Cite this: Phys. Chem. Chem. Phys., 2014, 16, 12415

Received 3rd April 2014,
Accepted 1st May 2014
DOI: 10.1039/c4cp01444h
www.rsc.org/pccp

A reduced radial potential energy function for the halogen bond and the hydrogen bond in complexes B \cdots XY and $\mathrm{B} \cdots \mathrm{HX}$, where X and Y are halogen atoms

Anthony C. Legon

Abstract

It is shown by considering 76 halogen- and hydrogen-bonded complexes $\mathrm{B} \cdots \mathrm{XY}$ and $\mathrm{B} \cdots \mathrm{HX}$ (where B is a Lewis base $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ or NH_{3} and X, Y are $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I) that the intermolecular stretching force constants k_{σ} (determined from experimental centrifugal distortion constants via a simple model) and the intermolecular dissociation energies D_{σ} (calculated at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory) are related by $D_{\sigma}=C_{\sigma} k_{\sigma}$, where $C_{\sigma}=1.50(3) \times 10^{3} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$. This suggests that onedimensional functions implying direct proportionality of D_{σ} and k_{σ} (e.g. a Morse or Rydberg function) might serve as reduced radial potential energy functions for such complexes

1. Introduction

During the last decade there has been a rapid growth of interest in the halogen bond across the disciplines of Chemistry, Materials Science and Biology, ${ }^{1}$ especially in its parallels with the hydrogen bond. ${ }^{2}$ The halogen bond ${ }^{3}$ is represented conventionally by the three centred dots in $\mathrm{B} \cdot \mathrm{X}-\mathrm{R}$, where the halogen atom X of the molecule $\mathrm{X}-\mathrm{R}$ interacts with a nucleophilic acceptor atom/centre Z of a simple Lewis base B or of a much larger molecule. There has naturally followed discussion of both the radial and angular potential energy functions associated with such interactions. ${ }^{4,5}$ This article is concerned with the characteristics of the one-dimensional function that describes the variation of the energy with the intermolecular distance $r(\mathrm{Z} \cdots \mathrm{X})$, that is the intermolecular radial potential energy function. Attention will be focussed initially on several series of halogen-bonded complexes $\mathrm{B} \cdot \cdots \mathrm{XY}$, where B is one of the Lewis bases $\mathrm{N}_{2}, \mathrm{CO}$, $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ and NH_{3} and XY is one of the dihalogen molecules $\mathrm{F}_{2}, \mathrm{ClF}, \mathrm{Cl}_{2}, \mathrm{BrCl}, \mathrm{Br}_{2}$ and ICl. Thereafter, the corresponding series of hydrogen-bonded complexes $\mathrm{B} \cdots \mathrm{HX}$, where $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I , will be discussed.

Two important characteristics of such a one-dimensional radial potential energy function are the intermolecular dissociation energy D_{σ} and the intermolecular quadratic stretching force constant k_{σ}, both of which provide a measure of the strength of the (generally weak) interaction of B and XY. D_{σ} is the energy required to take the complex from the equilibrium distance r_{e} along r to infinite separation, while k_{σ} is the curvature of the

[^0]function at r_{e} and provides a measure of the restoring force per unit infinitesimal displacement from r_{e} along the same path.

In this article, a direct proportionality of D_{σ} and k_{σ} is established for many complexes of the halogen-bonded type B \cdots XY and the hydrogen-bonded type B \cdots HX. The values of D_{σ} were obtained by means of ab initio calculations at the explicitly correlated level of theory $\operatorname{CCSD}(\mathrm{T})\left(\mathrm{F} 12^{*}\right) / \mathrm{cc}-\mathrm{pVDZ}$-F12, after correction for basis set superposition error, while the k_{σ} values were those established from the rotational spectra of $\mathrm{B} \cdots \mathrm{XY}$ or $\mathrm{B} \cdots \mathrm{HX}$ through interpretation of experimental zero-point centrifugal distortion constants in terms of a simple model. The k_{σ} are therefore zero-point, rather than equilibrium, values and are also subject to errors introduced by the assumption of rigid subunits B and XY (or HX). The fact that the equation $D_{\sigma}=C_{\sigma} k_{\sigma}$ describes, with the same constant of proportionality C_{σ}, the behaviour of a large number of complexes $\mathrm{B} \cdots \mathrm{XY}$ and B \cdots HX suggests that, for example, a reduced Morse function $V(r)=D_{\sigma}\left[1-\mathrm{e}^{-a\left(r-r_{e}\right)}\right]^{2}$, with $a=\left(2 C_{\sigma}\right)^{-\frac{1}{2}}$, or a reduced Rydberg function $V(r)=-D_{\sigma}\left[1+b\left(r-r_{\mathrm{e}}\right)\right] \mathrm{e}^{-b\left(r-r_{e}\right)}$, with $b=C_{\sigma}{ }^{-\frac{1}{2}}$, could be useful to describe the radial intermolecular potential energy functions in such molecules.

2. Methods

$2.1 k_{\sigma}$ values from centrifugal distortion constants

In the quadratic approximation and with the assumption of rigid subunits B and XY unperturbed by the weak interaction, Millen ${ }^{6}$ showed that the quartic centrifugal distortion constant D_{J} for a linear or symmetric top complex B $\cdots \mathrm{XY}($ or B $\cdots \mathrm{HX})$ is
simply related to the intermolecular stretching force constant by the expression

$$
\begin{equation*}
k_{\sigma}=\left(16 \pi^{2} \mu B^{3} / D_{J}\right)\left[1-B / B_{\mathrm{B}}-B / B_{\mathrm{XY}}\right], \tag{1}
\end{equation*}
$$

in which B, B_{B} and B_{XY} are strictly the equilibrium rotational constants of the complex, B and XY , respectively, and $\mu=$ $m_{\mathrm{B}} m_{\mathrm{XY}} /\left(m_{\mathrm{B}}+m_{\mathrm{XY}}\right)$ is the reduced mass for the intermolecular motion in question. When $\mathrm{B} \cdots \mathrm{XY}$ is an asymmetric-top molecule of $C_{2 \mathrm{v}}$ symmetry, in which XY lies along the C_{2} axis, the corresponding centrifugal distortion constant Δ_{J}, obtained by fitting the rotational transitions by means of a Hamiltonian that employs the Watson A reduction in the I^{r} representation, is given by

$$
\begin{equation*}
k_{\sigma}=\left(8 \pi^{2} \mu / \Delta_{J}\right)\left[B^{3}(1-b)+C^{3}(1-c)\right], \tag{2}
\end{equation*}
$$

in which $b=\left(B / B_{\mathrm{B}}\right)+\left(B / B_{\mathrm{XY}}\right)$ and $c=\left(C / B_{\mathrm{B}}\right)+\left(C / B_{\mathrm{XY}}\right)$, and B and C are equilibrium rotational constants of the complex. When Δ_{J} is used, eqn (2) holds whether the $C_{2 v}$ molecule $\mathrm{B} \cdots \mathrm{XY}$ is planar, as in $\mathrm{C}_{2} \mathrm{H}_{2} \cdots \mathrm{XY}$, or non-planar, as in $\mathrm{C}_{2} \mathrm{H}_{4} \cdots \mathrm{XY}$ where XY is perpendicular to the plane containing the ethene nuclei.

Identical equations, with XY replaced by HX, apply to the corresponding members of the series of hydrogen-bonded complexes B $\cdots \mathrm{HX}$.

Equilibrium values of the spectroscopic constants required for use in eqn (1) and (2) to obtain k_{σ} have not been determined experimentally for complexes of the type considered here and in general only zero-point quantities are available. To allow progress, we invoke a type of 'effective' rigid-rotor approximation, namely the use of zero-point centrifugal distortion constants and rotational constants in these equations in place of their equilibrium counterparts. The utility of this approximation can be judged, in general, by the conclusions presented in this article and, in particular, by reference in Section 4 to the examples of the simple linear complexes $\mathrm{OC} \cdots \mathrm{HX}$ and $\mathrm{OC} \cdots \mathrm{XY}$, for which tests of the approximation are available.

Values of k_{σ} calculated by means of the appropriate eqn (1) or (2) for a wide range of complexes $\mathrm{B} \cdots \mathrm{XY},{ }^{7-52}$ where the Lewis base B is one of $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ and NH_{3} and XY is one of the dihalogen molecules $\mathrm{F}_{2}, \mathrm{ClF}, \mathrm{Cl}_{2}$, $\mathrm{BrCl}, \mathrm{Br}_{2}$ and ICl are given in Tables 1 and 2, while Table 3 collects together the values of k_{σ} for the corresponding set of

Table 1 Some observed and calculated properties of halogen-bonded complexes $B \cdots X_{2}$ involving non-polar dihalogen molecules $X_{2}{ }^{a}$

Lewis base B	Dihalogen molecules X_{2}											
	Difluorine F_{2}				Dichlorine Cl_{2}				Dibromine Br_{2}			
	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r\left(\mathrm{Z} \cdots \mathrm{X}_{\mathrm{i}}\right) / \AA$	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r\left(\mathrm{Z} \cdots \mathrm{X}_{\mathrm{i}}\right) / \mathrm{A}$	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r\left(\mathrm{Z} \cdots \cdot \mathrm{X}_{\mathrm{i}}\right) / \mathrm{A}$
OC	-	-	-	-	3.68(1)	12	5.19	3.145	5.03(2)	20	7.26	3.111
$\mathrm{C}_{2} \mathrm{H}_{2}$	-	-	-	-	5.61(1)	13	7.45	3.146	7.80(3)	21	10.69	3.106
$\mathrm{C}_{2} \mathrm{H}_{4}$	-	-	-	-	5.88(2)	14	8.61	3.092	8.8(2)	22	12.93	3.004
$\mathrm{H}_{2} \mathrm{~S}$	2.34(1)	7	3.43	3.143	6.23(2)	15	8.53	3.246	9.8(2)	23	13.68	3.131
$\mathrm{H}_{3} \mathrm{P}$	-	-	-	-	5.58(2)	16	8.34	3.222	9.79(3)	24	15.07	3.013
HCN	2.62(1)	8	4.15	2.811	6.55(2)	17	9.71	2.921	-	-	-	-
$\mathrm{H}_{2} \mathrm{O}$	3.66(1)	9 and 10	4.63	2.696	7.98(3)	18	10.66	2.808	9.9(2)	25	14.64	2.804
$\mathrm{H}_{3} \mathrm{~N}$	4.67(1)	11	6.59	2.679	12.73(2)	19	17.85	2.681	18.5(4)	26	27.36	2.601

${ }^{a}$ Values of k_{σ} are either taken directly from the reference having the number indicated in columns 3 , 7 or 11 , as appropriate, or are recalculated from the centrifugal distortion constant D_{J} or Δ_{J} given therein by using eqn (1) or (2). The quoted error is that transmitted by the error in the distortion constant. D_{σ} and $r\left(\mathrm{Z} \cdots \mathrm{X}_{\mathrm{i}}\right)$ are equilibrium values calculated ab initio at the $\operatorname{CCSD}(\mathrm{T})\left(\mathrm{F} 12^{*}\right) / \mathrm{cc}-\mathrm{pVDZ}$-F12 level of theory (see text). $r\left(\mathrm{Z} \cdot \cdots \mathrm{X}_{\mathrm{i}}\right)$ is the distance from the acceptor atom/centre Z in the Lewis base B to the inner halogen atom X_{i}.

Table 2 Some observed and calculated properties of halogen-bonded complexes $\mathrm{B} \cdots \mathrm{XY}$ involving polar dihalogen molecules $\mathrm{XY}{ }^{a}$

Lewis base B	$\underline{\text { Dihalogen molecules XY }}$											
	Chlorine monofluoride ClF				Bromine monochloride BrCl				Iodine monochloride ICl			
	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r(\mathrm{Z} \cdots \mathrm{X}) / \mathrm{A}$	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r(\mathrm{Z} \cdots \mathrm{X}) / \AA$	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r(\mathrm{Z} \cdots \mathrm{X}) / \mathrm{A}$
N_{2}	5.00(3)	27	6.28	2.918	4.40(2)	35	5.63	3.106	5.37(2)	44	7.08	3.187
OC	7.04(2)	28	10.56	2.772	6.27(5)	36	9.20	3.006	8.00(3)	45	12.73	3.003
$\mathrm{C}_{2} \mathrm{H}_{2}$	10.01(2)	29	13.68	2.859	9.48(6)	37	12.92	3.038	12.12(8)	46	17.22	3.090
$\mathrm{C}_{2} \mathrm{H}_{4}$	11.01(3)	30	17.01	2.730	10.54(1)	38	15.74	2.927	14.0(1)	47	21.49	2.958
$\mathrm{H}_{2} \mathrm{~S}$	13.40(3)	31	18.13	2.835	12.07(10)	39	16.65	3.057	16.55(5)	48	22.65	3.120
$\mathrm{H}_{3} \mathrm{P}$	-	-	-	-	11.56(7)	40	19.30	2.878	20.7(1)	49	28.88	2.898
HCN	12.33(5)	32	18.42	2.639	11.09(10)	41	16.83	2.826	14.5(1)	50	23.66	2.840
$\mathrm{H}_{2} \mathrm{O}$	14.24(3)	33	20.14	2.544	12.08(2)	42	18.05	2.735	15.9(2)	51	24.65	2.776
$\mathrm{H}_{3} \mathrm{~N}$	34.3(5)	34	40.43	2.304	26.7(3)	43	34.01	2.532	30.4(3)	52	46.75	2.599

${ }^{a}$ Values of k_{σ} are either taken directly from the reference having the number indicated in columns 3 , 7 or 11, as appropriate, or are recalculated from the centrifugal distortion constant D_{J} or Δ_{J} given therein by using eqn (1) or (2). The quoted error is that transmitted by the error in the distortion constant. D_{σ} and $r(\mathrm{Z} \cdots \mathrm{X})$ are equilibrium values calculated ab initio at the CCSD(T)(F12*)/cc-pVDZ-F12 level of theory (see text). $r(\mathrm{Z} \cdots \mathrm{X})$ is the distance from the acceptor atom/centre Z in the Lewis base B to the inner halogen atom X .

Table 3 Some observed and calculated properties of hydrogen-bonded complexes B..HX ${ }^{\text {a }}$

Hydrogen halide molecules HX

Lewis base B	Hydrogen fluoride HF				Hydrogen chloride HCl			
	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r(\mathrm{Z} \cdots \mathrm{H}) / \mathrm{A}$	$k_{\sigma} /\left(\mathrm{N} \mathrm{m}^{-1}\right)$	Ref.	$D_{\sigma} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$r(\mathrm{Z} \cdots \mathrm{H}) / \mathrm{A}$
N_{2}	5.13(3)	53	9.26	2.099	2.55(1)	62 and 63	5.12	2.400
OC	8.48(9)	54	14.21	2.103	3.88(1)	64	7.78	2.393
$\mathrm{C}_{2} \mathrm{H}_{2}$	-	-	-	-	6.4(3)	65	11.03	2.378
$\mathrm{C}_{2} \mathrm{H}_{4}$	-	-	-	-	5.88(16)	66	11.32	2.396
$\mathrm{H}_{2} \mathrm{~S}$	12.0(2)	55 and 56	20.36	2.284	6.81(1)	67	12.73	2.480
$\mathrm{H}_{3} \mathrm{P}$	10.94(4)	57	19.38	2.354	6.01(2)	68	11.89	2.569
HCN	18.26(5)	58	30.33	1.859	9.25(4)	69	18.33	2.092
$\mathrm{H}_{2} \mathrm{O}$	24.51(2)	59 and 60	35.34	1.721	12.72(12)	70	21.34	1.912
$\mathrm{H}_{3} \mathrm{~N}$	32.8	61	50.98	1.703	18.2(3)	71	32.72	1.820
	Hydrogen bromide HBr				Hydrogen iodide HI			
N_{2}	1.92(1)	72	3.98	2.503	-		-	-
OC	2.99(1)	73	6.08	2.489	1.713(1)	81	4.02	2.675
$\mathrm{C}_{2} \mathrm{H}_{2}$	5.39(2)	74	9.24	2.440	-	-	-	-
$\mathrm{C}_{2} \mathrm{H}_{4}$	5.21(2)	75	9.65	2.456	-	-	- 7	-
$\mathrm{H}_{2} \mathrm{~S}$	5.86(2)	76	11.01	2.526	4.02(1)	82	7.78	2.670
$\mathrm{H}_{3} \mathrm{P}$	5.05(1)	77	10.19	2.618	$3.409(2)$	83	7.17	2.778
HCN	7.64(2)	78	14.92	2.161	4.44(1)	84	10.42	2.319
$\mathrm{H}_{2} \mathrm{O}$	10.06(15)	79	17.53	1.969	6.64(1)	85	12.06	2.117
$\mathrm{H}_{3} \mathrm{~N}$	13.4(3)	80	28.60	1.800	7.18(6)	86	19.82	1.926

${ }^{a}$ Values of k_{σ} are either taken directly from the reference having the number indicated in columns 3 or 7 , as appropriate, or are recalculated from the centrifugal distortion constant D_{J} or Δ_{J} given therein by using eqn (1) or (2). The quoted error is that transmitted by the error in the distortion constant. D_{σ} and $r(\mathrm{Z} \cdots \mathrm{H})$ are equilibrium values calculated ab initio at the CCSD $(\mathrm{T})\left(\mathrm{F} 12^{*}\right) /$ cc-pVDZ-F12 level of theory (see text). $r(\mathrm{Z} \cdots \mathrm{H})$ is the distance from the acceptor atom/centre Z of the Lewis base B to the hydrogen atom H .
hydrogen-bonded complexes $\mathrm{B} \cdots \mathrm{HX}^{53-86}$ All complexes considered here, except for those involving $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$, are either linear molecules, symmetric-top molecules or have $C_{2 \mathrm{v}}$ symmetry, so that eqn (1) and (2) are strictly applicable at equilibrium. All complexes of $\mathrm{H}_{2} \mathrm{O}$ with either HX or XY are effectively planar, that is although the equilibrium geometry has a pyramidal conformation at $\mathrm{O}\left(C_{\mathrm{s}}\right.$ symmetry) there is rapid inversion in the zero-point state between the two equivalent conformers and the vibrational wavefunctions have $C_{2 \mathrm{v}}$ symmetry. Eqn (2) is then a reasonable approximation. Complexes $\mathrm{H}_{2} \mathrm{~S} \cdots \mathrm{HX} / \mathrm{XY}$, on the other hand, all have C_{s} symmetry and are non-inverting in the zero-point state. They have a rightangled geometry in which HX or XY lies along an axis that passes through the $\mathrm{H}_{2} \mathrm{~S}$ centre of mass and is very nearly perpendicular to the $\mathrm{H}_{2} \mathrm{~S}$ plane. Nevertheless, eqn (2) is probably an acceptable approximation for the $\mathrm{H}_{2} \mathrm{~S}$ complexes.

2.2 Calculation of $\boldsymbol{D}_{\boldsymbol{\sigma}}$ values

Values of the energy change, D_{σ}, accompanying the dissociation $\mathrm{B} \cdot \mathrm{XY}=\mathrm{B}+\mathrm{XY}$ of each of the complexes $\mathrm{B} \cdots \mathrm{XY}$ into the components B and XY , all in their (hypothetical) equilibrium electronic ground states, were calculated at the explicitly correlated level ${ }^{87} \operatorname{CCSD}(\mathrm{~T})\left(\mathrm{F} 12^{*}\right) / \mathrm{cc}-\mathrm{pVDZ-F12}$ by using the ab initio program MOLPRO..88 This involved geometry optimisations of B $\cdots \mathrm{XY}, \mathrm{B}$ and XY. Corrections for basis set superposition error (BSSE) were applied using the Boys-Bernardi ${ }^{89}$ method. An advantage of using basis functions of the type cc-pVDZ-F12, that is functions optimised for use at the explicitly correlated level of theory, is that the BSSE corrections are relatively small, typically a few percent of D_{σ}. The basis functions for Br and I were of the type cc-pVDZ-F12-PP, where

PP indicates that a pseudo-potential is used for core electrons, and were provided by J. G. Hill of the University of Sheffield prior to their public release. ${ }^{90}$ For some complexes B $\cdots \mathrm{XY}$ it was possible to conduct calculations at the $\operatorname{CCSD}(\mathrm{T})\left(\mathrm{F} 12^{*}\right) /$ cc-pVTZ-F12 level. This increased D_{σ} by approximately 5% in each case. Unfortunately, for a few complexes in the series $\mathrm{B} \cdots \mathrm{BrCl}$, $\mathrm{B} \cdots \mathrm{Br}_{2}$ and $\mathrm{B} \cdots \mathrm{ICl}$, use of the cc-pVTZ-F12 basis functions would have proved too demanding of computer time. Therefore, in view of the systematic nature of the present investigation, it was decided to employ the highest level of theory that could be applied uniformly to all complexes considered, namely the level $\operatorname{CCSD}(\mathrm{T})\left(\mathrm{F} 12^{*}\right) /$ cc-pVDZ-F12. Values of D_{σ} so calculated for halogen-bonded complexes are included in Tables 1 and 2 while those calculated by the same approach for the hydrogen-bonded analogues $\mathrm{B} \cdots \mathrm{HX}$ are in Table 3. The atoms/points $\mathrm{Z} \cdots \mathrm{X}-\mathrm{Y}$ and $\mathrm{Z} \cdots \mathrm{H}-\mathrm{X}$ are required by symmetry to be collinear for all $\mathrm{B} \cdot \mathrm{XY}$ and B \cdots HX except those involving $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$. It has been shown, however, that the deviation from collinearity will be negligible for $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{~S}$ complexes involving both types of non-covalent interaction ${ }^{31,70}$ and therefore collinearity was enforced for these complexes during the geometry optimisations.

3. Results

3.1 Halogen-bonded complexes B \cdots XY

Fig. 1 shows the calculated values of D_{σ} plotted as the ordinate against the experimental values of k_{σ} along the abscissa for the series of complexes $\mathrm{B} \cdots \mathrm{Cl}_{2}$ and $\mathrm{B} \cdots \mathrm{Br}_{2}$ in which B is $\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}$, $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ and NH_{3}. Also included on the same graph are $\mathrm{B} \cdots \mathrm{F}_{2}$ for $\mathrm{B}=\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCN}$ and NH_{3}, which are the

Fig. 1 A plot of D_{σ} versus k_{σ} for complexes of the type $B \cdots X_{2}$, where B is one of the series of Lewis bases $\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ or NH_{3} and X_{2} is one of the nonpolar dihalogen molecules $\mathrm{F}_{2}, \mathrm{Cl}_{2}$ or Br_{2}. The continuous line represents the straight line fitted to the points (including the origin) by linear regression and is given as eqn (3) in the text.
only difluorine complexes known in the gas phase for the B listed and for which experimental k_{σ} are available. The point $(0,0)$ has been included under the reasonable assumption that when there is no interaction between a pair of molecules forming a complex both measures of the binding strength become zero. The points in Fig. 1 fall on a straight line through the origin, indicating direct proportionality of D_{σ} and k_{σ}. The equation for the line obtained by means of linear regression is

$$
\begin{equation*}
D_{\sigma} /\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)=1.47(3)\left\{k_{\sigma} /\left(\mathrm{N} \mathrm{~m}^{-1}\right)\right\}-0.21(21) \tag{3}
\end{equation*}
$$

The choice of $\mathrm{B} \cdots \mathrm{X}_{2}$ molecules for the initial demonstration of the direct proportionality of D_{σ} and k_{σ} was dictated by the fact that in general the nonpolar molecules X_{2} form weaker complexes than do their polar counterparts $\mathrm{ClF}, \mathrm{BrCl}$ and ICl . Given the limitations of the model (see Section 2.1) for the experimental determination of k_{σ} from the centrifugal distortion constants D_{J} and Δ_{J}, especially the assumption of monomer geometries unchanged on complex formation, it is likely that the model will better apply to the $\mathrm{B} \cdots \mathrm{X}_{2}$ than to those involving the polar dihalogens. Fig. 2 shows the points $\left(k_{\sigma}, D_{\sigma}\right)$ for $\mathrm{B} \cdots \mathrm{XY}$, when XY includes all dihalogen molecules, both polar and nonpolar. The continuous straight line in Fig. 2 corresponds to that defined in eqn (3), i.e. that fitted to the points for $\mathrm{B} \cdots \mathrm{X}_{2}$ only. Note that the scatter from the straight line of eqn (3) tends to increase as the binding strength increases. The points with largest deviation correspond to those for complexes of $\mathrm{H}_{3} \mathrm{~N}$ with each of BrCl and ICl. For $\mathrm{H}_{3} \mathrm{~N} \cdots$ ClF there is experimental evidence from the nuclear quadrupole coupling constants for a significant charge redistribution (and probably geometrical rearrangement) on complex formation ${ }^{34}$ and therefore the point $\left(k_{\sigma}, D_{\sigma}\right)$ for this complex was excluded from the graph. When all the points shown in Fig. 2 are fitted by means of linear regression, the result is

$$
\begin{equation*}
D_{\sigma} /\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)=1.45(3)\left\{k_{\sigma} /\left(\mathrm{N} \mathrm{~m}^{-1}\right)\right\}-0.06(35) \tag{4}
\end{equation*}
$$

that is, a straight line through the origin and of slope within experimental error of that obtained (eqn (3)) when only homonuclear dihalogen molecules act as the halogen-bond donor.

Fig. 2 A plot of D_{σ} against k_{σ} for complexes of the type $B \cdots X_{2}$ and $B \cdots X Y$, where B is one of the Lewis bases $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ or $\mathrm{NH}_{3}, \mathrm{X}$ 2 is one of the nonpolar dihalogen molecules $\mathrm{F}_{2}, \mathrm{Cl}_{2}$ or Br_{2}, and XY is one of the polar dihalogens $\mathrm{ClF}, \mathrm{BrCl}$ or ICl . The continuous line is that represented by eqn (3) and shown in Fig. 1, that is the straight line fitted to the points arising from $B \cdots X_{2}$ complexes only.

Proportionality of k_{σ} and D_{σ} for several $\mathrm{H}_{3} \mathrm{~N} \cdots \mathrm{XY}$ complexes was also noted by Hill and Xu. ${ }^{91}$

3.2 Hydrogen-bonded complexes B \cdot HX

It is of interest to apply the same approach to hydrogen-bonded complexes $\mathrm{B} \cdots \mathrm{HX}$, where B is again one of the same series of simple Lewis bases $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ and NH_{3} used in the discussion of the halogen-bonded complexes in Section 3.1 and X is $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I. Experimental values of k_{σ} obtained as before from centrifugal distortion constants and D_{σ} values calculated at the $\operatorname{CCSD}(\mathrm{T})\left(\mathrm{F} 12^{*}\right) / \mathrm{cc}-\mathrm{pVDZ}$ level of theory are set out in Table 3. Fig. 3, in which D_{σ} is plotted versus k_{σ} for all members of the hydrogen-bonded series $\mathrm{B} \cdots \mathrm{HX}$ except $\mathrm{H}_{3} \mathrm{~N} \cdots \mathrm{HBr}$ and $\mathrm{H}_{3} \mathrm{~N} \cdots \mathrm{HI}$, again reveals a reasonable straight line, with the following equation fitted by linear regression:

$$
\begin{equation*}
D_{\sigma} /\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)=1.53(3)\left\{k_{\sigma} /\left(\mathrm{N} \mathrm{~m}^{-1}\right)\right\}-1.8(3) \tag{5}
\end{equation*}
$$

Fig. 3 A plot of D_{σ} against k_{σ} for hydrogen-bonded complexes of the type $B \cdots H X$, where B is one of the Lewis bases $\mathrm{N}_{2}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{~S}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}$ or NH_{3} and X is $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I . The continuous line is that represented by eqn (5), that is the straight line fitted to the points (including the origin) by linear regression.

We note that the slope is just within experimental error of that obtained for the halogen-bonded series $\mathrm{B} \cdots \mathrm{XY}$, but that the line does not pass as precisely through the origin. The reason for excluding $\mathrm{H}_{3} \mathrm{~N} \cdots \mathrm{HBr}$ and $\mathrm{H}_{3} \mathrm{~N} \cdots \mathrm{HI}$ is that these are the most likely to suffer from a significant contribution of $\mathrm{H}_{4} \mathrm{~N}^{+} \ldots \mathrm{X}^{-}$to a valence bond description of the complex in view of the increased ease of dissociation $\mathrm{HX}=\mathrm{H}^{+}+\mathrm{X}^{-}$along the series $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I .

4. Discussion

It has been shown that it is possible to express the intermolecular dissociation energy D_{σ} in terms of the intermolecular stretching force constant k_{σ} for a wide range of simple bimolecular halogen- and hydrogen-bonded complexes $\mathrm{B} \cdots \mathrm{XY}$ and B \cdot •HX, where XY is a homo- or hetero-dihalogen molecule and X is a halogen atom, by means of the expression

$$
\begin{equation*}
D_{\sigma}=C_{\sigma} k_{\sigma}, \tag{6}
\end{equation*}
$$

where the constant $C_{\sigma}=1.50(3) \times 10^{3} \mathrm{~m}^{2} \mathrm{~mol}^{-1}=2.49(5) \times$ $10^{-21} \mathrm{~m}^{2}$ It is not obvious why C_{σ} should have the same value for the hydrogen- and halogen-bonded series; it could be a coincidence. The fact that these two series of halogenand hydrogen-bonded complexes obey eqn (6) does suggest, however, that empirical radial potential energy functions leading to a direct proportionality between k_{σ} and D_{σ} might be used to calculate the energy levels associated with the intermolecular stretching vibration in such molecules. In order to derive eqn (1) and (2) for use in the determination of k_{σ}, it was necessary to assume that the motion associated with k_{σ} involved only a change in the intermolecular distance r between the two rigid, unperturbed components while maintaining the angular geometry. Two examples of simple functions ${ }^{92}$ that imply a relation of the type in eqn (6) are the Morse function

$$
\begin{equation*}
V(r)=D_{\sigma}\left[1-\mathrm{e}^{-a\left(r-r_{\mathrm{e}} \mathrm{e}\right.}\right]^{2}, \tag{7}
\end{equation*}
$$

and the Rydberg function

$$
\begin{equation*}
V(r)=-D_{\sigma}\left[1+b\left(r-r_{\mathrm{e}}\right)\right] \mathrm{e}^{-b\left(r-r_{\mathrm{e}}\right)} . \tag{8}
\end{equation*}
$$

The quadratic force constant k_{σ} is related to $V(r)$ by $k_{\sigma}=$ $\left|\frac{\partial^{2} V}{\partial r^{2}}\right|_{r=r_{e}}=V^{\prime \prime}\left(r_{\mathrm{e}}\right)$ so that differentiation of eqn (7) and (8) leads to the expressions $D_{\sigma}=k_{\sigma} / 2 a^{2}$ and $D_{\sigma}=k_{\sigma} / b^{2}$, respectively, and hence to the identifications $a=\left(2 C_{\sigma}\right)^{-\frac{1}{2}}$ and $b=C_{\sigma}{ }^{-\frac{1}{2}}$ respectively. Given values of a or b, the term values $G(v)$, as wavenumbers, for the intermolecular stretching vibration (as defined above) for any of the complexes B...XY or B \cdots HX considered here can then be estimated by means of the usual expression

$$
\begin{equation*}
G(v)=\omega_{\sigma}(v+1 / 2)-\omega_{\sigma} x_{\sigma}(v+1 / 2)^{2}, \tag{9}
\end{equation*}
$$

in which ${ }^{92}$

$$
\begin{aligned}
& \omega_{\sigma}=(2 \pi c)^{-1}\left[V^{\prime \prime}\left(r_{\mathrm{e}}\right) / \mu\right]^{\frac{1}{2}} \text { and } \\
& \omega_{\sigma} x_{\sigma}=\left(\frac{\hbar}{\pi c \mu}\right)\left\{\frac{5}{96}\left[\frac{V^{\prime \prime \prime}\left(r_{\mathrm{e}}\right)}{V^{\prime \prime}\left(r_{\mathrm{e}}\right)}\right]^{2}-\frac{1}{32}\left[\frac{V^{\prime \prime \prime \prime}\left(r_{\mathrm{e}}\right)}{V^{\prime \prime}\left(r_{\mathrm{e}}\right)}\right]\right\} .
\end{aligned}
$$

For the Morse function, ω_{σ} and $\omega_{\sigma} x_{\sigma}$ can then be related to the constant a in the exponential term (and thence to C_{σ}) by differentiation to give

$$
\begin{equation*}
\omega_{\sigma}=\frac{1}{2 \pi c}\left(\frac{2 a^{2} D_{\sigma}}{\mu}\right)^{\frac{1}{2}} \text { and } \omega_{\sigma} x_{\sigma}=\left(\frac{\hbar a^{2}}{4 \pi c \mu}\right) \tag{10}
\end{equation*}
$$

For the Rydberg function the corresponding expressions in terms of its constant b are

$$
\begin{equation*}
\omega_{\sigma}=\frac{1}{2 \pi c}\left(\frac{b^{2} D_{\sigma}}{\mu}\right)^{\frac{1}{2}} \text { and } \omega_{\sigma} x_{\sigma}=\frac{11}{24}\left(\frac{\hbar b^{2}}{4 \pi c \mu}\right) . \tag{11}
\end{equation*}
$$

The quantities ω_{σ} and $\omega_{\sigma} x_{\sigma}$ have proved difficult to obtain experimentally, but Bevan, Lucchese and co-workers ${ }^{93-95}$ have determined accurate values of both for the complexes ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots \mathrm{H}^{19} \mathrm{~F},{ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots \mathrm{H}^{35} \mathrm{Cl}$, OC $\cdots{ }^{35} \mathrm{Cl}_{2}$ and ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}$ with the aid of morphed potential energy functions for these molecules. Their values for the pairs of quantities [ω_{σ} and $\omega_{\sigma} x_{\sigma}$] are $\left[107.99(2)\right.$ and $\left.3.79 \mathrm{~cm}^{-1}\right],\left[62.88(3)\right.$ and $\left.1.61 \mathrm{~cm}^{-1}\right],[56.43(4)$ and $2.91 \mathrm{~cm}^{-1}$] and [58(3) and $1.87 \mathrm{~cm}^{-1}$], respectively. Those calculated from the Morse function by means of eqn (10) when $C_{\sigma}=1.50(3) \times 10^{3} \mathrm{~m}^{2} \mathrm{~mol}^{-1}=2.49(5) \times 10^{-21} \mathrm{~m}^{2}$ is used are [117(2) and 2.9(1) $\left.\mathrm{cm}^{-1}\right],\left[74.8(15)\right.$ and $\left.2.15(9) \mathrm{cm}^{-1}\right],[54.2(10)$ and $\left.1.69(7) \mathrm{cm}^{-1}\right]$, and $\left[68.0(14)\right.$ and $\left.1.51(6) \mathrm{cm}^{-1}\right]$, respectively. The agreement between the morphed values of Bevan, Lucchese et al. and those generated by eqn (10) is satisfactory, but the former are more accurate. Values of $\omega_{\sigma} x_{\sigma}$ implied by the Rydberg function are smaller by the factor of 0.917 than those predicted by the Morse function.

The morphed potential energy functions for $\mathrm{OC} \cdots \mathrm{HF}$, $\mathrm{OC} \cdots \mathrm{HCl}, \mathrm{OC} \cdots \mathrm{Cl}_{2}$ and $\mathrm{OC} \cdots \mathrm{BrCl}$ reported in ref. 93-95 allow a severe test of the use of zero-point spectroscopic constants in eqn (1) and (2) in the absence of equilibrium values, as advertised in Section 2.1. The six-dimensional morphing described in ref. 93 leads to the prediction $\omega_{\sigma}=107.99(2) \mathrm{cm}^{-1}$ for the (experimentally unknown) equilibrium wavenumber associated with the intermolecular stretching mode σ of the isotopologue ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots \mathrm{H}^{19} \mathrm{~F}$, which implies the value $k_{\sigma}=8.017(2) \mathrm{N} \mathrm{m}^{-1}$ for the equilibrium quadratic force constant of that mode. By comparison, use of the centrifugal distortion constant D_{J} of ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots \mathrm{H}^{19} \mathrm{~F}$ in eqn (1) in place of the unavailable equilibrium values gives $k_{\sigma}=8.48(9) \mathrm{N} \mathrm{m}^{-1}$ (see Table 3), thereby providing some confidence in the approximations alluded to. This confidence is reinforced by the similar quality of agreement found between the values $k_{\sigma}=3.668(3), 3.751(5)$ and $4.5(4)$ implied by the ω_{σ} from morphed potential energy functions ${ }^{94,95}$ of ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots \mathrm{H}^{35} \mathrm{Cl}$, ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots{ }^{35} \mathrm{Cl}_{2}$ and ${ }^{16} \mathrm{O}^{12} \mathrm{C} \cdots{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}$, respectively, and those $3.88(1), 3.68(1)$ and $4.40(2) \mathrm{N} \mathrm{m}^{-1}$ calculated from zero-point D_{J} values via eqn (1) (see Tables 1-3, respectively).

Finally, it has been shown ${ }^{96}$ that k_{σ} values for complexes B \cdots HX can be predicted with the aid of eqn (12)

$$
\begin{equation*}
k_{\sigma}=c^{\prime} N_{\mathrm{B}} E_{\mathrm{XY}}, \tag{12}
\end{equation*}
$$

where c^{\prime} is a constant, from numerical nucleophilicities N_{B} assigned to the Lewis bases B and numerical electrophilicities E_{HX} assigned to the acids HX. A similar expression ${ }^{97}$ holds when the Lewis acids are dihalogen molecules. In view of the direct proportionality $D_{\sigma}=C_{\sigma} k_{\sigma}$ established here, it follows that it is also possible to use D_{σ} values in a similar manner to establish nucleophilicities for Lewis bases B and electrophilicities for Lewis acids HX or XY.

Acknowledgements

I am pleased to acknowledge generous advice about $a b$ initio calculations from Dr David Tew (University of Bristol) and Dr Grant Hill (University of Sheffield). I am grateful to the latter for making available the cc-pVDZ-PP-F12 basis functions for bromine and iodine in advance of their publication.

References

1 Halogen Bonding, Fundamentals and Applications, ed. P. Metrangolo and G. Resnati, Structure and Bonding, Springer-Verlag, Berlin, 2008, vol. 126.
2 A. C. Legon, Phys. Chem. Chem. Phys., 2010, 12, 7736-7747.
3 Definition of the halogen bond (IUPAC Recommendations 2013), G. R. Desiraju, P. Shing Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. A. Politzer, G. Resnati and K. Rissanen, Pure Appl. Chem., 2013, 85, 1711-1713.

4 M. Carter, A. K. Rappé and P. Shing Ho, J. Chem. Theory Comput., 2012, 8, 2461-2473.
5 A. C. Legon, in Halogen Bonding, Fundamentals and Applications, ed. P. Metrangolo and G. Resnati, Structure and Bonding, Springer-Verlag, Berlin, 2008, ch. 2, vol. 126, pp. 17-64.
6 D. J. Millen, Can. J. Chem., 1985, 63, 1477-1479.
7 G. Cotti, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1997, 264, 513-521.
8 S. A. Cooke, G. Cotti, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1996, 262, 308-314.

9 S. A. Cooke, G. Cotti, J. H. Holloway and A. C. Legon, Angew. Chem., Int. Ed. Engl., 1997, 36, 129-130.
10 S. A. Cooke, G. Cotti, C. M. Evans, J. H. Holloway, Z. Kisiel, A. C. Legon and J. M. A. Thumwood, Chem. - Eur. J., 2001, 7, 2295-2305.
11 H. I. Bloemink, K. Hinds, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1995, 245, 598-604.
12 W. Jäger, Y. Xu and M. C. L. Gerry, J. Phys. Chem., 1993, 97, 3685-3689.
13 H. I. Bloemink, S. A. Cooke, K. Hinds, A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1995, 91, 1891-1900.

14 H. I. Bloemink, K. Hinds, A. C. Legon and J. C. Thorn, Chem. - Eur. J., 1995, 1, 17-25.

15 H. I. Bloemink, S. J. Dolling, K. Hinds and A. C. Legon, J. Chem. Soc., Faraday Trans., 1995, 91, 2059-2066.

16 A. C. Legon and H. E. Warner, J. Chem. Phys., 1993, 98, 3827-3832.
17 A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1993, 89, 4157-4162.
18 J. B. Davey, A. C. Legon and J. M. A. Thumwood, J. Chem. Phys., 2001, 114, 6190-6202.
19 A. C. Legon, D. G. Lister and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1994, 90, 3205-3212.
20 E. R. Waclawik, J. M. A. Thumwood, D. G. Lister, P. W. Fowler and A. C. Legon, Mol. Phys., 1999, 97, 159-166.

21 J. B. Davey and A. C. Legon, Chem. Phys. Lett., 2001, 350, 39-50.
22 A. C. Legon and J. M. A. Thumwood, Phys. Chem. Chem. Phys., 2001, 3, 1397-1402.
23 A. C. Legon and J. M. A. Thumwood, Phys. Chem. Chem. Phys., 2001, 3, 2758-2764.
24 E. R. Waclawik and A. C. Legon, Chem. - Eur. J., 2000, 6, 3968-3975.
25 A. C. Legon, J. M. A. Thumwood and E. R. Waclawik, Chem. Eur. J., 2002, 8, 940-950.
26 H. I. Bloemink and A. C. Legon, J. Chem. Phys., 1995, 103, 876-882.
27 S. A. Cooke, G. Cotti, K. Hinds, J. H. Holloway, A. C. Legon and D. G. Lister, J. Chem. Soc., Faraday Trans., 1996, 92, 2671-2676.
28 K. Hinds, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1995, 242, 407-414.
29 K. Hinds, J. H. Holloway and A. C. Legon, J. Chem. Soc., Faraday Trans., 1996, 92, 1291-1296.
30 H. I. Bloemink, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1996, 250, 567-575.
31 H. I. Bloemink, K. Hinds, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1995, 242, 113-120.
32 K. Hinds, A. C. Legon and J. H. Holloway, Mol. Phys., 1996, 88, 673-682.
33 S. A. Cooke, G. Cotti, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Commun., 1996, 2327-2328.

34 H. I. Bloemink, C. M. Evans, J. H. Holloway and A. C. Legon, Chem. Phys. Lett., 1996, 248, 260-268.
35 A. C. Legon and P. Ottaviani, Phys. Chem. Chem. Phys., 2002, 4, 441-444.
36 S. Blanco, A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1994, 90, 1365-1371.
37 H. I. Bloemink, K. Hinds, A. C. Legon and J. C. Thorn, J. Chem. Soc., Chem. Commun., 1994, 1229-1230.

38 H. I. Bloemink, K. Hinds, A. C. Legon and J. C. Thorn, Angew. Chem., Int. Ed. Engl., 1994, 33, 1512-1513.
39 H. I. Bloemink and A. C. Legon, Chem. - Eur. J., 1996, 2, 265-270.
40 A. C. Legon, J. M. A. Thumwood and E. R. Waclawik, J. Chem. Phys., 2000, 113, 5278-5286.

41 K. Hinds and A. C. Legon, Chem. Phys. Lett., 1995, 240, 467-473.
42 J. B. Davey and A. C. Legon, Phys. Chem. Chem. Phys., 2001, 3, 3006-3011.

43 H. I. Bloemink, A. C. Legon and J. C. Thorn, J. Chem. Soc., Faraday Trans., 1995, 91, 781-787.
44 J. B. Davey, A. C. Legon and E. R. Waclawik, J. Mol. Struct., 2000, 500, 391-402.
45 J. B. Davey, A. C. Legon and E. R. Waclawik, Phys. Chem. Chem. Phys., 1999, 1, 3097-3102.
46 J. B. Davey and A. C. Legon, Phys. Chem. Chem. Phys., 1999, 1, 3721-3726.
47 J. M. A. Thumwood and A. C. Legon, Chem. Phys. Lett., 1999, 310, 88-96.
48 A. C. Legon and E. R. Waclawik, Chem. Phys. Lett., 1999, 312, 385-393.
49 J. B. Davey, A. C. Legon and E. R. Waclawik, Phys. Chem. Chem. Phys., 2000, 2, 2265-2269.
50 W. A. Herrebout, A. C. Legon and E. R. Waclawik, Phys. Chem. Chem. Phys., 1999, 1, 4961-4966.
51 J. B. Davey, A. C. Legon and E. R. Waclawik, Phys. Chem. Chem. Phys., 2000, 2, 1659-1665.
52 E. R. Waclawik and A. C. Legon, Phys. Chem. Chem. Phys., 1999, 1, 4695-4700.
53 P. D. Soper, A. C. Legon, W. G. Read and W. H. Flygare, J. Chem. Phys., 1982, 76, 292-300.

54 A. C. Legon, P. D. Soper and W. H. Flygare, J. Chem. Phys., 1981, 74, 4944-4950.
55 R. Viswanathan and T. R. Dyke, J. Chem. Phys, 1982, 77, 1166-1174.
56 L. C. Willoughby, A. J. Fillery-Travis and A. C. Legon, J. Chem. Phys., 1984, 81, 20-26.

57 A. C. Legon and L. C. Willoughby, Chem. Phys., 1983, 74, 127-136.
58 A. C. Legon, D. J. Millen and L. C. Willoughby, Proc. R. Soc. London, Ser. A, 1985, 401, 327-347.
59 Z. Kisiel, A. C. Legon and D. J. Millen, Proc. R. Soc. London, Ser. A, 1982, 381, 419-442.
60 S. P. Belov, V. M. Demkin, N. F. Zobov, E. N. Karyakin, A. F. Krupnov, I. N. Kozin, O. L. Polyansky and M. Yu. Tretyakov, J. Mol. Spectrosc., 2007, 241, 124-135.
61 B. J. Howard and P.R. R. Langridge-Smith, private communication.
62 R. S. Altman, M. D. Marshall and W. Klempere, J. Chem. Phys., 1983, 79, 57-61.
63 Z. Kisiel, L. Pszczólkowski, P. W. Fowler and A. C. Legon, Chem. Phys. Lett., 1997, 276, 202-209.
64 P. D. Soper, A. C. Legon and W. H. Flygare, J. Chem. Phys., 1981, 74, 2138-2142.
65 A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Chem. Phys., 1981, 75, 625-630.
66 P. D. Aldrich, A. C. Legon and W. H. Flygare, J. Chem. Phys., 1981, 75, 2126-2134.
67 E. J. Goodwin and A. C. Legon, J. Chem. Soc., Faraday Trans. 2, 1984, 80, 51-65.
68 A. C. Legon, J. M. A. Thumwood, E. R. Waclawik and L. C. Willoughby, Phys. Chem. Chem. Phys., 2000, 2, 4918-4924.
69 A. C. Legon, E. J. Campbell and W. H. Flygare, J. Chem. Phys., 1982, 76, 2267-2274.

70 Z. Kisiel, B. A. Pietrewicz, P. W. Fowler, A. C. Legon and E. Steiner, J. Phys. Chem., 2000, 104, 6970-6978.

71 N. W. Howard and A. C. Legon, J. Chem. Phys., 1988, 88, 4694-4701.
72 N. W. Howard and A. C. Legon, J. Chem. Phys., 1989, 90, 672-678.
73 M. R. Keenan, T. K. Minton, A. C. Legon, T. J. Balle and W. H. Flygare, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 5583-5587.
74 G. C. Cole, J. B. Davey, A. C. Legon and A. F. Lyndon, Mol. Phys., 2003, 101, 603-612.
75 P. W. Fowler, A. C. Legon, J. M. A. Thumwood and E. R. Waclawik, Coord. Chem. Rev., 2000, 197, 231-247.

76 A. I. Jaman and A. C. Legon, J. Mol. Struct., 1986, 145, 261-276.
77 L. C. Willoughby and A. C. Legon, J. Phys. Chem., 1983, 87, 2085-2090.
78 E. J. Campbell, A. C. Legon and W. H. Flygare, J. Chem. Phys., 1983, 78, 3494-3500.
79 A. C. Legon and A. P. Suckley, Chem. Phys. Lett., 1988, 150, 153-158.
80 N. W. Howard and A. C. Legon, J. Chem. Phys., 1987, 86, 6722-6730.
81 Z. Wang, R. R. Lucchese, J. W. Bevan, A. P. Suckley, C. A. Rego and A. C. Legon, J. Chem. Phys., 1993, 98, 1761-1767.
82 A. P. Suckley, PhD thesis, University of Exeter, 1991.
83 N. W. Howard, A. C. Legon and G. J. Luscombe, J. Chem. Soc., Faraday Trans., 1991, 87, 507-512.
84 P. W. Fowler, A. C. Legon and S. A. Peebles, Chem. Phys. Lett., 1994, 226, 501-508.
85 A. McIntosh, T. Walther, R. R. Lucchese, J. W. Bevan, R. D. Suenram and A. C. Legon, Chem. Phys. Lett., 1999, 314, 57-64.
86 A. C. Legon and D. Stephenson, J. Chem. Soc., Faraday Trans., 1992, 88, 761-762.
87 C. Hättig, D. P. Tew and A. Köhn, J. Chem. Phys., 2010, 132, 231102.
88 H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz and others, MOLPRO, version 2012.1, a package of ab initio programs. See http://www.molpro.net.
89 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553-566.
90 K. A. Peterson and J. G. Hill, in preparation.
91 J. G. Hill and X. Hu, Chem. - Eur. J., 2013, 19, 3620-3628.
92 See, e.g., G. W. King, Spectroscopy and Molecular Structure, Holt, Rinehart and Winston, New York, 1964, p. 164.
93 L. A. Rivera-Rivera, Z. Wang, B. A. McElmurry, R. R. Lucchese, J. W. Bevan and G. Kanschat, Chem. Phys., 2011, 390, 42-50.
94 S. D. Springer, L. A. Rivera-Rivera, K. W. Scott, B. A. McElmurry, Z. Wang, I. I. Leonov, R. R. Lucchese, A. C. Legon and J. W. Bevan, J. Phys. Chem. A, 2012, 116, 1213-1223.

95 L. A Rivera-Rivera, K. W. Scott, B. A. McElmurry, R. R. Lucchese and J. W. Bevan, Chem. Phys., 2013, 425, 162-169.
96 A. C. Legon and D. J. Millen, J. Am. Chem. Soc., 1987, 109, 356-358.
97 A. C. Legon, Angew. Chem., Int. Ed., 1999, 38, 2686-2714.

[^0]: School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
 E-mail: a.c.legon@bristol.ac.uk

