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Current and emerging opportunities for molecular
simulations in structure-based drug design

Julien Michel

An overview of the current capabilities and limitations of molecular simulation of biomolecular complexes

in the context of computer-aided drug design is provided. Steady improvements in computer hardware

coupled with more refined representations of energetics are leading to a new appreciation of the driving

forces of molecular recognition. Molecular simulations are poised to more frequently guide the

interpretation of biophysical measurements of biomolecular complexes. Ligand design strategies emerge

from detailed analyses of computed structural ensembles. The feasibility of routine applications to ligand

optimization problems hinges upon successful extensive large scale validation studies and the development

of protocols to intelligently automate computations.

1. Introduction

The field of computer-aided drug design emerged over 40 years
ago; early seminal work can be traced to Corwin Hansh’s efforts
to derive structure–activity relationships, or Graham Richard’s
influential book Quantum Pharmacology. Today computer
modelling is frequently relied upon in some ways in the
pharmaceutical industry and academic laboratories to assist
early stage drug discovery activities.1 Ubiquitous examples
include small molecule/biomolecule database searches by
chemical/sequence similarity, homology modelling, conforma-
tional searches and sketching of putative ligands in target

binding sites. Early enthusiasm in the 1980s for the field
faltered when it became apparent that more sophisticated
applications, such as virtual screens for finding or optimizing
hits into suitable clinical candidates, were finding mixed
success.2 Currently a typical virtual screen by docking exercise
entails processing a database of ca. 105–107 small molecules,
followed up by extensive post-filtering that leads to in vitro
assays for 101–103 compounds. Success is usually declared
when perhaps over 10% of the tested compounds show some
measurable bioactivity, typically an IC50 or Kd in the mM
range. Although it is unsatisfactory that about 90% of the time
activity predictions are not corroborated by experiments,
a pragmatic view is that the outcome is acceptable if it leads
to the identification of a few novel scaffolds. Follow up work
is almost invariably necessary as initial hits rarely exhibit
desirable potency, selectivity and ADME properties to be pro-
gressed to in vivo disease models. A typical early focus is on
improving the potency of a hit compound by 3–4 orders
of magnitude to produce a lead compound. Later stage con-
siderations involve further modifications of a lead molecule
that maintain potency whilst improving binding selectivity,
solubility, cell permeability, and metabolic stability among
others. The process is usually pursued by iterative synthesis
and assaying of analogues of a parent structure, which requires
significant time and resource commitments. A long standing
goal of computational chemistry has been to replace most
of this iterative process with much cheaper computational
methods.

The relative potencies of a typical hit (low-mid mM Kd) and
lead compound (low nM Kd) correspond to a change in the
Gibbs free energy of binding of ca. 4–6 kcal mol�1. Simple
statistical analyses of affinity changes observed in multiple past
hit-to-lead campaigns suggest that achieving significant time
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and cost savings with computer modelling requires consistent
predictions of relative binding free energies to within ca.
2 kcal mol�1 or better.3 Achieving this objective has proven
much harder than it was anticipated in the mid-1980s
when it became possible to readily obtain the crystallographic
structure of protein–ligands complexes. Tantalizing as they
are, three dimensional structures of biomolecular complexes
only capture some aspects of molecular recognition. ‘‘Details’’
such as solvent rearrangements and fluctuations, induced
fit, changes in ligand–receptor conformational entropy, treat-
ment of electrostatics–polarization, matter greatly.4 Today,
it is widely assumed that achieving sufficient accuracy in
binding energy predictions to enable routine ligand optimiza-
tion with computational methods will require detailed explicit
solvent equilibrium molecular simulations of biomolecular
complexes.

Biomolecular simulations have progressed greatly since the
1977 landmark 10 ps vacuum molecular dynamics study of the
protein BPTI by McCammon, Gelin and Karplus.5 Protein
folding studies now reach millisecond timescales on dedicated
supercomputers such as the Anton machine produced by the
DE Shaw lab,6 whereas large distributed computing projects
such as Folding@Home from the Pande lab can rapidly pro-
duce even higher aggregated sampling time.7 Although these
high-end systems are only available to a chosen few, advances
in GPU-computing have in parallel dramatically improved pro-
spects for routine use of simulations in drug discovery.8

Although these trends strongly suggest that the scope of routine
biomolecular simulations will continue expanding its reach to
larger time and length scales, it is still unclear whether
the current typical potential energy functions are sufficiently
accurate and transferable for reliable routine applications to
structure-based drug design problems. In other words, success-
ful molecular simulation ‘‘recipes’’ remain to be validated
or even discovered, and widely taken up in routine industrial
drug design workflows. In addition, many complex biomole-
cular recognition processes of direct relevance to drug design
will remain only partially accessible to the most advanced
simulation protocols and supercomputers for some time
(e.g. cell surface receptor activation, DNA transcription), thus
it is important to appreciate what objectives can be productively
pursued with molecular simulations today and in the near
future.

This perspective will discuss some of the current opportu-
nities molecular simulations have to contribute to structure-
based drug design efforts. Fig. 1 summarizes the four major
topics covered by this perspective. For clarity each topic has
been further divided into different sub-sections. The focus on
small molecule–protein complexes reflects my own biases and
current interests, other topics in biomolecular simulation are
certainly important. Emphasis is put on concepts and challenges,
several recent excellent reviews can be consulted elsewhere for
technical details on specific methodologies.3,4,9–15 The field is
vast and not all excellent work from colleagues could be
possibly covered, it is hoped that the issues discussed here will
stimulate further research.

2. Opportunities to explore principles
of molecular recognition
2.1 Non-additivity of protein–ligand interactions

Rational attempts to sequentially optimize the affinity of a hit
compound are frequently thwarted by the non-additivity of
protein–ligand interactions. In other words, when two structural
modifications, that each individually improves affinity, are intro-
duced on distinctive parts of a ligand, the resulting analogue
may not yield the expected affinity improvement.16 This outcome
is often difficult to anticipate for computational methods that
rely on analyses of a static protein–ligand structure.17 When
non-additive effects are observed, conformational changes and
changes in entropy are frequently invoked after the facts, but
convincing evidence or structural insights into the origin of
non-additivity often remains elusive. Molecular simulations of
protein–ligand complexes account in principle for a broad
range of plausible sources of non-additivity. In particular,
detailed analyses can be currently attempted to characterize the
contribution of solvent, ligand or protein molecules to the free
energies of binding. Breaking down binding free energies into
components presents its own pitfalls because the free energy
components are not state-functions, i.e. alternative ways to
partition the binding free energy into contributions from
different groups are equally valid. Nonetheless, it is reasonable
to expect that partitioning schemes justified on physical-chemistry
grounds can provide insights into the molecular driving forces of
protein–ligand association.

2.2 Role of the solvent in protein–ligand binding

Over the past decade, extensive work has focused on the modula-
tion of the energetics of water molecules in protein binding sites
by ligands. Depending on the particulars, ligand modifications
can not only displace discrete ordered water molecules from a
binding site, but also perturb water networks around the bound
ligand or in solution, a possible source of non-additivity.18

A variety of free energy calculation methods have been applied to
elucidate the importance of such effects in a range of binding sites.

Fig. 1 Four strategic applications of molecular simulations of protein–
ligand interactions to relevant structure-based drug design problems.
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An approach that has found application in several structure-based
drug design programs is the Watermap method from Friesner
and co-workers.19,20 The technique combines clustering of explicit
solvent molecular dynamics simulations with the inhomogeneous
fluid solvation theory (IFST) method developed by Lazaridis to
yield enthalpy and entropy estimates for discrete water mole-
cules.21–23 A different, but conceptually related approach called
SPAM, has been developed by Cui et al. and used in a range of
structure-based drug design programs at GlaxoSmithKline.24

Because it is not clear that it is always appropriate to rationalize
water properties around organic and biomolecules with a few
discrete high water density sites, a discretized version of IFST
that is appropriate for analyses of water behaviour in a broader
context has been recently proposed by Nguyen et al.25 Other
alternatives are emerging, Gerogiokas et al. have developed
the grid cell theory methodology to address similar issues.26

Careful comparative studies will be necessary to assert the merits
of these different approaches. A common pitfall encountered in
hydration analyses of protein binding sites is that in some cases
adequate sampling of water locations can be exceedingly slow
with molecular dynamics methods. The issue is typically more
pronounced for simulations of holo structures that contain
water-mediated interactions between protein and ligand groups.
A variety of methods have been proposed to equilibrate more
rapidly the water content of a binding site, these include
approximate free energy methods based on double-decoupling
theory,27 Grand Canonical Monte Carlo methods,28 and more
rapid non-simulation based approaches based on 3D-RISM,29 or
other energetic descriptors.30,31 Other open issues include, how
far from a solute do energetically relevant perturbations in
solvent structure extend, and how much do disordered low
density hydration sites contribute to ligand binding energetics.

Molecular simulations have also been combined with bio-
physical measurements on a range of model protein–ligand
systems to elucidate the contribution of water to binding
energetics. A prominent example is the work of the Whitesides
group on carbonic anhydrase.32,33 The picture that emerges
from this body of work is that changes in water energetics upon
ligand modifications contribute significantly to ligand binding
energetics and detailed modelling of binding site water mole-
cules appears necessary to reliably predict binding free energies
for ligand optimisation.

Another solvent related problem that is rarely considered
in current molecular simulation studies of protein–ligand
interactions is that computer models typically assume the
biomolecular complex is in pure aqueous solution at pH 7, and
may include a discrete number of monovalent counter-ions to
maintain an overall neutral net charge. The computed binding
energies are then related to in vitro measurements that are normally
performed in much more complex solutions which contain multiple
other species (e.g. buffers, surfactants, organic co-solvents).
Also, changes in ligand protonation states upon complexation
are frequent. Such changes can be deduced from isothermal
titration calorimetric measurements, and have potentially large
effects on binding energetics.34,35 Mirroring accurately experi-
mental conditions will not only require simulations of more

complex mixtures, but also refined simulation protocols that
enable sampling of protonation states on protein and ligand
functional groups or alternative tautomeric and mesomeric
forms. Several methodologies have been proposed for explicit
solvent constant pH simulations of proteins in recent years.36–39

Refined protocols for constant pH simulations of protein–ligand
complexes are a likely next milestone. A longer term horizon for
molecular simulations is to elucidate the influence of cellular
crowding on the energetics of protein–ligand association; little
work has been done in this area owing to huge technical
challenges. Some early steps have been taken by the Elcock
lab that has reported in recent year simulation studies of the
energetics of hydrophobic association in various salt concen-
trations, and crowding conditions,40,41 or even the stability of
proteins in simplified models of bacterial cytoplasm.42

2.3 Role of conformational entropies

Another source of complexity arises from the difficulty of estimating
changes in protein and ligand entropies upon binding.43 Brute-force
direct evaluation of the absolute entropy of a system essentially
amounts to sampling completely its accessible phase space,
which is hardly feasible for condensed-phase simulations.
Entropies of binding can be in principle indirectly obtained
by van’t Hoff analysis of free energies of binding computed at
different temperatures. In practice, unless the simulated system
is particularly simple, statistical uncertainties in the evaluated
binding free energies often render the approach unreliable.

A route to protein and ligand entropies is offered by the
quasi-harmonic analysis method that uses fluctuations and
covariance in atomic positions described in Cartesian or internal
coordinates recorded over the course of a simulation to estimate
entropy through a harmonic approximation.44,45 This at least
offers prospects for converged results, although long simulation
times are required. The main drawback of the approach is that
multimodal degrees of freedom (e.g. torsions) are not well
represented by this approximation, and correlations between
motions above the pairwise level are ignored. In addition, correct
treatment of the diffusive behaviour of solvent molecules
requires assignment of individual molecules to small spatial
regions,46 or use of inhomogeneous fluid solvation,21 or cell
theory approaches.47 The main alternative is to expand the full
entropy of a system into a series of terms that account for correla-
tions of increasing order, for instance the Mutual Information
Expansion method proposed by Gilson and co-workers.48 Currently
it appears feasible to converge low-order terms for typical drug-
like small molecules. However, a similar feat for much larger
protein complexes appears out of reach.49 Pessimistic arguments
against the feasibility of converging even first order terms for
proteins with molecular dynamics simulations have been put
forward by Genheden and Ryde,50 but others have reported better
success.51 Many efforts have been devoted to improving upon
entropy expansion and quasi-harmonic approaches to estimate
entropy changes upon ligand binding. Correction terms for the
quasi-harmonic approximation have been proposed by Baron
and co-workers.52 The Maximum Information Spanning Tree
method proposed by Tidor and co-workers shares similarities
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to the Mutual Information Expansion method but exhibits
improved convergence properties.53 Another intriguing example
is provided by the Boltzmann-Quasi Harmonic method of Di Nola
et al.,54 which has been recently re-evaluated by Sharp and
co-workers for biomolecular complexes.55 The approach estimates
entropy with a first order entropy expansion of internal degrees
of freedoms, and pair-wise correlations with the off-diagonal
terms of a covariance matrix.

Because the above methodologies make approximations, the
estimated entropy contains systematic errors; such errors do
not cancel out completely when comparing different ligands
or when estimating contributions to entropies of binding.
Consequently routine application to elucidate contribution to
ligand binding energetics remains currently challenging. Robust
analyses seem to require a rigid receptor approximation, or should
be restricted to sets of well-defined protein conformational states
for which thorough sampling of the accessible phase space can
be achieved. The direct evaluation of enthalpies of binding is
conceptually simpler, neglecting a pressure–volume term, one
would need to evaluate differences in average potential energies
for a solvated protein, a solvated ligand and a complex. However
the approach also suffers from severe convergence issues which
preclude routine application to biomolecular systems.

It is interesting to reflect on why it is reasonable to expect
molecular simulations to compute acceptably converged free
energies of binding even though entropies or enthalpies are
ill-converged. The reason is that the derivation of statistical
mechanics formulae to evaluate entropies and enthalpies of
binding leads to expressions that involve averages over a large
number of interactions between protein and solvent particles.43

Such terms fluctuate significantly over the course of a simula-
tion and unreasonably long simulations are necessary to obtain
sufficiently precise estimates for useful predictions. However,
such slowly-converging terms cancel out exactly in expressions
used to evaluate ligand binding free energies, leaving only
contributions from the ligand intra and intermolecular terms,
which converge much more rapidly.

2.4 Influence of finite-size artefacts

The problems mentioned in Section 2.3 can be largely tracked to
difficulties in sampling the relevant low energy conformations of
a solvated biomolecular complex. When this cannot be done
reliably, repeated molecular simulations produce, sometimes
qualitatively, different answers. However, in cases where repro-
ducible predictions are possible, systematic differences with
experiments are expected due to approximations in the repre-
sentations of the energetics of interactions between particles.
One source of error is due to the use of a finite-size box to
simulate protein–ligand interactions. Finite-size artefacts are
particularly apparent for simulations of charged solutes. For
instance, the use of periodic-boundary conditions or cutoffs
to evaluate intermolecular energetics is known to affect by
several kcal mol�1 the free energy of hydration of simple ions.56

It follows that comparing computed binding affinities between
ligands that differ in net charge is often problematic. Hunenberger
and co-workers have devoted considerable efforts to formalize

and address the technical issues. Correction terms have been
derived and essentially fully account for such finite-size effects
but only in the context of simple monoatomic ions.57,58 Recently,
different correction terms have been proposed by Rocklin
et al.,59 and Reif and Oostenbrink60 for the case of charged
polyatomic particles.

2.5 Beyond fixed-charge classical force fields

Another major source of error includes the common representa-
tion of electrostatic fields with atomic partial charges. Multipole
expansions typically reproduce better high-level quantum
mechanical calculations on model compounds. A second related
issue is the neglect of polarisability implied by fixed charges force
fields. This likely accounts for the lack of transferability of fixed
charge force field parameters, i.e. different parameter sets are
needed to accurately model the interactions of an organic
molecule in media of varying polarity, for instance water and
chloroform. Several alternatives to fixed atomic partial charges
force fields have been proposed.61 Popular models include the
CHARMM Drude oscillator model where polarisability is included
through addition of massless charged particles attached to the
centre of an atomic particle via harmonic springs.62 A more
computationally intensive alternative is the AMOEBA force field
that includes induced dipoles and replaces partial charges with
permanent multipoles.63 The QMPFF force field is also a variant
that models polarisability with floating diffuse isotropic electron
clouds attached to nuclei.64 To date, validation studies have
frequently focused on modelling small molecule solvation in
different media.65 Applications to ligand binding problems are
slowly emerging, Jiao et al. have computed binding free energies for
a small set of Trypsin ligands using the AMOEBA force field,66,67

whereas Khoruzhii et al. have used QMPFF to compute relative
binding free energies for five ligands bound to three serine
proteases.68 Much larger scale validation studies are still necessary to
conclude to which extent the more elaborate treatment of electro-
static interactions featured by these force fields improves upon
traditional biomolecular force fields.

A less developed alternative focuses on the coupling of classical
molecular mechanical (MM) and quantum mechanical (QM)
potential energy functions. Potentially this bypasses the need
to derive suitable force field parameters for ligands. However
because it is still very expensive to perform QM/MM simulations
of biomolecular complexes, many approaches proposed so far
are based on post-processing of trajectories pre-computed with a
classical potential.69,70 Care must be taken to select a suitable
level of theory to improve upon the energetics given by classical
potentials. Faver et al. have broken down a complex of HIV-II/
indinavir into 21 small fragments and computed interaction
energies using a range of methodologies, comparing to bench-
mark calculations performed at the CCSD(T)/CBS level of
theory.71 Semi-empirical and HF methods were in general out-
performed by the empirical force field GAFF, but dispersion
corrected DFT methods markedly improved results.72 Antony
et al. have performed a similar study for 25 fragments of diverse
protein–ligand complexes, observing also that dispersion
corrected DFT results were in close agreement with benchmark
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calculations performed at the MP2 or LPNO-CEPA/1 levels
of theory.73

An important current focus is on devising efficient protocols to
directly sample potential energy surfaces using QM/MM representa-
tions. Many open questions remain about the best way to couple
QM and MM Hamiltonians for binding free energy calculations.74–77

For instance, one possible strategy is to periodically accept
configurations generated with an MM potential on the basis of
a Metropolis test that involves evaluation of QM/MM energies.78

The QM region can itself be large and include several layers of
solvent molecules, if linear-scaling density functional theory
approaches are adopted.79 Understanding the influence of the
size of the QM region on the computed binding energetics is also
an active area of research.80–82

Overall it is still early days for QM/MM binding free energy
calculations and further technical research is needed before routine
applications in structure-based drug design can be considered.

3. Opportunities to help interpret
biophysical measurements
3.1 Protein X-ray crystallography

A growing and important role for molecular simulations of
protein–ligand interactions is to facilitate the connection between
biophysical measurements and biomolecular structure. For
instance, obtaining knowledge about the position of ordered
water molecules in protein binding sites can be difficult, yet
important to rationalize protein–ligand interactions. Few NMR
methods can localize accurately protein hydration sites. It is
also well known that the number of crystallographic waters
correlates with the resolution of a protein crystal structure.83 In
some instances, peaks in electron density in crystals initially
attributed to clusters of water molecules have been later
suggested to be caused by non-polar impurities.84 In ambiguous
cases, molecular simulations can be performed to evaluate
whether it is energetically unfavourable to place a water mole-
cule at a given location.27 Although crystallographic structures
are frequently used to rationalize binding assays performed in
aqueous solutions, it is not clear whether it is appropriate to
refine X-ray structures with force fields that were developed for
protein simulations in aqueous conditions. Case and co-workers
have been exploring this issue by performing molecular dynamics
simulations of protein crystals with several different protein and
water force fields.85 In another recent study, several microseconds
molecular dynamics simulations of a peptide crystal were
performed.86 A better agreement with the experimental data
was obtaining by refining the peptide coordinates against
structure factors obtained from simulated averaged electron
density maps. The simulations led to the identification of additional
water positions that improved model refinement. Minor populations
of alternative side-chain and backbone conformations were
also apparent, although this was attributed to force field errors.
At present significant technical challenges must be addressed
before the approach could be used more widely. In addition to
the usual limitations due to force field accuracy, the water

content of the unit cell often has to be deduced by running
multiple simulations with a different number of water molecules
until a setup that provides a unit cell size compatible with experi-
mental data is found. Also many crystals are obtained by soaking in
complex buffers and at low temperatures, correct modelling of these
conditions presents additional hurdles for classical force fields.
Nevertheless, there is encouraging potential for molecular
simulations to contribute to the refinement of protein–ligand
crystals. Particularly useful applications would focus on clarifying
ambiguities in the bound conformations of ligands owing to
limitations in experimental data, and identifying alternative patterns
of side-chain rotamers in binding sites that may influence
ligand optimization strategies.

3.2 Protein NMR

NMR methodologies are more commonly used routinely for ligand
screening rather than structure-based ligand design efforts, in
part because sample preparation and data analysis is consid-
ered more cumbersome than protein crystallography. However
NMR may be the method of choice if a protein is difficult to
crystallize or if protein dynamics plays an important role in
modulating interactions with ligands. The field of protein NMR
has a long history of using classical force fields supplemented
with NMR derived restraints in simulated annealing protocols
to generate structural models compatible with experimental
data.87 A major challenge is that the experimental data available
for model construction is too sparse to unambiguously define a
structure, let alone a structural ensemble. Consequently explicit
solvent molecular simulations with latest generation force fields
are increasingly used to refine structural ensembles and back-
compute experimental observables for model validation.88 In
this area there has been renewed interest in estimating chemical
shifts from structures computed from a molecular simulation to
validate force fields and characterize distinct conformational
states. Several empirical methods to predict backbone and
methyl chemical shifts from an input structure are available
for this purpose.89,90 There are limitations with this approach
because force field errors and errors in the chemical shift
predictors are intertwined. Nevertheless, the empirical approaches
are currently much more efficient and also more accurate
than chemical shift predictions based on quantum chemical
methodologies.91 However quantum chemical methodologies
can readily account for the presence of ligands or other
molecules for which a lack of experimental data precludes the
calibration of empirical descriptors.

In structure-based drug design a desirable application of
protein NMR is to generate ligand binding modes based on
chemical shift perturbations. Typically chemical shift perturbations
are used to map binding sites onto crystal structures, but
ambiguities about the details of the ligand binding mode often
remain. The combination of docking methodologies with chemical
shift predictions has been proposed to generate plausible binding
modes in those instances.92 An accurate and efficient chemical
shift prediction methodology by post-processing of molecular
simulations with quantum chemical calculations has the potential
to improve upon such protocols. Looking further ahead, the
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combination of chemical shift measurements with molecular
simulation methods also shows promises to characterize minor
conformers and for studies of flexible systems that cannot be
targeted with conventional X-ray crystallography approaches,
for instance intrinsically disordered proteins.93,94

3.3 Isothermal titration calorimetry

Molecular simulations also have the potential to help interpret
isothermal titration calorimetry measurements of protein–
ligand binding affinities. The technique is increasingly popular
in drug discovery as it provides direct measurements of
free energies of binding, enthalpies (and therefore entropies),
stoichiometry, and changes in protonation states.95 However
relating changes in binding enthalpies and entropies to the
structural data provided by X-ray structures has generally
proven very difficult. The issue is of interest because some groups
have argued that measuring enthalpy changes during early-stage
drug discovery activities may improve odds for clinical success.96,97

The essence of the argument is that ligands whose free energy
of binding shows a significantly favourable enthalpic compo-
nent are more likely to interact with the target through well
positioned hydrogen-bonds, whereas those that bind with a
significantly favourable entropic component do so by virtue of
hydrophobic moieties displacing water molecules. The latter
interactions are thought to increase liabilities in late stage lead
optimization because they correlate with poor solubility or
binding specificity.

There are reasons to doubt this interpretation. Firstly, binding
entropies depend on standard state definitions, but binding
enthalpies do not, thus one can change the binding enthalpy/
entropy ratio simply by changing the (arbitrary) standard state
definition.15 This makes it awkward to conclude that the binding
of a ligand is dominated by an enthalpic or entropic component.
Comparison of differences in enthalpic and entropic components
between related ligands is however valid since these are
not affected by standard state considerations. An important
motivation for computing free energy components is the desire
to address fundamental questions about the phenomenon of
enthalpy–entropy compensation. The effect, whereby a structural
modification to a ligand that decreases the enthalpy of binding
is opposed by an unfavourable decrease in entropy of binding
(and vice versa), is commonly encountered in protein–ligand
complexes. However there is debate about extent, meaning and
interpretation of the effect.98 Strong compensation between
absolute enthalpies and entropies of binding have been shown
to be measurement artefacts.99 Accounting for these errors
greatly reduces the extent of entropy–enthalpy compensation
in binding free energies but does not eliminate it completely.100

Gilson and co-workers have also reported an elegant computa-
tional study of the relative enthalpic and entropic components of
different conformational states of the protein BPTI.101 Major
findings from this study are that distinct protein conformational
states that marginally differ in relative free energy can have
much greater differences in their enthalpic or entropic compo-
nents. This has major implications for the feasibility of enthalpic
optimization of ligands, for instance a ligand that intrinsically

binds to a protein by decreasing the enthalpy of the system may
actually appears to bind with a large entropy increase if it
preferentially stabilizes a protein conformation that has greater
entropy than the dominant apo conformation. Such effects may
well contribute to apparent entropy–enthalpy compensation and
complicate the interpretation of calorimetric measurements of
entropies and enthalpies to guide lead optimization.

4. Opportunities to suggest new ligand
design strategies

Molecular simulations provide enormous details in the molecular
interactions that underpin protein–ligand association. Although
routine high-throughput applications are not widespread, simula-
tions have a long history of suggesting strategies for optimizing
ligand affinities.

4.1 Modulating the stability of binding site water molecules

A frequent dilemma molecular modellers face during ligand
optimization is whether or not to attempt to displace ordered water
molecules that are apparent in the crystallographic structure of a
complex with a hit compound. The rationale goes back to Dunitz
who reasoned that, owing to steric restraints, there must be fewer
ways for a water molecule to form hydrogen-bonds with protein–
ligand donor–acceptor groups. Since motions are hindered, the
entropy of water in a typical binding site should lie somewhere
between the entropy of liquid water and ice.102 Consequently, if
it is feasible to prepare an analogue that incorporates a moiety
to displace a bound water molecule and establish hydrogen-
bonding interaction similar to that of the displaced water
molecule, the free energy of binding of the ligand will benefit
from an entropic gain due to release of the water molecule in
bulk. In practice achieving this outcome is difficult because
accurate positioning of the water displacing moiety may not be
feasible, and any mismatch in hydrogen-bonding interactions
will rapidly offset an entropic gain due to water displacement.
Molecular simulations can capture such effects, and have been
shown to be useful to rationalize when an ordered water molecule
can be productively displaced.103 There is however debate about
the magnitude of the entropy gain that could be achieved by
displacing a water molecule. The debate partly arises because
formally it isn’t possible to unambiguously partition the free
energy into contributions from individual water molecules.
Simulation methodologies that estimate the free energy of a
water molecule by partitioning the average potential energy of
the system and by estimating solvent entropy by various means
often assign unfavourable free energies with respect to bulk for
some water molecules at biomolecular interfaces. Though such
water molecules are deemed locally ‘‘unstable’’, their presence
is necessary to stabilize interactions between neighbouring
particles.104 Additionally, detailed experimental and computational
studies have revealed different plausible scenarios for water
stability at biomolecular surfaces, for instance water molecules
near hydrophobic surfaces may be entropically favoured and
enthalpically disfavoured compared to bulk conditions.
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Complex changes in thermodynamic signature have been inferred
from careful calorimetric studies of a series of analogues binding
to thermolysin by Klebe and co-workers and Whitesides and
co-workers.33,105 Overall, the conclusion is that water molecules
can be productively displaced by improving the enthalpy or
entropy of binding. Detailed knowledge of binding site hydration
at a level currently afforded by a molecular simulation appears
necessary for predictive applications.

4.2 Modulating conformational flexibility

Another simulation-inspired strategy that has been less frequently
attempted is to modify ligands to increase structural flexibility of
the target protein. The expectation is that this will favourably
increase protein entropy, but inevitable associated changes in
solvent entropy complicate the picture. The strategy may also
appear counter-intuitive, high affinity ligands are typically
obtained by tightening interactions with the receptor. However
Nature provides examples, for instance the N-terminal domain
of the protein MDM2 contains a partially disordered lid that
has been shown to exist in equilibrium between open and
closed conformations, the latter covering a binding site for
partner protein p53.106 Peptidic ligands derived from p53 shift
the equilibrium to an open and more flexible lid conformation,
which is expected to partly offset the entropic cost for structuring
of p53 peptides in the MDM2 binding site.107 In the realm of
small molecule ligands, NMR has long shown for instance that
ligand binding to the protein DHFR modulates protein flexibility
in non-trivial ways, with some regions becoming more flexible
upon ligand binding.108 Another similar example is provided
by saccharides binding to the carbohydrate recognition domain
of Galectin-3.109

A rationale strategy has been explored in the context of kinase
inhibition by Crespo and Fernandez.110 Substitution of a hydrogen
atom by a chloride atom on the pyrimidine ring of the drug
imatinib was proposed to promote an unfavourable interaction
with the activation loop of the D861V C-kit kinase mutant, that
binds this drug poorly. The strategy was to improve affinity by
increasing disorder in the activation loop in the complex. The
feasibility of the approach was supported by molecular
dynamics simulations and free energy calculations. The ligand
was synthesized and activity measured with a spectrophoto-
metric assay. Gratifyingly, although imatininib binds poorly
C-kit D861V, the analogue was about 250 times more potent.
This suggests the strategy is viable, although more work is
required to confirm that the origin of affinity improvement is
indeed increased protein disorder. Beyond this example, limited
evidence has been accumulated so far to suggest how widely
applicable the strategy is, and whether the practice would
produce high-quality leads.

By contrast similar strategies that focus on the ligands them-
selves have long been pursued by molecular modellers. The concept
is that most drug-like small molecules contain a number of rotatable
bonds and often adopt multiple diverse low-energy conforma-
tions in solution. This is generally expected to disfavour binding
since owing to steric constraints, much fewer conformations are
assumed to be available for a ligand in a protein binding site.

Consequently structural modifications that rigidify a ligand in
solution should decrease this entropic contribution to the free
energy of binding. Recent work from Jorgensen and co-workers
suggest that this conformer ‘‘focusing’’ effect,111 may explain at
least in part the ‘‘magic methyl’’ effect,112 whereby in some instances
addition of a methyl group to a ligand to fill available space in a
binding site improves binding affinity ca. 100 fold, much more
than typically observed. In the cases investigated, the effect was
more pronounced when a methyl group substituted a hydrogen
atom on ortho positions of aryls.

Although the concept is sound, systematic application presents
pitfalls. Counter-intuitive results have been reported for peptide
analogues binding to the Grb2 SH2 domain. To improve the
binding affinity of a parent series, a cyclisation strategy was
pursued by introduction of a cyclopropane ring in the peptide
backbone. The intention was to thus preorganise a phospho-
tyrosine side-chain in its bioactive conformation. Unexpectedly,
the resulting analogues were however shown to bind with a
greater entropic penalty than the parent compounds.113 Crystal
structure analyses of constrained and unconstrained ligands in
complex with the target did not reveal significant differences in
binding modes. Detailed molecular simulation studies were
pursued by Shi et al. to rationalize these results.114 The major
findings were that the experimental results were qualitatively
reproduced by the simulations. Analysis of the computed
conformational ensembles of the bound and unbound ligands
revealed that although the cyclopropane ring modification does
indeed locally constrain the bound ligands, it also hinders
formation of intramolecular electrostatic interactions between
surrounding side-chains when the ligands are unbound in
solution. Consequently, the constrained ligands in solution adopt
more flexible, extended conformations, and lose more entropy
upon binding. Overall it thus appears that the detailed under-
standing of the conformational flexibility of ligands bound to
their target protein and also in solution afforded by molecular
simulation provides a way to test optimization hypotheses
based on conformational constraints.

4.3 Predicting alternative receptor conformations for virtual
screens

Another emerging powerful role for molecular simulations is to
suggest plausible alternative protein conformational states for
docking calculations.115 Since proteins are generally flexible
macromolecules, conformations that differ from an experimen-
tally derived structure may be adopted in solution with a
negligible or small energetic cost. Such alternative conformational
states may be more attractive than those apparent in the starting
structure from a small molecule drug design standpoint. The
approach has been coined ‘‘ensemble-based drug design’’ by
several groups to highlight the focus on the analysis of computer
generated structural ensembles of a biomolecule. The popularity of
the approach is increasing because for several proteins, molecular
dynamics simulations of apo structures on a ca. B10–1000 ns
timescale reveal conformational fluctuations that significantly
modify small molecule binding sites or even reveal completely
new cavities. In some instances, it has been possible to
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retrospectively dock known ligands that would otherwise not fit into
snapshots sampled from apo structures simulated with such pro-
tocols. Early work in this area was performed by McCammon and
co-workers, simulation studies on the flexibility of the protein HIV-
integrase led to the characterization of a cryptic alternative binding
site conformation that could accommodate suitably analogues of
known ligands.116 These findings impacted on then on-going
optimization of HIV-integrase inhibitors at Merck.117 More recent
work on the tumour suppressor p53 by Amaro and co-workers
illustrates a possible drug design workflow.118 Mutations that
destabilize the DNA binding domain of p53 are frequently observed
in cancers, Fersht and co-workers have shown that small molecules
can rescue p53 function by binding to and stabilizing the p53 DNA
binding domain.119 Molecular simulations of the wild-type p53 DNA
binding domain and several mutants were performed by Wassman
et al.118 Ensemble-analyses indicated frequent formation in wild
type and several mutants of a transient cavity that exposed Cys 124
to the solvent. This observation was of importance since prior
biochemical evidence by Fersht and co-workers suggested that
such cysteine may be a covalent site for known alkylating agents
stabilizers of p53.120 Docking of some of these agents into the
computed pocket produced reasonable binding modes to enable
alkylation of the sulfhydryl group of Cys 124. Next, no p53 stabilisa-
tion was apparent when the alkylating agent PRIMA-1 was experi-
mentally tested against a C124A p53 mutant. Subsequently virtual
screens by docking against a panel of conformations of the transient
cavity sampled during the simulations were performed. The exercise
ultimately led to the selection of 45 compounds for assays. One of
them, stictic acid, was shown to increase p53 levels in a cancer cell
line at micromolar concentrations.118 Further work is needed to
confirm the predicted binding modes, mechanism of inhibition,
and to optimize the hit into a viable lead. Nevertheless, the strategy
illustrates well current capabilities and limitations.

Extensive work is needed for ensemble-based approaches to
become a routine hit finding strategy. It is unclear to which extent
in general conformations computed from a molecular simulation of
an apo protein will adopt holo-like conformations. The approach
appears most suited for targets that recognize ligands through a
conformational selection mechanism, and small associated confor-
mational changes. If molecular recognition operates instead by a
primarily induced-fit mechanism, then the computed structural
ensemble may add little additional value to the starting crystal
structure. This is because it is difficult to perform accurate high-
throughput docking screens whilst enabling protein flexibility. It
may also be quite challenging and time-consuming to narrow a set
of ten to a hundred thousand snapshots to a selected few structures
that are most suitable for follow-up virtual screens. Protein ligand-
ability scoring functions may be used to evaluate the potential of
each computed transient cavity to bind a ligand.121 This should
also be done in conjunction with estimates of the stability of the
computed cavities; presumably in most instances there is an
unfavourable energetic cost associated with formation of the
transient cavity. This energetic cost must be offset by ligands
binding to a transient conformation. Where possible, experi-
mental evidence that the computed conformation is plausible
should also be sought to justify follow-up work at different steps

of the workflow; a worst case scenario is that much efforts are
devoted to chasing cavities that do not exist in reality.

4.4 Predicting allosteric interactions

A practical issue rapidly encountered upon analysis of computed
protein structural ensemble is that some cavities deemed attractive
for binding ligands may not overlap with the substrate/native
partner binding site. In those cases additional evidence that ligand
binding to such pockets will lead to modulation of biological
function is desirable. The proposal is particularly attractive in
those cases where the native binding site may be deemed too
difficult to target with a small molecule, or offers little prospects
for achieving sufficient binding selectivity. Several computational
methodologies have been proposed to infer allosteric coupling
between sites, but obtaining a clear yes/no answer from these tools
is currently sufficiently difficult that it is wise to obtain corro-
borating experimental data before following up with a virtual screen.
Popular non simulation methods include Gaussian Network Models
that can rapidly suggest allosteric pathways, typically from analyses
of contacts between Ca atoms.122 The method appears to capture
reasonably well some putative allosteric pathways but is quite
sensitive to small atomic displacements. Analyses are however
sufficiently rapid for post-processing structural ensembles
computed by molecular simulations. Much more expensive
simulation-based approaches rely on information-theoretic
analyses of perturbations in probability distributions functions
of protein degrees of freedoms, typically torsions.123,124

The simulation approach is in principle more sensitive to
subtle allosteric mechanisms that could involve for instance
side-chain flips. However a major issue lies in achieving a
significant signal-to-noise ratio; it is currently difficult to obtain
reproducible results for the same reasons that it is difficult to
obtain converged protein entropies. A current focus for the field
is to improve the reproducibility of simulation based predic-
tions of allosteric interactions.125 Given these caveats, routine
reliable a priori prediction of allosteric sites in the absence of
experimental data to support simulation based hypotheses still
appears some years into the future.

Overall ensemble-based drug design techniques offer exciting
prospects to deliver small molecule ligands in new ways. The current
applications focus largely on generating alternative conformational
states from existing crystallographic data and on inferring allostery
from analyses of structural ensembles. Looking ahead, additional
biomolecular recognition processes such as protein aggregation
could in principle be tackled with similar methodologies; one could
for instance seek plausible binding sites that would stabilize a
protein in a monomeric form and disfavour oligomerisation.126

5. Opportunities to routinely optimize
ligands
5.1 Interplay with other computational approaches

A long stated goal of biomolecular simulations is pervasive
application in structure-based hit-to-lead and lead optimization
problems. It is useful to clarify contexts where alternatives to
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molecular simulations may be currently more cost effective.
Firstly, in instances where high resolution structural data
are limited, the methodology is not easily applicable. Also,
the range of structural rearrangements that can be routinely
simulated over the course of a reasonably expensive molecular
simulation is limited. ‘‘Double blind’’ modelling studies,
whereby the structure of a putative ligand is rapidly docked
into a low quality homology model of the target protein will
often lead to the pursuit of qualitatively incorrect hypotheses.
Secondly, projects that focus on generating novel ligands
similar to existing ones may in some instances reach the
desired objectives more efficiently through ligand-based and
chemoinformatics methodologies. This is especially true for
targets where extensive structure–activity relationships datasets
are available, e.g. kinases, certain families of GPCRs.127 Lastly,
this is not always obvious to collaborators, projects with
no known ligands and that lack structural data on the target
offer little prospects for rapid insights from a molecular
simulation.

Today short molecular dynamics simulations of protein–
ligand complexes are frequently used by modellers once a hit
structure has been identified after an initial experimental or
computational library screen, but before structural data to
confirm the interactions have become available. Emphasis is
on qualitative analyses to explore for instance hypotheses about
putative binding modes, or to propose analogues to generate
structure–activity relationships. Quantitative predictions of free
energies of binding remain difficult for the reasons outlined
earlier, but there are reasons to expect that scoring methodol-
ogies based on molecular simulations should perform better
than empirical scoring functions. Through careful analyses
of errors in models of protein–ligand energetics, Merz and
co-workers have concluded that the averaging of interaction
energies over many conformations, which is implicit in mole-
cular simulations, reduces systematic errors compared to
approaches based on single-point energetics.128 Simulation
based scoring methods such as Molecular Mechanics–Poisson
Boltzmann Surface Area have been extensively explored over the
past 10–15 years, but the performance appears to be too much
system dependent for routine applications in ligand optimisa-
tion.129 Today there is much interest in using molecular simula-
tion protocols that predict relative free energies of binding using
methodologies like free energy perturbation or thermodynamic
integration. This is partly because the approaches rely on firm
theoretical grounds and partly because a few laboratories have
led the way and applied extensively such methodologies; a
notable example is the work of Jorgensen and co-workers on
HIV reverse transcriptase and other targets.130

5.2 Automation is a growing concern

Since approximate predictions are expected in practice due to
incomplete configurational sampling and inexact potential energy
functions, benefits are expected to be more apparent when predic-
tions are performed on a large number of ligands. Nowadays
securing sufficient computing time to perform such calcula-
tions on datasets of 10–1000 ligands is not a major bottleneck.

Organizations that do not maintain in house computing clusters
could periodically secure such resources through cloud computing
infrastructures. However a major practical issue for large scale
applications is the need to correctly prepare input files and
analyse the output of the simulations. There has traditionally
been little concern on this in academia where many of
the software packages that implement alchemical free energy
calculations originate. The setup and analysis of a free energy
calculation is probably about one order of magnitude more
complex than a typical docking calculation. Automation of
binding free energy calculations would bring several benefits
to the field. Firstly, it will facilitate large scale retrospective
studies of the accuracy and precision of different protocols; a
common criticism is that free energy calculation methodologies are
not validated on sufficiently large datasets to truly assess predictive
power. Secondly, it will facilitate reproducibility of simulation
studies; the setup of input files is frequently insufficiently
documented in publications to make it difficult to reproduce
published results. Thirdly, it will facilitate wider adoption by
time-pressed molecular modellers and other biomolecular
scientists. Achieving these goals will not be easy because there
is limited consensus between experts on the most robust
protocols to adopt. Workflows for high throughput studies
should be designed to be flexible and extensible, best practices
will keep evolving. Several workflows that automate diverse
aspects of binding free energy calculations have been recently
reported.131–133

5.3 Plausible applications

The final goal is to aid rather than automate drug design, and
many scenarios for the most effective integration of simulations
with experiments ought to be further explored. Molecular simula-
tion protocols that predict free energies of binding would not
be used to screen millions of compounds for some time, but
could conceivably be used as a post virtual screen filter for
perhaps 102–103 compounds. As this is a rather small number,
additional filters should be applied prior to performing free
energy rescoring – perhaps putting emphasis on chemical
diversity. In addition, the structural diversity of compounds
pulled from a large library may make it more challenging to
obtain converged estimates of binding affinities with typical
free energy calculation methods. Fragment-based screens offer
higher compatibility with molecular simulations. Firstly, the
fragment libraries screened are typically smaller, ca. 102–104

compounds, so a greater fraction could be immediately screened
using free energy methods. Secondly, the fragments typically
contain fewer rotatable bonds and it should be less challenging
to obtain converged free energies of binding. If there is ambiguity,
free energy calculation protocols can also be used to rank-order
putative binding modes of the same ligand.134,135 Thirdly,
fragment-based drug design approaches frequently rely on
structural and biophysical and data to characterize hits,136

which is important for robust application of molecular simulations.
For hit optimization, the practical utility of molecular simulations
also depends on the available resources for analogues synthesis.
As with other ligand optimization techniques, the input of
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molecular simulations is greater if the potential for diverse
structural optimization strategies is assessed early. This helps
prioritize the selection of suitable synthetic strategies for pre-
paration of focused analogues libraries.

Looking ahead, if reasonable success in optimizing hits is
demonstrated for a broad range of targets, there is prospect
that molecular simulations will more frequently tackle other
challenging ligand optimization problems. For instance, perme-
ability may be tuned with simulations of diffusion across models
of biological membranes;137 plasma binding levels may be
optimized through simulations of compounds bound to Human
Serum Albumin;138 metabolic stability controlled through simula-
tions of various Cytochrome P450 complexes;139 binding selectivity
to disordered proteins could be adjusted,140 and so on. Major
challenges here involve developing reliable protocols to quantify
ligand interactions with promiscuous targets; in many cases the
ligands likely adopt multiple binding modes or occupy multiple
distinct sites.

6. Conclusions

Molecular simulations provide truly outstanding opportunities to
exploit molecular recognition principles that are very difficult to
observe with experimental techniques. The continuing trends in
high-performance computing suggest that molecular simulations
are poised to take on wider significance in structure-based drug
design in the coming years. In spite of the hopes, it is prudent to
acknowledge that the concept of using computers to optimize ligand
interactions with the aid of structural data is not new and the field of
computer-aided drug design has promised fast and accurate predic-
tions of binding affinities for decades. It should be well appreciated
that, given the complexity of biomolecular interactions, routine
reliable predictions of binding affinities from molecular simulations
is truly a Holy Grail for computational chemistry. Steady incremental
progress towards this goal is more realistic. Extensive retrospective
and prospective methodological studies on substantial datasets will
be instrumental to diagnose and address shortcomings in sampling
algorithms and energy functions. The major goal is to demonstrate
more accurate predictions but emphasis should be put on reprodu-
cibility and statistical significance. Efforts should also be devoted to
defining robust, partly automated, simulation protocols for classes
of ligand-binding problems that emerge as the most tractable. The
goal should be to facilitate rapid large scale studies by non-technical
experts. This will naturally lead to the testing of new scenarios
for coupling molecular simulations and experiments to tackle
increasingly complex drug design challenges.
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