weakly non-ergodic dynamics of the latter two, for SBM the

fluctuations around the mean <52(A)> measured by the distri-

bution ¢(&) are narrow and decrease with longer . We now show
that the behaviour of confined SBM is also unconventional.

Confined SBM

An important physical property of a stochastic process is its
response to external forces or spatial confinement. From an
experimental point of view, this is of relevance to tracer particles
moving in the confines of cellular compartments or when the
particle is traced by the help of optical tweezers, which exert an
Hookean restoring force on the particle.” We study the para-
digmatic case of an harmonic potential V(x) oc 1kx*, for which
the motion is governed by the Fokker-Planck equation

gP(x, ) = % (kx + %‘(z)a%) Plx, 1), (10)
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which follows directly from the Langevin eqn (2) with the additional
Hookean force term —kx(¢). Note that in absence of the external
force (k = 0) this equation is that of Batchelor.*® For the MSD we
find an exact expression in terms of the Kummer function M,**

(11)

from which we obtain the initial free subdiffusion (1) for
t « 1/k and the scaling form

(x*(t)) = 2K,t%e M M(a,1 + o,2kt),

(P(t) ~ ak k!

(12)

in the long time limit ¢ > 1/k. For subdiffusion (0 < o < 1) the
MSD thus has a power-law decay to zero, while for super-
diffusion (1 < o < 2) it grows indefinitely. In the normal
diffusion limit o = 1, eqn (12) yields the thermal value (x*)y, =
Ki/k of a system kept at temperature 7. In that case, the
diffusion coefficient K, fulfills the Einstein relation.®® This counter-
intuitive behaviour of SBM is due to the fact that the time
dependence of the diffusivity .#'(¢) corresponds to a time depen-
dent temperature® or a time dependent viscosity. Thus SBM is a
most non-stationary process that never reaches stationarity.
Fig. 2 corroborates this analytical result with simulations based
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Fig. 2 MSD (x*(t)) and time averaged MSD <52(A)> for o = 1/2 (top) and
o = 3/2 (bottom) in an harmonic potential. In each case we consider the
force constants k = 0.01 and k = 0.1. Convergence of the corresponding
ensemble and time averages at t = 5 x 10 can be shown numerically (see
Appendix). The shown analytical curve is based on the full solution for

<62(A)> provided in the Appendix.
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Fig. 3 Trajectories of SBM in an harmonic potential, for o = 1/2 (left), a = 1
(centre), and « = 3/2 (right) for three different confinement strengths k. The
fluctuations are stationary only in the Brownian case o = 1.

directly on the Langevin eqn (2): after the free anomalous
diffusion behaviour of the MSD for a particle starting at the
vertex of the potential, we observe a turnover to a power-law
behaviour with negative or positive scaling exponent.

The result for the time averaged MSD is similarly remarkable.
As shown in Fig. 2 for SBM simulations based on the Langevin
eqn (2) with the Hookean forcing, it exhibits a pronounced
apparent plateau for lag times 4 > 1/k for both sub- and
superdiffusive SBM. This behaviour is in excellent agreement
with the full analytical solution (16) provided in the Appendix in
terms of Kummer functions. Taking the limit 4 « ¢ we obtain

)~ o] o

k A

which indeed features the extended plateau and provides a good
approximation for 4 > 1/k. Note that when 4 approaches the

measurement time ¢ the time averaged MSD <52 (4 )> converges to

the value of the MSD (x*(£)) due to the pole in expression (5). This
behaviour is analysed in more detail in Fig. 5 in the Appendix.

Fig. 3 analyses this behaviour in the harmonic potential
further by showing the time series x(¢) for subdiffusive SBM,
Brownian motion, and superdiffusive SBM. Indeed we see that
for subdiffusive and superdiffusive confined SBM the fluctua-
tions continue to decrease and increase with time, while those
in the Brownian limit become stationary. This is the direct
effect of the time dependent temperature or viscosity encoded
in the SBM diffusivity #'(¢). If the system is stationary or
thermalised this behaviour clearly underlines the unsuitability
of SBM for the description of anomalous diffusion.

The behaviour of SBM dynamics under confinement is the
central result of our study. The continued temporal decay or
increase of the MSD that we obtained for SBM is in stark contrast
to the behaviour of confined CTRW subdiffusion, for which the
MSD (x*) saturates to the thermal plateau, while the time averaged

MSD continues to grow in the power-law form <;> ~ (A/1)" " up

until the lag time A approaches ¢."** It strongly differs from FBM,
which relaxes to a plateau for both the MSD and the time averaged

MSD, and for which only a transient disparity between (x*) and §*
exists.””> Finally, SBM is also at variance with heterogeneous
diffusion processes with a space dependent diffusion coefficient

that relax to a plateau for both (¥*) and 5.7
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Discussion

As we showed SBM is a truly paradoxical stochastic process.
Somewhat similar to a chameleon, each time we compare SBM
with other established anomalous diffusion processes we find
certain similarities. Looking at the sum of its features, however,
SBM is an independent process with a range of remarkable
properties.

For free SBM the probability density function P(x,t) equals
that of FBM, despite the fact that both processes are governed
by different stochastic (Langevin) equations. SBM’s time aver-
aged MSD scales equally to those of the weakly non-ergodic
CTRW subdiffusion and diffusion processes with space-
dependent diffusivity. Despite this weakly non-ergodic character

of the mean time averaged MSD <6—2>, the amplitude scatter

between the time averaged MSD &° of individual realisations is
small and the distribution is bell shaped, as otherwise observed
for the ergodic FBM or for Brownian motion of finite time ¢ In
that sense SBM represents a new class of non-ergodic processes.
The most striking behaviour of SBM is, however, its strongly
non-stationary behaviour under confinement. Instead of relaxing
to a plateau the MSD acquires a power-law decay or growth
mirroring a continuously decreasing or increasing temperature
encoded in SBM’s time dependent diffusion coefficient #"(f).

SBM is thus at variance with the currently available experi-
mental observations in complex liquids using single particle
tracking by video microscopy or by optical tweezers tracking of
single submicron particles. Thus the free anomalous diffusion
data garnered so far was classified into FBM-like and CTRW-
like behaviour, or combinations thereof.®'%'* Note that also for
fluorescence correlation spectroscopy experiments recent ana-
lysis tools corroborated an FBM nature of the data.'® For optical
tweezers tracking of lipid granules in different complex liquids
the subdiffusive time averaged MSD either continues to grow
under confinement, reflecting the non-ergodic features of
CTRWSs,>® or it relaxes to a plateau value mirroring an ergodic
dynamics.*>>*

How can FBM and SBM have the same distribution (4) in
free space? Simply put for FBM, the viscoelastic properties of
the environment effecting the long-range correlations of FBM
lead to a frequency dependent response of the environment to a
disturbance, while the materials properties remain unchanged
in time. For free FBM this gives rise to the subdiffusive MSD (1),
in which the time dependent diffusivity effectively encodes the
frequency dependent response of the viscoelastic environment.
The distribution (4) for FBM and its description in terms of a
Fokker-Planck equation of the form (10) is treacherous, how-
ever. This can already be seen when we use the PDF (4) or the
dynamics eqn (10) to calculate the first passage behaviour. This
procedure leads to the wrong result,> and the full analytical
description of FBM in the presence of boundaries remains
elusive, a difficulty imposed by the highly correlated fractional
Gaussian noise driving its Langevin equation. In contrast, SBM,
according to its Langevin description (2), is driven by uncorre-
lated noise but the environment itself is changing as function

This journal is © the Owner Societies 2014
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of time, effecting an extremely non-stationary process. The
equivalence of the PDF (4) of both processes is thus simply
due to the fact that a Gaussian PDF is completely defined by its
second moment, the MSD (1).

With its interesting behaviour that is so different from the
other conventional anomalous diffusion models, SBM may
indeed have relevant applications to weakly coupled or fully
adiabatic systems, as well as for active systems, in which the
existence of a temperature is not meaningful. In particular, in
the superdiffusive case SBM or analogous dynamics with other
increasing effective diffusivities may represent an alternative
approach to active Brownian motion.>®

The difference of SBM to other processes can also be seen in
Fig. 4. For the subdiffusive case a sample trajectory of SBM
is compared to that of FBM and the noisy CTRW,*” in which
the pure subdiffusive CTRW is superimposed with Ornstein-
Uhlenbeck noise to accommodate the thermal noise of the
environment observed in experiments.>® We see that SBM with
its Gaussian probability density function and uncorrelated
driving noise appears more similar to the noisy CTRW motion,
albeit it has a more pronounced tendency to reach larger
amplitudes than the CTRW with its waiting time periods.
The fluctuations of SBM are dramatically less than those of
the anticorrelated FBM, which also shows the largest amplitudes

0 2000 4000 6000 8000 10000
time t
6000
4000
2000
4 0
-2000
-4000
_6000 1 L L 1
0 2000 4000 6000 8000 10000
time t
Fig. 4 Individual trajectories of anomalous stochastic processes: FBM,

SBM, and noisy CTRW (nCTRW), for subdiffusion with o = 1/2 (top) and
superdiffusion with o = 3/2 (right).
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in x(¢). For superdiffusion, we compare SBM with a noisy version
of the Lévy walk process®” and again with FBM. Note the vastly
different size of the window shown on the ordinate. This time,
the persistent FBM shows pronouncedly larger excursions and a
distinct reduction of the noise compared to SBM. The shape of
x(¢) of the latter does not appear to be qualitatively different from
the subdiffusive case. The noisy CTRW is fundamentally differ-
ent from both SBM and FBM. Despite their disparate physical
nature and their dissimilarity when setting one against the other
in a direct comparison, we note that generally it is difficult to
identify a stochastic process solely from the appearance of the
recorded trajectory.

From this discussion it is obvious that one thing is to have at
our disposal a handy and easy-to-use description for anomalous
diffusion processes: SBM with its Gaussian and uncorrelated
nature appears deceivingly simple and is therefore easy to imple-
ment in numerical analyses and descriptions such as diffusion
limited reactions. However, it is yet another thing to consider the
physical relevance of a model process. Using SBM with its time-
dependent diffusion coefficient violates the physical setting in
typical experiments, in which the system is held at approximately
constant temperature and its predictions are at odds with actual
observations. The unphysical nature for the kind of processes we
have in mind is most obvious for confined motion. In contrast,
FBM and fractional Langevin equation motion are ergodic pro-
cesses with the physical background of an effective particle motion
in a viscoelastic multi-body environment. FBM and fractional
Langevin equation motion exhibit a transient disparity between
the MSD and the time averaged MSD under confinement."®
Weakly non-ergodic CTRW processes emerge due to immobilisa-
tion periods that are imprinted on the dynamics by the structure of
the environment or binding events to the environment. Finally,
diffusion processes with space dependent diffusivities arise natu-
rally in non-homogeneous systems such as biological cells or
subsurface aquifers. To extract physically meaningful information
from anomalous diffusion data one needs to have some physical
insight into the observed process and properly analyse the data
using complementary tools>'?'>1>47:58°60 pefore settling for the
appropriate physical model.

We finally note that it will be interesting to compare the
predictions of the SBM model in the superdiffusive range
1 < a < 2 with that of active processes in viscoelastic environ-
ments, which in the relevant overdamped limit are of FBM type.*"*

Appendix

The covariance of the position for SBM in an harmonic

potential follows from the Langevin eqn (2). Our result is
(x(t)x(t)) = 2K, 85 M1 + 0 2kty)  (14)

for t; < ¢,. In absence of the confinement (k = 0) the covariance
reduces to the MSD (1) and in the Brownian limit « = 1 we
recover the familiar covariance

((t)x(n)) = (e e e ki) s)
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Fig. 5 Convergence of the time averaged MSD (%*(4)) to the MSD

(x*(A)) when the lag time A approaches the measurement time t. The
remarkable behaviour is due to the pole in the defining expression (5). We
show the result for o = 1/2 and o = 3/2. The measurement time t = 10°.
Top: free SBM. For the superdiffusive case the dashed black line of unity

slope aids in demonstrating the non-linear behaviour of <52(A)>. Bottom:

SBM in an harmonic potential with k = 0.1. Note the different ranges of the
abscissa in the two cases. For the extremely small window for the
subdiffusive case needed to illustrate the cusp at 4 — t and the relatively

large variation of <¢52(A)> the MSD (x?(A)) appears almost constant.

From eqn (14) we derive the exact result for the time averaged
MSD (5),

<52(A)> - lzf‘a(t — A KD s M1+ 0,2 + o, 2k — A))

2K0< 14o 2kt
+——% [ KM (1 4 o, 2 4 o, 2kt
(I+o)(t— A)[ ( )
— A" e AN (1 + 0,2 + 0, 2k4))]
4K,
1+a

(16)
To derive the limit (13) of the time averaged MSD for confined
SBM in the long time limit ¢ — oo we use the property
r(l4+o) e

Mo, 1 +o,x) ~——" X —

I'() X (17)

of the Kummer function.”®
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Fig. 6 Scatter PDF ¢(¢) of the relative amplitude ¢ = 5% /(5%) around the
ergodic value ¢ = 1, for 4 = 1 (top) and 4 = 10 (bottom), as well as « = 1/2.

In Fig. 5 we illustrate the convergence of the time averaged
MSD <52—A> to the value of the MSD (x*(¢)) in the limit 4 — ¢.
In Fig. 6 we demonstrate the bell shaped scatter around the
ergodic value ¢ = 1 of the relative amplitude ¢ = §/<§> For

smaller values of A4/t, the scatter clearly decreases and is almost
Gaussian. At the larger 4 value the distribution is somewhat
more asymmetric. The dashed lines in both panels of Fig. 6
indicate the Gaussian shape calculated for the ergodic FBM
process in ref. 46. Clearly, the distribution ¢(¢) for SBM is
broader.
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