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One-electron self-interaction and the asymptotics
of the Kohn—Sham potential: an impaired relation
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One-electron self-interaction and an incorrect asymptotic behavior of the Kohn-Sham exchange-
correlation potential are among the most prominent limitations of many present-day density functionals.
However, a one-electron self-interaction-free energy does not necessarily lead to the correct long-
range potential. This is shown here explicitly for local hybrid functionals. Furthermore, carefully studying
the ratio of the von Weizsacker kinetic energy density to the (positive) Kohn—Sham kinetic energy
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density, tw/t, reveals that this ratio, which frequently serves as an iso-orbital indicator and is used to
in  meta-generalized-gradient approximations and
local hybrid functionals, can fail to approach its expected value in the vicinity of orbital nodal planes. This

eliminate one-electron self-interaction effects
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perspective article suggests that the nature and consequences of one-electron self-interaction and
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1 Density functional approximations
and their Kohn—Sham potentials

During the past few decades, Kohn-Sham density-functional
theory (DFT)"? has evolved into a standard tool for electronic
structure calculations of atoms, molecules and solids. The
decisive quantity of DFT is the exchange-correlation (xc) energy
functional, E,., which contains all electronic interactions
beyond the classical electrostatic Hartree contribution, Ey. Ex.
in practice has to be approximated, and the approximation
used governs the accuracy of a DFT calculation.>* It is one of
the puzzles of DFT that explicit density functionals such as the
generalized gradient approximations (GGAs) can predict bind-
ing energies and bond lengths of complex many-electron
systems reliably, but make substantial errors in describing
simple one-electron systems. The underlying problem is well-
known as the one-electron “self-interaction problem”:> for the
exact functional, E,. + Eg will vanish for any one-electron
ground-state density because one electron does not interact
with itself — but most approximate functionals yield a spurious
finite value for this case. Following ref. 5 a functional is
considered to be one-electron self-interaction free if it fulfills
the condition

EH[nia] + Exc[nia'] = O) (1)

where n;, = |@;,(r)|* designates a single spin-orbital density.
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some of the strategies for its correction need to be reconsidered.

Self-interaction plays a decisive (although not the only) role
in the (un)reliability of density functional theory calculations,
and its consequences are particularly pronounced, e.g., in
questions of orbital localization,”® ionization processes,™?
charge transfer,”>> and the interpretability of eigenvalues
and orbitals, e.g., as photoemission observables.'®>3

Many of these observables can also be directly related to
properties of the Kohn-Sham exchange-correlation potential,
which is defined as the functional derivative of the xc
energy with respect to the ground-state density n(r), ie.,

SExc([n]
el = S5
relation between freedom from self-interaction and xc potential
features. The field-counteracting term that is important for
obtaining correct response properties is one such feature.**>
Another example, and probably the most prominent one, is the
long-range asymptotic behavior of the xc potential,>*>”

. It is generally expected that there is a close
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(Hartree units are used here and throughout.) In this
perspective article we focus exclusively on Kohn-Sham theory,
i.e., on a local multiplicative xc potential, as opposed to orbital-
specific (non-multiplicative) potentials that arise in generalized
Kohn-Sham theory*® and are used in the standard application
of hybrid functionals. In the Kohn-Sham approach, the local xc
potential models the interaction of one particle with all others
and it therefore appears intuitively plausible that a functional
that is not self-interaction-free cannot show the correct —1/r
long-range asymptotic behavior: as one particle of a finite,
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overall electrically neutral system ventures out to infinity, it will
“feel” the hole of charge 1 that it left behind in the total charge.
This gives rise to the —1/r potential asymptotics (see, e.g., ref. 4,
p. 242 for a more detailed argument along these lines). How-
ever, a particle that spuriously self-interacts will “feel” itself,
and thus not the proper hole. Consequently, the potential will
not have the proper long-range decay.

The correct asymptotics of the xc potential has proven to
be important for a variety of physical quantities. It plays a
prominent role for obtaining stable anions in DFT, it leads to a
Rydberg series in the Kohn-Sham eigenvalues and generally to
unoccupied eigenvalues of improved interpretability, and as a
consequence allows for improved accuracy in the prediction of
various response properties.?** The correct asymptotic behavior is
also important for the ionization potential (IP) theorem,?®*”>*3>
which states that the negative of the highest occupied Kohn-Sham
eigenvalue —ey, should correspond to the vertical IP, and for
developing functionals that allow for approximately predicting
IPs from ground-state eigenvalues.>®*’

There have been fruitful attempts to incorporate the correct
behavior in the limit |r| — co directly into the xc potential,**™**
leading to improvements in the description of some of the
aforementioned properties. However, since directly designed
potential expressions are typically not functional derivatives of
any energy functional, the use of such “potential only”” approx-
imations is necessarily limited, as discussed, e.g., in detail in
ref. 42-44.

A functional that combines freedom from self-interaction and
the correct asymptotics of the potential is exact exchange (EXX),
being defined as the Fock integral evaluated using Kohn-Sham
orbitals ¢;,(r), where i labels orbitals in spin channel o:

_l e Jjwfa* (r)wjo’(r)qoio’(r,)(pja* (rl)
2 £ [r—r/|

i,j=1
o=1,1

E(r) = &erd’s. (3

Here, N, is the number of electrons with spin ¢. Treating
exchange exactly with a local Kohn-Sham potential leads to a
significant improvement in the quality of Kohn-Sham eigen-
values when compared to (semi-)local functionals.”’®>*>*® EXX
also tends to increase Kohn-Sham gaps,®*”° leads to a desired
particle number discontinuity in static>* and time-dependent®*
situations, and improves the description of charge transfer,>*?
dissociation®® and ionization processes.>”

However, using bare EXX is known for its rather poor
description of binding energies and structural properties (see,
e.g., ref. 54 and 55, and ref. 4, chapter 2). Adding a (semi-)local
correlation term to EXX hardly improves the situation and
typically leads to results that are inferior to the ones from
(semi-)local functionals. The reason for this failure is the well-
known incompatibility of the fully non-local Fock exchange
with a purely (semi-)local correlation term.>®

A class of approximations which has been designed to remedy
this incompatibility is that of local hybrid functionals,®’"®
sometimes also called hyper-GGAs.”® Whereas global hybrid
functionals®®** mix a constant, fixed fraction of Fock exchange
with (semi-)local exchange and correlation, local hybrids
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replace the fixed fraction by a density dependent local mixing
function (LMF). Both types of hybrids originate from the
concept of the coupling-constant integration, i.e., the adiabatic
connection scheme.’>®®> Global hybrids are successful in
modeling the coupling-constant averaged, integrated energy.
Local hybrids can go one step further and aim to model the
coupling-constant curve itself®® instead of just the integral.
Thus, in contrast to the global hybrid functionals which
are used in practical applications of DFT and combine GGA
components with a fixed fraction of exact exchange, local
hybrids can incorporate full exact exchange and can be fully
one-electron self-interaction-free.

An early local hybrid with reduced one-electron self-
interaction error showed promising results for dissociation
curves and reaction barriers, but its accuracy for binding
energies was limited.”® A self-consistent implementation of a
local hybrid functional was given in ref. 67, and over the years
several local hybrids were constructed, using different LMFs
and (semi-)local exchange and correlation functionals,®®7®
striving to reach greater accuracy by refining the position-
dependent mixing of nonlocal and local components. Many
of these functionals rely on the concept of an iso-orbital
indicator, ie., a functional that allows one to distinguish
regions of space in which the density is dominated by one
orbital shape from regions of space where several orbitals of
different shapes contribute to the density. The most prominent
iso-orbital indicator, which goes back to a long tradition of
using kinetic energy densities in density functional construc-
tion,”””’® is the ratio of the von Weizsicker kinetic energy
density tw to the positive (as opposed to other possible defini-
tions, see, e.g., ref. 80) Kohn-Sham kinetic energy density t,
discussed in detail below.

By using full EXX and an iso-orbital indicator, local hybrids
aim at being one electron self-interaction-free and producing a
Kohn-Sham potential with the proper long-range asymptotic
decay. They are a paradigm class of functionals designed for
simultaneously curing both of these two prominent problems
of (semi-)local density functionals. In the following, we there-
fore use the example of a local hybrid functional to shed light
on the relation between a functional’s self-interaction and its
potential asymptotics, as well as the properties of the tw/t
indicator. We argue that quite generally a one-electron self-
interaction-free energy does not guarantee the correct long-
range potential, and that tyw/t loses its indicator ability in the
vicinity of nodal planes of the highest-occupied molecular
orbital (HOMO).

2 Correlation compatible with exact
exchange: the local hybrid approach

The xc energy functional can be written as
Exn] = [n(Dex([nfi)d’r, 4

with e.([n];r) denoting the xc energy density per particle.
The definition of e.(r) is not unique and subject to

This journal is © the Owner Societies 2014
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a gauge-dependence.”® Yet, for local hybrid functionals it has
become common to define this energy in the form

eln(r) = eX(r) + f1)(eS(r) — eX(v) + ed(n). (5)

Here, eg¥(r) marks the exchange energy density per particle
corresponding to the EXX energy of eqn (3). This non-local term
is mixed with (semi-)local exchange and correlation energy
densities e§'(r) and ef!(r), respectively. The position dependent
mixing ratio f(r), which is itself a density functional, marks
the LMF.

Often, the LMF is designed in a way that aims at eliminating
the one-electron self-interaction error of eqn (1) that is inherent
in most density functionals. An established method for
reducing self-interaction effects is to detect regions of space
where a single Kohn-Sham orbital shape dominates the density
(“iso-orbital regions”), and then enforce eqn (1) in these
regions. One of the most popular®®°®770717476:80-83 indjcator
functions for detecting iso-orbital regions is

(6)

where tw(r) = |Vn(r)|*/(8n(r)) denotes the von Weizsdcker
| QT

kinetic energy density and t(r) = 52 S |V, (1) is the posi-
o i=l

tive Kohn-Sham kinetic energy density. In iso-orbital regions,
7(r) - tw(r) and therefore g(r) — 1. In the case of a slowly
varying density, w(r) — 0 and, since 7(r) remains finite, g(r) — 0.
This indicator function is typically a decisive ingredient in
the LMF, f(r), of local hybrids. With its help one can construct
f(r) such that eqn (5) reduces to correct limiting cases, e.g.,
eS\(r) + eg!(r) for slowly varying densities, and e£(r) for single
orbital regions. The latter case additionally requires that
efl(r) vanishes in single-orbital regions, a condition that we
discuss below.

In the asymptotic limit, [r| - o, the xc energy density for a
finite system should be dominated by eX(r). When e(r)
vanishes sufficiently fast in the asymptotic region (a condition
that is usually fulfilled), then

lim f(r) =0 (7)
Ir|—oc
is the requirement that one aims at, because it leads to the
correct asymptotic limit of the xc energy density per particle

exe(r) ~ e (r) —

5 (8)

(Note the difference to the asymptotic limit of the xc
potential, see ref. 38).

Since for a finite system each Kohn-Sham orbital decays
exponentially with an exponent set by its eigenvalue,®* the
density is asymptotically dominated by the HOMO density,
i.e., it becomes of iso-orbital character. Therefore, g(r) can be
used in the construction of the LMF to realize eqn (8).

Considerations of the type discussed above are inherent to
many density functional constructions. As a particular example

This journal is © the Owner Societies 2014
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for a local hybrid functional we here use a recently proposed,
physically motivated LMF,** which reads

1 — 2 (y)
Silr) = l—i—(c%)tz(r) (©)

The function g(r) in the numerator is multiplied by the
squared spin polarization {(r) = (n1(r) — n(r))/(n;(x) + n(r),
which lets the LMF not only identify iso-orbital regions, but
also correctly distinguish between true one-orbital regions, and
regions with two identical spin-orbitals. The function g(r) is
used in such a way that f,(r) vanishes for one-orbital regions, as
required. The use of the reduced density gradient

_ E 1/3 ayp
t2(1‘) = (3) 16‘1’2@(1‘)) n7/3(l_) )

[Vn(r)

(10)

where g, is the Bohr radius and @({(r)) = 4((1 + 0)** + (1 — 0)*?),
in the denominator of fi(r), ensures the correct behavior of E,.
under uniform coordinate scaling r — 7r.*>* The density

transforms as n,(r) = y’n(yr) and as a consequence eqn (9) uses
full exact exchange in the sense of ref. 72

Exe [n]
im =
=00 ERX [”?]

(1)

The function #*(r) is multiplied by a parameter ¢ that
we cannot determine, at least presently, from fundamental
constraints. It allows for adjustments in the functional ansatz.
In the case of slowly varying densities, f(r) — 1 and eqn (5)
reduces to its purely (semi-)local components. As an aside we
note that this LMF comprises the one of ref. 58 as the special
case when ¢ = 0 and {(r) = 1 V r. We denote this case by fo(r),
Le, fo(r)=1-— T;V(S).

For the semi-local exchange we use the LSDA,* i.e., el(r) =
exSPA(r), whereas e (r) = (1 - TZ‘/(S)g“z(r)>eCLSDA(r). The addi-
tional multiplication with the numerator of eqn (9) consistently
reduces eqn (5) to pure EXX in the one-spin-orbital case, where
ecPA(r) alone does not vanish.

The general questions that we discuss in this perspective
article, i.e., whether there is a relation between self-interaction
and the xc potential asymptotics and how far the iso-orbital
indicator tw/t can be used to enforce freedom from self-
interaction, can be scrutinzed with the local hybrid of eqn (9)
as an instructive example.

3 The Kohn—-Sham exchange-—
correlation potential of local hybrid
functionals

In order to implement local hybrids self-consistently within the
Kohn-Sham scheme, one has to find the local multiplicative xc
potential corresponding to the energy of eqn (4) and (5).

The fact that local hybrids use EXX and typically also 1(r)
makes them explicitly orbital-dependent. Therefore, the local
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xc potential must be obtained from the optimized effective
potential (OEP) equation (see, e.g., ref. 45, 55 and 88-91). The
computational effort can be reduced significantly by employing
the approximation of Krieger, Li and Iafrate (KLI).”> For
the local hybrid of eqn (9) it has been shown that the total
energy E and the highest occupied Kohn-Sham eigenvalue &,
obtained using the KLI approximation agree quite well with the
ones from the full OEP.*® Furthermore, it is a general finding®*
that the KLI approximation does not affect the potential
asymptotics to leading order. In the actual calculations
presented in the following we therefore always use the KLI
approximation.

In the OEP (and KLI) scheme the chain rule for functional
derivatives®’ relates the derivative with respect to the density to
the derivatives with respect to the orbitals,

_ 1 8E[{e}]
q)ia*(r) B@ia(r) .

Uis (1) (12)

From the structure of the OEP equation it further follows
that to first order

lim v (r) = lim uy,,(r),

[r|—o0 [r|—o0

(13)

i.e., the functional derivative with respect to the HOMO in
general determines the potential asymptotics.®® Therefore,
investigating the HOMO functional derivative is the key to
determining the asymptotic behavior of an orbital dependent
functional’s xc potential. When one takes the functional deri-
vative (with respect to the orbital) of a local hybrid one obtains
three terms, corresponding to the three addends in eqn (5):

wig(r) = uXX() + ug™(0) + ui(o) (14)
Evaluating the asymptotical behavior of each of these three
terms for the highest occupied orbital allows one to predict the
potential asymptotics.
The first term can be derived directly from eqn (3) and reads

exx. _ 1 Yo % QDio*(r,)q)jo(r/) 3.7
Ui (r) = —m; o (T)JWd ! (15)

This term evaluated for the HOMO indeed provides the
correct asymptotic behavior*®

) — o (16)
rl=oo |r]

The third term «§°(r), on the other hand, does not con-
tribute to the asymptotics of eqn (16) as it decays exponentially
due to its purely (semi-)local nature.

Evaluating the second term on the right-hand side of
eqn (14) requires careful consideration. Intuitively, one might
expect that an asymptotically vanishing LMF will surpress any
asymptotic contribution of this term to the potential. In the
following we check this expectation. Details of the underlying
calculation for both LMFs used in this work, ie., f(r) and fy(r),
can be found in ref. 83 and in Appendix B, eqn (27),
respectively.
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By defining P(r) = n(r)el(r) and Q(r) = n(r)eSX(r) one can write
1 5

c-nl _ / /N _ / 3,,/
) = ) P~ 0

- wigi(r) U (56;1(:(2)) P )d* + Jf(r’) (58:”(;(;))) FEN

JGasw)ewr - Jreosea)e]

The first two terms consist of (semi-)local components and
thus vanish exponentially. Evaluating the third term on the
other hand is not as trivial as it contains the non-local quantity
Q(r) as well the functional derivative of the LMF with respect to
the corresponding Kohn-Sham orbital. For the LMFs addressed
in this perspective we find that this term does not contribute to
the asymptotics either (see ref. 83 and Appendix B for details).

Thus, only the fourth term in eqn (17) is relevant in the
asymptotic limit and therefore

Ny (o (¥
uf;nl(r) - 1 |:f(l‘) Z ([)/-O-* (r)J(pm ( )(R/a( )d3r/
J=1

20,5 (r) Ir—r|
(18)
Ny o l'/ . l./
+Z<Pja*(r)Jf(r')7(pw ()00 )d3r’}.
=1

r—r|

The first term in this equation equals —u;, (r) of eqn (15),
locally multiplied by f(r)/2. Due to eqn (7) it vanishes faster
than the leading term of w2, which is given in eqn (16).

The second term, however, is of a different structure, as it
evaluates the LMF under the integral. By considering the
HOMO level, its asymptotic limit is

&3,

IJAf(l‘,)M (19)

-nl
u(/:V:zr(r) — |l' — l'/|

[r[—o00 5
This corresponds to a Hartree-like potential caused by the
spin-orbital density of the HOMO averaged over all space, with
the LMF as a weighting function. Thus, this term gives a finite
contribution in the asymptotic limit despite eqn (7).
Now, when adding the asymptotically significant components,
eqn (16) and (19), for the evaluation of eqn (13), we arrive at
S (20)

Yxeo (l') [r|—o0 ‘l"

Here, the parameter y, denotes the reduced slope of the
potential asymptotics, which can numerically be extracted from
a self-consistent Kohn-Sham calculation via

1
o= 15| 0l 0P

(1)
Eqn (21) is a central result of this work, as it demonstrates
that a local hybrid of the form of eqn (5) does not lead to the
exact asymptotic behavior of the xc potential. Eqn (20) holds for
all f(r) that vanish in the asymptotic limit and for which the
third term of eqn (17) does not contribute to the asymptotics of the
functional derivative u,"(r), ie., under very general conditions.

This journal is © the Owner Societies 2014
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Further details of the calculation, specifically regarding the ques-
tion of the xc potential asymptotics in different spin-channels, are
given in Appendix B.

The LMF is limited between 0 < f(r) < 1 and therefore the
asymptote is bound between 1 < y, < 1. Consequently, the
exact value y, = 1 can only be reached by setting f(r) = 0 V r,
which corresponds to the trivial case of using EXX, “as is” or
combined with a purely (semi-)local correlation functional.

A different extreme case, f(r) = 1 V r, does not, as one could
naively believe due to eqn (21), lead to y, = 1. Here, we have to
take the neglected first term of eqn (18) into account again, and
from this we see that y, actually vanishes. This is to be
expected, since in this case the local hybrid reduces to a purely
(semi-)local functional.

Fig. 1 shows a numerical verification of the above analytical
considerations (see Appendix A for numerical details). It
depicts the xc (KLI) potential corresponding to the local hybrid
of eqn (9) in comparison with the asymptotic decay according
to eqn (20) and (21) for the carbon atom. An additonal curve
indicates the exact —1/r decay, which is clearly not reached.
The xc potential, instead of decaying with y; = 1 as one would
intuitively expect,”® approaches the predicition of eqn (21)
(y1 = 0.716) quite rapidly.

Fig. 2 shows the xc energy density e(r) for the same system
in comparison to its correct asymptotic of —1/(2r). Clearly the xc
energy density shows the correct asymptotic, ¢f eqn (8).
We thus see that while the behavior of e, can directly be
controlled via the LMF in eqn (5), the process of finding
the local xc potential via functional differentiation leads to
non-local evaluations of the LMF that decisively impact the
potential’s asymptotics.

A physically meaningful quantity closely related to the asym-
ptotics of the xc potential is the highest occupied eigenvalue &,.
Table 1 shows —é,, compared to the experimental IP for the
carbon and fluorine atoms for different functionals, together with
the corresponding value of y, of the xc potential from eqn (21).

0_0_ T T T T T T T T T T T =
—_—Vv__ .
1----0.716/r]

02 ===
—_
Q
[0}
£
[ 4 —~
) 0.4 §
= 3
g <
5 0.6 510
~— =
=) =]
8, 2151
Q (=5
® 0.8 9

2.0
-1.04
T T T T T
0 2 4 6 8 10 12

x (a.u.)

Fig.1 The xc potential v,c;(r) for the C atom along the x-axis (see
Appendix A for definition), computed using f(r) with ¢ = 0.5. Also displayed
is the asymptotic curve according to egn (20) with y4(c = 0.5) = 0.716 and
the correct asymptotic —1/r. The inset shows the potential plotted along
the complete axis.
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—_—1
B e
aé'ﬂ 0.2 y -
= = 00
R [}
> -0.4- £ .
5 5]
g <-0.5
g g
>, 067 8 1.0/ 1
5 &
2 5
© 0.8+ 5 -1.51 b
Q (2]
> 3
Q2 8 4 0 _ 4 8 12
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Fig. 2 xc energy density per particle ex(r) for the C atom along the x-axis
(see Appendix A for definition), computed using f{r) with ¢ = 0.5. Also
displayed is the corresponding asymptotic slope of —1/(2r). The inset
shows the energy density plotted along the complete axis.

Table 1 Comparison of the highest occupied Kohn—Sham eigenvalue
—éno to the experimental vertical IP® for the C (e41) and F atoms (e4,) using
different functionals. All values are in hartrees

System Functional Vo, —&ho Exp. IP
C LSDA — 0.2249 0.4138
fr)(c=0) 0.6098 0.2740
fAr)(c =0.5) 0.7162 0.3067
f(1)(c = 1.0 0.7678 0.3302
S{o)(c = 2.5) 0.8441 0.3688
fAx)(c = 5.0) 0.8966 0.3970
fol®) 0.8309 0.3530
EXX 1.0000 0.4378
F LSDA — 0.3808 0.6403
f)(c=0) 0.5055 0.3810
f(r)(c = 0.5) 0.6665 0.4724
S{r)(c = 1.0) 0.7390 0.5269
flr)(c = 2.5) 0.8365 0.6060
f(1)(c = 5.0 0.8971 0.6570
fol®) 0.7927 0.5798
EXX 1.0000 0.6779

The LSDA, as generally known, significantly underestimates
the IP due to the wrong potential asymptotics and the inherent
self-interaction error. Using pure EXX with the correct asymp-
totic decay and no self-interaction error leads to a much better
prediction of the IP. When employing a local hybrid with the
LMF f(r), the explicit dependence on the parameter ¢ becomes
evident: with growing c, the asymptotic value y, grows and the
description of the IP improves. Fig. 3 sheds further light on the
situation. It shows potentials of local hybrids which are all based on
eqn (9) but use different values of ¢. Growing values of ¢ increase
the amount of EXX and lead to an overall deeper potential. This
explains that the eigenvalues become more negative.

We thus see that while all of the local hybrids used here can
(so far, see caveat in the next section) be thought of as being
one-electron self-interaction free, they show different potential
asymptotics and their highest occupied eigenvalues predict the
IP with significantly different reliability. The relation between
freedom from self-interaction, potential asymptotics, and physical
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Fig. 3 Asymptotics of the xc potential vyc1(r) for the C atom along the
Xx-axis, computed with pure EXX and local hybrids using f(r) from egn (9)
with parameters ¢ = 0.5 and ¢ = 5.0. Also displayed are the complete
potentials in the inset.

interpretability of the highest occupied eigenvalue as the negative
IP is therefore much less clear than intuitively believed. This
observation also calls for taking a closer look at the iso-orbital
indicator g{r) that is used in enforcing freedom from self-
interaction. This is the topic of the next section.

4 The implications of orbital nodal
planes

As explained in the preceding sections, many local hybrids and
other functionals such as meta-GGAs rely on the function g(r)
tending to 1 to detect regions of space in which a single orbital
shape dominates the density, and then, e.g., correct for self-
interaction in such regions. However, a first caveat that one has
to take note of is that g(r) — 1 holds for one-particle densities of
ground-state character. This is a possibly far reaching restriction
for the use of g(r) because electron orbital densities typically have
nodes, ie., are not of ground-state character. As a specific,
illustrative example, consider an atom where the HOMO has
an azimuthal quantum number m i.e., is expressed in spherical
coordinates as ¢po(r) = R(r,0)e™. In the region where the density
is HOMO-dominated, tw(r) is therefore given approximately by
1|VR(r,0)|*. However, in the same region 1(r) is given approxi-
mately by | Vuo(r)|* = Y| VR(r,0)|* + m*R*(r,0)/(r sin 0)%). Thus, if
m = 0, then (r) = tw(t), but for m # 0 this is no longer the case.
Instead, 7(r) and tw only approach each other asymptotically, as
the m>-dependent-term of t(r) decays to zero with large .

One may counter-argue that this restriction is not so severe
because in density functional construction, the condition
7(r) - Tw(r) is mostly used to detect those regions of space in
a finite system which are far from all nuclei, and where the
density decays nodelessly. However, we here show that even in
such regions the condition t(r) — tw(r) can be violated. This
leads to a second caveat about the reliability of the g{r) indicator.
It is rooted in the existence of orbital densities that have nodal
planes or nodal axes. Fig. 4 illustrates this case. It shows g(r)
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Fig. 4 The function g(r) = on the numerical grid for the C atom.

7(r)

evaluated in the (xz)-plane for the carbon atom (see Appendix A
for numerical details, including grid setup). The density here
was obtained using f(r)(c = 0.5), but the density features relevant
here are not sensitive to functional details. The important
observation is that g(r) approaches 1 in the asymptotic limit in
every direction - except for in the vicinity of x = 0.

The first step towards an understanding of this finding is to
note that the z-axis is a nodal axis, being the intersection of the
nodal planes of the two HOMOs of carbon, which are degen-
erate and of p-orbital character.

The consequences of the existence of nodal planes can be
studied analytically. To this end we look at a schematic density
that is dominated by the HOMO ¢y,,(r), but also take the next
lower lying orbital ¢,,_4(r) into account, i.e. n(r) ~ |@no(r)|* +
| @ho_1(r)|*. With this ansatz one finds

2 2)?
(v|(pho| +v‘(pho—l| )

2 2
8(I0nol” + oo 1)

™w ~ (22)
and
T~ 3(Vonol® + [Vono 1) (23)

These two terms combined and evaluated on or close to a
nodal plane (denoted by —), where ¢, — 0, yield
n.p.

2
W IV@no_i
2 2
T e |V(pho| —HV(phofl'

<L (24)

Even though ¢y, vanishes on the nodal plane, its gradient still
yields a finite value and keeps the function g(r) from approaching 1.

Fig. 4 shows that the deviation from 1 has a noticeable
spatial extension of a few a.u. This raises the question of how
well the use of the iso-orbital indicator g(r) leads to freedom
from self-interaction, as in some regions that so far have been
considered as iso-orbital ones, e.g., all space far from the
system’s center, self-interaction effects may not be eliminated
fully when the indicator aberrates due to the presence of a
nodal plane or axis. A different interpretation of Fig. 4 would be
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to reconsider one’s expectation of where iso-orbital regions are,
or what they are. The traditional point of view has been that all
space far from a finite system’s center is of iso-orbital nature.
Fig. 4 and eqn (24) may be interpreted to show that this is not
the case when the HOMO has a nodal plane/axis extending to
infinity. From this perspective one might say that g(r) does
exactly what it is supposed to be doing, i.e., it indicates that the
nodal plane region is not of iso-orbital character. Yet, also from
this perspective Fig. 4 reveals a surprising finding, namely that
even infinitely far from a finite system’s center, the density may
not be of iso-orbital character.

The nodal plane observation also forces us to take a yet
closer look at the central topic of this perspective, the potential
asymptotics. Nodal planes can influence the asymptotics of a
local hybrid’s xc potential in two ways. First, it has been argued
that all orbital-dependent functionals show non-vanishing
asymptotic constants in their xc potential along nodal planes
of the highest occupied Kohn-Sham orbital that extend to
infinity. This was first discussed in ref. 94 and 95 for the case
of pure EXX, and the occurring shift was determined to be

Cy = Vxem,0 — Uerr, O, (25)

With Decis = [ @i (EWVaeo D @io(D)A’r and ieis = [@i0* (OtscioD)@in(r)d’r.
The index M, denotes the highest lying Kohn-Sham orbital that
does not show a vanishing spin-orbital density along the nodal
plane of the HOMO. Since eqn (25) follows from the KLI (OEP)
equation without referring to a specific functional, non-vanishing
asymptotic constants on nodal planes of the HOMO are expected
on rather general grounds.

Second, the fact that g(r) — 1 is not guaranteed on a nodal
plane can also affect the potential. For the sake of clarity, we
again discuss this effect for the specific example of local
hybrids. When the LMF tends to zero on the nodal plane, i.e.,
f(r) v~ 0 and eqn (7) is obeyed, then the non-vanishing con-

stant of eqn (25) is the only effect. An example for this case is
the LMF f;(r) with a finite value of the parameter c. It is depicted
in Fig. 5 for the C atom density in the (xz)-plane, and one sees

l1

5
=
80 S
N
-5
-10
-15 0
-15 -10 -5 0 5 10 15
X (a.u.)

l_Iw(r)Cz(r)
Fig. 5 The LMFf,(r) = %@m
grid for the C atom.

, evaluated with ¢ = 0.5, on the numerical
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Fig. 6 Asymptotics of the xc potential vyc4(r) for the F atom along the
(projected) z-axis (denoted z*, see Appendix A for definition), computed
using f(r) with the parameter ¢ = 0.5.

that there are no asymptotic features. This is because the
reduced density gradient in the denominator causes f(r) to
vanish in the asymptotic limit, regardless of the occurrence of a
nodal plane. The potential decays like —y,/r in all directions,
but along the z-axis a non-vanishing constant

Vxco (l‘) — Cy — =
n.p. |r|

appears. This is shown in Fig. 6 for f,(r)(c = 0.5) and the F atom.
One can clearly see how vy1(r) decays with y; = 0.6650, but,
instead of zero, approaches a constant of C; = 0.0244, in
agreement with eqn (25).

A different situation occurs when f'(r) -+ 0, i.e., the behavior
of the indicator function along a nodal ple{rie/axis of the HOMO
prevents the LMF from reaching its intended limit. This hap-
pens, e.g., for f(r) or fi(r)(c = 0) and is depicted in Fig. 7, again
for the C atom. The occurrence of a nodal axis here very clearly
affects the LMF. Since in this case eqn (7) is violated in the
direction of the z-axis, the previous derivations cannot be used
to predict the potential’s asymptotic behavior. However, we
have numerically checked the xc potential’s behavior. On the

S0

0

-5 -10 -5 0 5 10 15
x (a.u.)

The LMF fo(r) =1 — tw(r) on the numerical grid for the C atom.

Fig. 7

z(r)
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nodal axis it neither tends to —1/r, nor to C, — |'l_—“‘, but rather

tends to some other value. Thus, the nodal axis in this case has
a very noticeable influence on the potential asymptotics, which
is hard to predict a priori.

5 Conclusions

With local hybrid functionals serving as an explicit example we have
argued that freedom from self-interaction in the sense of eqn (1)
does not necessarily lead to the expected —1/r decay of the local
Kohn-Sham xc potential. We have further argued that the ratio of
the von Weizsdcker kinetic energy density to the positive Kohn-
Sham kinetic energy density, which is frequently used in functional
construction for indicating iso-orbital regions and eliminating self-
interaction effects in these, may not serve its intended purpose
because it is very sensitive to excited state features such as orbital
nodal planes that are present in Kohn-Sham orbitals that construct
ground-state densities of many-electron systems.

These findings have immediate and somewhat discomforting
consequences for the local hybrid approach. For a large class of
functionals one has to accept that the correct long-range xc potential
simply cannot be obtained. This observation plays a role in explain-
ing why it is very hard to construct a local hybrid that yields good
binding energetics and physically meaningful eigenvalues with the
same functional form and set of parameters.*> However, the
impaired relation between self-interaction and the xc potential’s
asymptotics, and also the impact of nodal planes, stand in a context
that is much larger than the local hybrid one. The iso-orbital
indicator g(r) has been used in many functionals, not only local
hybrids. Nodal planes are known to impact the exact exchange
potential in surprising ways.”**> They have appeared here as a
prominent feature in kinetic energy ratios, and we expect”® that they
play a much larger role in the exchange potential than has been
realized so far. The observation that a one-electron self-interaction-
free energy can go together with a potential that does not fall of like
—1/ris not only a feature of local hybrids, but has also been reported
for a “scaled down” version of the Perdew-Zunger self-interaction
correction.”” One may therefore wonder whether semi-local indica-
tor functionals are in some sense incompatible with the fully non-
local self-interaction correction that is achieved by EXX or full
Perdew-Zunger-type correction approaches. It has also been pointed
out recently®® that eqn (1) itself, which is the basis of the present
definition of one-electron self-interaction, leads to questions when
evaluated for orbital densities, because E,[n] is intended to be used
with ground state densities, whereas orbital densities are excited
state densities. Further conceptual questions about eqn (1) relate to
its inherent identification of orbitals with electrons and its unitary
variance.>”** The success of self-interaction corrections schemes
that rely on eqn (1) tells us that the equation is meaningful.
However, the sum of the insights into its limitations that emerged
over the years suggests that there is more to the question of self-
interaction in density functional theory.

While the above considerations point out areas that require
further thought and work, one should also note that there have
been developments in DFT that shine a bright light into the future.
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The concept of many-electron self-interaction
straightforward to use as eqn (1), but it avoids the conceptual
questions that are associated with this equation. Range-
separated hybrids yield the correct asymptotic potential and
have proven to be a very successful concept, without being self-
interaction-free.”>>%'%*"'7 There have been successful func-
tional constructions that can be seen as combinations of the
local hybrid and the range-separation idea."'®''® Ensemble
corrections'*” allow to extract information from functionals in
an unexpected way, and can, e.g., further improve IP prediction.
Finally, it has recently been shown'*' that a new type of a
generalized gradient approximation can show features that were
so far thought of as being associated only with exact exchange,
such as step structures and surprising nodal plane features,’® and
understanding potentials in terms of xc charges has provided new
insights.'**™'* Therefore, the battle against DFT’s old foe, the self-
interaction error, and its surprisingly independent side-kick, the
wrong potential fall-off, is far from being lost.

Appendix A: numerical details

We used the all-electron code DARSEC'?® for all calculations
presented in this perspective. This code exploits the rotational
symmetry of diatomic molecules along the interatomic axis z,
treating the azimuthal angle ¢ analytically and thus effectively
reducing the problem of solving the Kohn-Sham equations in two
dimensions. The equations are represented on a real-space grid of
prolate-spheroidal coordinates. In such a coordinate system, the
nuclear position(s) coincide with the focal point(s) of the grid located
at z = +R/2, with R being the bond length of the diatomic molecule.
This is the case also for calculations of single atoms: the position of
the nucleus is not equivalent to the origin of the coordinate system,
but it is located at z = —R/2, where R was set to 0.5 a.u. e.g., the C
atom in our plots is centered at r¢ = (x,2) = (0, —0.25). The x-axis is
defined as perpendicular to the z-axis, crossing the latter at z = 0,
i.e., at a point being equidistant from the focal points of the grid (see
ref. 125 for details).

In order to avoid numerical instabilities due to singularities
in the Laplacian, the grid was chosen such that it does not
include the actual z-axis, ie. the interatomic axis. As a conse-
quence, in this direction all quantities can only be plotted along
a projected z*-axis, which takes into account all grid points that
are closest to the actual z-axis. Since the discrepancy between the
projected and the real z-axis decreases with increasing number
of grid points, we made sure that the difference between z and z*
is small by choosing sufficiently dense and large grids.

Appendix B: the asymptotic decay of
the exchange—correlation potential in
detail

In the following, we present considerations about the asymp-
totics of the xc potential in the spin channel that carries the
global HOMO (oy,,), as compared to the other spin channel
(6ho)- Section 3 used the condition that f(r) needs to vanish at a
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Fig. 8 Comparison of fo(r) and fi(r) with ¢ = 0.5 for the C atom along the
X-axis.

sufficient rate in the derivation of eqn (20). In the present work,
we investigated two possibilities for the decay of the LMF.
First, fi(r) for a finite value of the parameter ¢ vanishes

exponentially because f,(r) ~ 72(r) ~ e’%m’. In this case,
all individual terms in each functional derivative, u$™ (see
eqn (17)), vanish exponentially in the asymptotic limit as well,
except for the second term in eqn (18). Eventually, this remain-
ing term is responsible for the reduced asymptotic decay of
eqn (20) due to the non-local evaluation of fi(r). Consequently,

the xc potential in both spin channels decays with —y,/r.

However, a different picture emerges when evaluating
Jo(r)=1- T:V(S). This function decays much more slowly than

fr) with finite c, as Fig. 8 shows for the carbon atom. Consequently,
not all terms in the functional derivative originating from fy(r)
vanish individually and more detailed investigations are necessary.

Defining K(r) = n(r)(el (r) — e$¥(r)), the functional derivative in
this case reads

-/6 (r) EXX

u () = =P )+ o)A ()
q)ia* (r/)(pjzr (r,)d3r/
Ir—r|

1 .y
+ M; Pig (r).[fo(l' )

| (e ok

- 2q)[o'* (l‘) (27)
+90,/0)- v (Tk())|
1 2.4 8fo(r)
- {(v () e (KD
+vﬁuyv<g$%K@0}
. Ofo(r) _tw()  8fo(r) tw(r)
w1.th 5t (r) =2w) " Srw() ) Therefore, both
%o(r) and %or) reach the same absolute value in the asymptotic
dt(r) dtw (r)
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limit, but show opposite signs. Now, we have to distinguish

c-nl
Nopo Oho

channel that has the global HOMO, ie. n(r) ~ |px,  (r)|?, then
one can see from eqn (27) that the fourth and fifth terms are
equivalent in the asymptotic limit except for the sign. There-
fore, they cancel each other and, since the first and second
terms decay fast enough, only the third term remains, leading
to the limit of —y,,_/r. In the other spin channel however, the
fourth and fifth terms do not cancel anymore, since the density
is still dominated by ¢y, 4, (r), whereas the fourth term
features ¢y, Gno(r). Therefore, in the other spin channel yet
another asymptotic limit is obtained, again strictly following
from the evaluation of the functional derivative.

This feature can be corrected by using a spin-polarized
ansatz with an indicator function that is a spin-polarized
LMF of the form g,(r) = T (1)

7,(r)
the kinetic energy spin densities. In this case, a functional
derivative that does not feature the total density n(r) follows and
therefore the aforementioned effect does not occur. However,
since for the spin channel o}, all derivations made are valid
independently of the form of the LMF and since this spin
channel features the physical meanigful quantity —eép,, it
suffices for this work to consider the more simple LMFs instead
of their spin-polarized counterparts.

between the spin channels: If one looks at (r) in the spin

, With Tw,(r) and 1,(r) being
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