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The generality of the Hofmeister effects has been questioned of late, and doubts have been cast over
their importance in understanding the specific ion effects on the chemistry and physics of biopolymers
in aqueous solutions. Recent experimental evidence from modern non-linear spectroscopies points
mostly to the direct interaction between the ion and the biopolymer in question that is more important
for understanding the Hofmeister effects. On the other hand, our own contribution by higher order
thermodynamical studies indicated that the effects of ions on H,O itself may not be denied all together.
Namely, we devised a methodology whereby the effect of an ion on H,O is characterized by two
orthogonal indices, hydrophobicity and hydrophilicity, by using a third order thermodynamic signature of
hydrophobic 1-propanol (1P) as a probe, the 1P-probing methodology. The results indicated that the
common anion ranking could be understood in terms of two indices, hydrophobicity and hydrophilicity
of an individual ion. In the present work, we make an attempt at probing the effects of the same ions on
H,O by a typical hydrophile, glycerol (abbreviated as Gly in this article). Compared with the results of the

Received 15th August 2013, 1P-probing methodology, we seek to determine how hydrophiles would react to the subtle modification

Accepted 22nd October 2013 of H,O caused by the presence of an ion, since biopolymers are large amphiphiles with hydrophobic
and hydrophilic surfaces. The results indicate that the Gly-probe is much less sensitive than the

1P-probe. We suggest therefore that it is the hydrophobic moieties of biopolymers that mainly give
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Introduction

Ions and non-electrolyte solutes modify the molecular organization
of H,O in a specific manner. As one of their manifestations,
they show marked differences in their solvent properties when
used as mixed solvents. This was recognized back in 1887 by
F. Hofmeister."® He ranked the effects of ions in the order from
what reduces the solubility of lysozyme in aqueous solutions to
what promotes it. Since then, almost the same ranking seems to
apply to a large number of physical/chemical processes in
aqueous solutions of biopolymers or colloids, particularly for
anions. The left side of the ranking was named ‘“kosmotropes”
and the right “chaotropes” with Cl~ at about the null position.*
Thus, at the zero-th approximation, it was generally regarded to
be the effect of each ion on H,O that dictates the overall
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more conspicuous response to the modified H,O by the presence of an ion.

properties of the ternary systems. More recent investigations,
however, tend to point to direct ion-biopolymer interactions that
are more important for the ion-specific effects. Indeed, modern
non-linear higher order spectroscopic studies suggested that the
bulk H,0 away from hydration shells of common ions was left
unperturbed.” ™" Hence, the Hofmeister effects must be due to
direct interactions between the specific ion and the biopolymer
in question. Furthermore, the reversals of the Hofmeister ranking
have been observed by modifying the end groups of the biopoly-
mer,"? or by changing the solution compositions.*™** With these the
Hofmeister effects may become non-existent. The close relation
between the Hofmeister series of biopolymers and the lyotropic
series of colloids has been long noted. Lyklema pointed out in
analogy with colloid science that the Hofmeister series ought to be
re-examined by taking into account the surface conditions, hydro-
phobicity or hydrophilicity, of biopolymers in question. Mean-
while, Levin et al. claimed to have developed a theory of the surface
density profile that could explain a variety of experimental results
with a single adjustable parameter, and that could finally shed light
on a century old enigma, the Hofmeister series.”

Nonetheless, the effects of ions and non-electrolyte solutes
on H,0 are interesting in their own right and important for
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fundamental investigations of the multicomponent aqueous
solutions. We have recently devised what we call the 1-propanol
(1P) probing methodology that was detailed elsewhere.'®'” By
applying it to aqueous solutions, we were able to characterize
the effects of solutes, non-electrolytes and individual ions on
H,O using a pair of coordinates, hydrophobicity, a, and hydro-
philicity, b, and thus to characterize the effect of a solute on a
two-dimensional map with H,O at the origin. For an individual
species the former relates to its hydration number, ny, and the
latter to its effect on the degree of S-V cross fluctuation density
(proportional to thermal expansivity) of the entire bulk of
the solution.®! Using this methodology, we found that there
are five distinct classes of the effects of a solute on H,O.
In particular, the results of a series of studies on general ions
by this methodology indicated that kosmotropes all belong
either to ‘“hydration centers” or “hydrophobes”, both being
interpreted as forming hydration shells around them, while
chaotropes were found to be all “hydrophiles” (see below).
Furthermore, the anion Hofmeister ranking matched the
decreasing order of the distance from the origin for “hydration
centers” and “hydrophobes” and then the increasing order of
the distance for “hydrophiles” with the null point being H,O
itself. C17, which is normally regarded as the null point, was
found to belong to the “hydration center” and to be very close
to the origin. According to our studies,'®'” “hydration centers”
were understood to form hydration shells but the bulk H,O
away from hydration shells is left unperturbed, while “hydro-
phobes” also form hydration shells with somewhat enhanced
hydrogen bonding within them with concomitant reduction of
the hydrogen bond probability of bulk H,0.?**' “Hydrophiles”,
on the other hand, form hydrogen bonds directly with the
hydrogen bond network of H,O and retard the degree of
fluctuation inherent in pure H,0."®**** Thus, we suggested
that the effects of ions on H,O must remain important in
understanding the Hofmeister effects. Of course, the individuality
of chemical and physical properties of biopolymers is not
unimportant. After all, they are large amphiphiles with hydro-
phobic and hydrophilic moieties. It would therefore be inter-
esting to investigate how a hydrophobe and a hydrophile react
to the modification of H,O caused by the presence of an
individual ion. The probe 1-propanol (1P) we have used so far
is a typical “hydrophobe” in our classification."®"” The present
work shows how a hydrophile, glycerol (abbreviated as Gly
in this paper), would react to the modification of bulk H,O
caused by the presence of a specific ion following the earlier
preliminary study.”*

In dealing with aqueous solutions, particular consideration
must be given to the composition. We earlier realized*’ >
that the solution properties are crucially dependent on the
composition in general for aqueous solutions. We found that
the aqueous solution generally consists of three distinctive
regions, in each of which the mixing scheme (MS), the mole-
cular level scenario of mixing, is qualitatively different from
those of other regions. In the H,O-rich region, H,O is modified
somewhat depending on the nature of the solute (the details of
which were instrumental in classifying the solute into the five
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classes mentioned above)'>"” but the basic integrity of liquid
H,0 is retained inasmuch as the hydrogen bond network is
connected fleetingly and yet permanently throughout the bulk.
H,O0 is here understood as a highly fluctuating hydrogen bonded
assembly and yet hydrogen bonds are bond-percolated.”®>*?3¢
In the solute-rich region, the solute molecules tend to cluster
together as in the pure state and H,O interacts with such clusters
as a single gas-like molecule. In the intermediate region, two
kinds of clusters, one rich in H,O and the other in solute,
physically mix together. We name these three distinct mixing
schemes Mixing Schemes I, IT and III from the H,O-rich end. The
boundaries between the adjacent MSs are apparent from the
anomalous behaviour of the third derivative thermodynamic
quantity.?*®* In special cases, the boundary could appear as
liquid-liquid phase separation between MS I and MS II or
precipitation of a solute at the MS II and MS III boundary.

In the original experiment conducted by Hofmeister," the
first cloud points with 2 wt% lysozyme were determined in
terms of the salt composition. They occurred at the mole
fraction of 0.056, 0.03, 0.061 and 0.09, respectively, for the
Na-salts of SO,>, OAc™, Cl~, and ClO; . From the description
in this paper, it is not clear whether the first cloud point is
phase separation or precipitation. We interpret his first cloud
point as corresponding to the MS I and II boundary for safety,
and we limit our attention to MS I of the multi-component
aqueous solutions.

As detailed earlier, the methodology we use is applicable
only to the limited H,O-rich region, MS I. This is based on our
earlier findings that within this limited H,O-rich region, MS I, the
effects of ions are additive and that the effects of hydrophobic and
hydrophilic moieties of amphiphiles are also additive. Similarly,
for a multi-component system the effects of each solute are
additive as long as the total mole fraction is small enough so that
a body of liquid H,O maintains its integrity.'®"”

Here, following the previous Gly-probing study for Na-salts
of some anions,> we apply it to Cl-salts of NH,", (CH;),N*
(TMA") and in addition NaCH;COO (Na'OAc™). The latter was
included, since we investigated recently how OAc™ works as a
hydrophobe.'**”

The details of the probing methodology were described
elsewhere.'®'” Very briefly, one of the thermodynamic signatures,
Hpg (defined below), for the probing component B in the ternary
aqueous solution of B and the test sample S is determined as a
function of the mole fraction of B, xz, at a fixed initial mole
fraction of S, x3. He shows the xz-dependence pattern unique to
the nature of B. For hydrophobic B, it displays a peak type and for
a hydrophilic B a bend type anomaly reflecting a qualitative
change in the molecular organization of H,O. (See Fig. 5 in the
Appendix.) The peak top or the bend point that we name point X
is where the integrity of liquid H,O is lost due to the presence of B
at the value of xp. We then observe how the HEg pattern changes
as S is added while the characteristic pattern of Hyg is retained.
The induced changes, particularly those of the anomalous point,
X, are indexed in two orthogonal directions in the graph of Hjg vs.
xg. Thus, the B-probing methodology is applicable only up to this
mole fraction. The rate of westward shift (to the negative direction

16,17
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of the xg-axis) of point X per unit increase in xg is defined as
hydrophobicity, a. That of the southward shift (to the negative
direction of HEg-axis) is defined as hydrophilicity, b. The shifts in
both directions are found generally to be linear to x32. By trying
out a number of typical hydrophobes and hydrophiles for S,
we catalogued the induced changes. Thus, we have a way to
characterize the effect of an unknown solute S on H,O using a
pair of indices, @ and b, and to display it in a two-dimensional
map with H,O defining its origin.

From the 1P-probing methodology, we drew the following
conclusions for each ion studied here: Na*, NH,*, and Cl™ are the
“hydration centers” with the hydration number ny, 5.2, 1 £ 1,
and 2.3 £ 0.6, respectively, leaving the bulk H,O away from
hydration shells unperturbed.'®'” The CH,~ side of OAc- is a
hydrophobe with the total hydration number 3.7 £ 0.7 and
reducing progressively the hydrogen bond probability of bulk
H,0 away from hydration shells. One out of 3.7 H,O molecules
hydrates the COO™ side of the ion as a hydration center without
affecting the bulk H,0.'®*” TMA* was found to act as a hydro-
phile which forms hydrogen bonds directly with the hydrogen
bond network of H,O and to pin down the fluctuation inherent in
liquid H,0.'%?®

As discussed in the Appendix, the Gly-probe has an intrinsic
disadvantage in comparison with the 1P-probe. Namely, H%pp
is directly proportional to the partial molar S-V cross fluctua-
tion density of 1P, V5,p, defined by eqn (2) and (3) in the
Appendix. This signifies the effect of a solute on the mean
square amplitude of the S-V cross fluctuation of bulk H,0."®"°
In other words, the mean square amplitude of the S-V cross
fluctuation is monitored by perturbing the system by the
infinitesimal increase of 1P. Thus, the behavior of Hp,p, its
increase/decrease, is directly proportional to that of SV.p. H glyGIy,
on the other hand, is only partially proportional to the equivalent
SV(?GIy with an extra constant term.?® Unless the behavior of the
latter constant term is known, that of H glycly cannot be directly
connected to *"d¢y. Another practical disadvantage of the
Gly-probe is that its point X is not as conspicuous as that of
the 1P-probe, since the latter displays a peak top, while the
former a bend point. (See Fig. 5 and 6 in the Appendix.) With
these disadvantages we attempt to investigate how a hydrophile
reacts to the subtle modification of H,O caused by the presence
of ions within MS I, in comparison with a hydrophobe. Most of
the solutes of biological significance are amphiphilic, and
it would be important to investigate how hydrophobic and
hydrophilic moieties respond to subtle modification caused
by an ion while the basic integrity of liquid H,O is retained.
As mentioned above, we have found that within the limited
H,O-rich region the hydrophobic and hydrophilic moieties
respond additively to H,O modification.'*>*

Experimental

Glycerol (abbreviated as Gly in this paper) (Sigma, >99%) was
degassed in vacuo at 80 °C for about 30 min and then charged
into a 1000 pL syringe in a dry N, atmosphere for the titration

This journal is © the Owner Societies 2014
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calorimetry described below. NH,Cl (Merck, >99.8%), N(CH3),Cl
(TMACI) (Merck, >98%) and Na(CH3COO) (NaOAc) (Sigma-
Aldrich, >99.8%) were used to prepare stock solutions using
Milli-Q water. The respective solutions were diluted to the
desired initial mole fraction, x2, immediately before use.

The excess partial molar enthalpy of Gly, H¢yy, is determined
by using a TAM III isothermal titration calorimeter (TA Instru-
ments, New Castle, DE, USA) at 25.000 & 0.005 °C. The titration
procedure was modified to enable facile delivery of highly
viscous Gly as described in the previous work.>* Furthermore,
a 30 min interval was given between successive titrations, in
order to reduce a possible rheological effect of highly viscous
Gly. The uncertainty in Hgyy was estimated to be +0.03 kJ mol .

Results and discussion

Fig. 1 shows the excess partial molar enthalpy of Gly, Hgy, in
the ternary Gly-S-H,O at a given initial mole fraction of S in the
mixed solvent, x3. The raw data are given in Table S1 in the
ESI.T While Hgly becomes more endothermic as xg increases for
TMACI, Fig. 1(b), and NaOAc, Fig. 1(c), that for NH,Cl shows a
similar behavior at the low xgy, range but becomes more
exothermic at high xg,, within the xgj, range studied. But
for all cases, the slopes of Hgly against xgj, seem to become
less as xJ increases. To see these trends more clearly, we
evaluate Hgyqry defined as,'®'7207>?

HglyGly = N(aHgly/anGly) = (1 - xGly)(aHgly/axGly)y (1)

at given x3 = ng/(ns + nw). In the ternary system Gly-S-H,0, ng is
the molar amount of S, ng, that of Gly which alone increases
little by little through titration, nyy that of H,O, N = ngy, + ng +
nw, and Xgyy = ngyy/N. Of course for the 1P-probe, the equivalent
definition is given by replacing subscripts Gly by 1P. For
evaluating H Elycly, we perform graphical differentiation as for
H%p1p without resorting to curve-fitting an analytical function to
the HE, data. By this treatment the random error in Hgyaly
inevitably increases to 1 kJ mol™', but there is no danger
of introducing a systematic error by a wrong choice of the
analytical function. It is practically impossible to find a correct
function.

The resulting H¢qy data are plotted in Fig. 2. Fig. 2(a)
shows H¢yaly for the binary Gly-H,O. It is apparent beyond
the estimated uncertainty that the xg-dependence pattern of
H&ymy shows breaks in the slope at points X and Y at xgjy =
0.073 and 0.14, respectively, indicated in the figure. The same
behavior was observed in the previous Gly-probing study,
though the xgyy loci were at 0.08 and 0.015.* The existence of
the breaks at points X and Y was confirmed recently>® when we
directly measured another third derivative quantity, the partial
molar S-V cross fluctuation density of Gly in Gly-H,0, *"d¢y,, by
differential pressure perturbation calorimetry.*® Since this
third derivative quantity is determined directly, we could take
one more derivative graphically. The resulting fourth derivative
quantity showed the onset of a step anomaly correctly at xgj, =
0.076 and its end at 0.14 at 25 °C.>° These should correspond to
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Fig. 1 (a) Excess partial molar enthalpy of Gly, H(E;ly, in Gly—-S—H,O (S = NH4Cl) at 25 °C. (b) Excess partial molar enthalpy of Gly, HEW, in Gly-S—-H,O

(S = TMACI) at 25 °C. (c) Excess partial molar enthalpy of Gly, Hély, in Gly—

points X and Y in the third derivative quantity. As temperature
increases, however, the step becomes progressively smaller and
more obscure. The same observation was made in the previous
Gly-probing study” in that as S is added and x3 increases the break
point X becomes more obscure to note in the H glyGly patterns.

Fig. 2(b)-(d) show the results for the ternary Gly-S-H,O
systems. The binary Gly-H,O system data are represented by
two straight lines and its point X is indicated by a hollow X on
the line. Point X is an important point that indicates the end of
the dilute solution regime where the integrity of liquid H,O is
lost. We found from our earlier studies®*>*>* that up to point X
the integrity of liquid H,O is retained such that the hydrogen
bond network is still connected throughout the bulk H,O. It is
this dilute concentration range where the probing methodology
by 1P or Gly is applicable."®"” Thus, it is unfortunate that with
the present data at hand the loci of point X are not located with
confidence.

338 | Phys. Chem. Chem. Phys., 2014, 16, 335-344

S—H,O (S = NaOAc) at 25 °C.

We thus approach differently. From the previous 1P-probing
methodology, we found how each solute, a non-electrolyte or an
individual ion, modifies H,O within the respective MS I. As
mentioned above, Na', NH," and Cl~ belong to the class of
“hydration centers” that are hydrated by 5.2, 1 and 2.3 mole-
cules of H,O, respectively, but leave the bulk H,O away from
hydration shells unperturbed. At least the same ions were
shown not to alter the bulk H,O away from hydration shells
by femto-second pump probe spectroscopic studies.” OAc™ is a
“hydrophobe” that is hydrated by a total of 3.7 molecules of
H,0. The hydrogen bond probability within the hydration
shells is enhanced somewhat, but that of the bulk H,O away
from the hydration shells is reduced progressively. The bulk
H,0 has not yet lost the hydrogen bond percolation until the
system reaches point X.'®'7*!

The distinction between hydration centers and hydrophobes
was apparent in that the behavior of Hipp at x;p = 0 was

This journal is © the Owner Societies 2014
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Fig. 2 (a) Gly—Gly enthalpic interaction, /—Iély@ly, in binary Gly—H,O at 25 °C. The value of point X for the binary Gly—H,O, x%.y, was found to be 0.073 and
that of Y 0.14. (b) Gly—Gly enthalpic interaction, HélyG.y, in Gly—S—H,0 at 25 °C for S = NH4CL. (c) Gly—-Gly enthalpic interaction, HELyGIy, in Gly-S—H,0 at
25 °C for S = TMACL (d) Gly—Gly enthalpic interaction, H(E;ly(;ly, in Gly—S—H,0O at 25 °C for S = NaOAc.

different in the 1P-probing studies."®'” Namely, for the hydra-

tion centers, the values of Hip;p remain constant and indepen-
dent of x%, while they increased as xJ increased for the
hydrophobes. Hence for salts consisting of counter ions in
the “hydration center” such as, NaCl, and NH,CI, they
remained constant. For the present Gly-probing study, on the
other hand, NH,CI does not seem to stay constant as is evident
in Fig. 2(b). The previous Gly-probing study® indicates the
same observation for NaCl also. This discrepancy between the
1P- and Gly-probing methodologies could be related to our
findings that Hipp is directly proportional to the solute’s
effect on the S-V cross fluctuation density,'®"” while Hgyaly

This journal is © the Owner Societies 2014

is partially proportional with an extra constant term as
discussed above and in the Appendix. The latter constant term,
the origin of which is yet to be elucidated, may be responsible
for the observed downward shift of H&yGly at xgy = 0 as
X9 increases.

TMA" was found to act as a hydrophile that forms
hydrogen bonds directly with the existing (momentarily but
perpetually) hydrogen bond network keeping the hydrogen
bond connectivity intact. But it reduces the degree of fluctua-
tion inherent in pure H,O progressively by breaking the proton
donor-acceptor symmetry of liquid H,O. Probably reflecting
this, Fig. 2(c) shows a little sharper decrease in the H glyGly value

16,17,28
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Fig. 3 (a) The values of H&yqy at the infinite dilution, xgy = 0.0, Hyay (0) against x2 for various salts (S). The uncertainty is estimated to be £2 kJ mol™.
Filled symbols; this work, and hollow symbols; ref. 24. (b) The values of H(E;ly@y at the infinite dilution, xgy = 0.0, H(E;ly@y (0) against xg for non-electrolytes.
The data are taken from the previous Gly-probing study.?* The uncertainty is estimated to be +2 kJ mol™.

at xgy = 0, H Elycly (0), than the other two salts. NaOAc, on the
other hand, with a hydrophobic OAc™ ion shows a decrease in
Hyayy (0), the value of Héyayy at xgy = 0. This contrasts with
the behavior of HY,,p observed in the 1P-probing study, where
the equivalent H%pp (0) increased.'®"”

To see these trends at xgj, = 0 more clearly, the H Elymy data
are extrapolated linearly to xg, = 0 and evaluated Hgiyay (0)
values. The results are plotted in Fig. 3(a). Also shown in the
figure are the equivalent plots with hollow symbols taken from
the previous Gly-probing study.>* For S = Na,SO,, the raw data
were not used for the analysis in ref. 24. We reproduce the data
here with the permission of the original authors as Table S2
in the ESLT Both graphs of Hgy and Héyaly for S = Na,S0, are
also given as Fig. S3(a) and (b) (ESIf). Since the data points
for Hglycly at xgy < 0.015 are not available for all cases,
the uncertainty in the extrapolated results could amount to
+2 kJ mol . Fig. 3(b) shows the same plots for non-electrolyte
samples. In the latter figure, two typical cases for hydrophobes,
TBA and 1P, are shown. H glyG]y (0) decreases as x2 increases, in
contrast to the increase in Hipip (0), the value of Hipip at
x1p = 0.'®" This is only natural due to a geometrical reason.
HE, p increases from x;p = 0 to point X, while H Elycly decreases
down to its point X. A hydrophobic sample S will shift the H
pattern including point X towards west, a smaller value of xg
(for B = 1P or Gly). Since a number, ny, of H,O molecules are
used up for hydration, and they are not available for the probe B
to interact, point X will be reached at a lesser value of xg.
Indeed, the dynamics of the hydrating H,O was found to be
several times slower than that of bulk H,0.® This westward shift
will inevitably result in an increase in the value of Hgg for a line
with a positive slope (for B = 1P) and a decrease for that with a
negative slope (for B = Gly), unless there is a mechanism to pin
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down Hig (0) at a constant value. This is what happens for the
1P-probing, B = 1P, for “hydration centers”. Going back to
Fig. 3(b), it is surprising that the decreases in Hgygly (0) for
both TBA and 1P show no difference, although TBA is a
stronger hydrophobe than 1P.'®'7?%?' This could indicate
whether the Gly-probing is not as sensitive as 1P-probing or
the effect of stronger TBA might be compensated for by its
effect on the extra constant term discussed in the Appendix.
Urea, a “hydrophile”, shows a marginal decrease in Hgyay (0)
upon increasing its initial mole fraction, xJ. This could be
understood by the fact that the hydrophilicity indices deter-
mined by the 1P-probing are similar for urea and the probe Gly;
the values of b being —1210 and —1180 respectively.'®

Fig. 3(a) shows that for the hydration center salts, NH,Cl and
NaCl, Héyaly (0) decreases slightly, by just above the uncer-
tainty upon increasing xJ. They showed no change in Hp;p (0)
in the 1P-probing results."®"” This decrease could also be due
to an unknown effect on the extra constant term discussed
above. Furthermore, there seems to be no difference among
all these two hydration center salts in their x3-dependence of
Hyay (0) in spite of the fact that the total hydration numbers
are different; ny = 7.5 for NaCl and 3.3 for NH,CI. This could
also hint that the Gly-probe is not as sensitive as the 1P-probe
towards subtle modification of H,O caused by the presence of
S. NaOAc, containing a hydrophobic anion, shows no difference
in the decrease of HglyGIy (0) with those of hydration centers.
Na,SO,, SO,>~ being a hydration center at x,p = 0 found by the
1P-probing,'®!” also shows the same trend. NaBr, Nal and
NaSCN, consisting of Na' and a hydrophilic anion with its
hydrophilicity increasing in the order of Br- < I” < SCN™, do
not show any difference among themselves nor from the
hydration center group. TMACI is the only salt that stands
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Table 1 The values of xg at the presumed point X calculated using the
total hydration number, ny(tot), obtained by the 1P-probing methodology,
and the value of xgyy at the observed point X for the binary Gly—H,O by the
present Gly-probing. Haycly at the presumed point X was read off the
graph of HElyGly, Fig. 2(b)-(d). An assumption was made that the xg,-locus
of point X is also linear to x2 as the case of the 1P-probing

Salt Ny x9 Xayy (X) Heyaly (X)
NH,CI + 1 0 0.073 211
- 23 0.01282 0.06898 21
(tot) 33 0.02549 0.06500 21
0.03788 0.06111 21
TMACI + 0 0 0.073 211
- 2.3 0.01250 0.06999 20
(tot) 23 0.02561 0.06683 18
0.03356 0.06492 17
NaOAc + 5.2 0 0.073 211
- 3.7 0.01624 0.06126 23
(tot) 8.9 0.03067 0.05084 22
0.04716 0.03892 23
0.06146 0.02852 23

out in terms of its decrease in Héyaly (0), as hydrophiles are
expected to do. The hydrophilicity index of TMA" is b = -1180,
while those of other hydrophilic anions are —920, -2050, and
-2800 respectively.'® Thus, TMA" is only modestly hydrophilic,
and yet the decrease of Heyyey (0) stands out. This must be due
to the weaker effect of the counter ion CI~ than Na’. The
hydration number, ny, for Cl™ is 2.3, while that for Na' is 5.2.
But it is more likely that all these observations among salts
could be due to the effect of each S on the extra constant term
in the proportionality between Hély and the 5.

Now that point X for the present Hgyyayy is hard to identify,
we proceed our analysis by calculating the point X in the HGyyaly
pattern assuming that the shifts of xg, (X) and HGyery (X)
are both linear to xJ as was the case for the 1P-probing
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methodology."®"” (X) indicates the respective coordinates at point
X. Noting that the extrapolated value of x§ to xgy, (X) = 0, x3 (0) is
equal to 1/(n + 1), and using the xgyy locus of point X for the binary
Gly-H,O determined in Fig. 2(a), we calculated the xg,-loci of point
X at given x2, which are listed in Table 1 for the present data. The
same data treatment is applied to the previous Gly-probing study,”*
and listed in Table S4 in the ESL{ We then read off the value of
Hyay in Fig. 2(b)~(d) for the present data and equivalent graphs of
Hyay against Xgy, for the previous work™ at the calculated point X,
Xaly (X). The H&yayy (X) values are also listed in Table 1 and Table S4
(ESIt), and plotted in Fig. 4(a) for salts, and in Fig. 4(b) for non-
electrolytes. The uncertainty of the resulting H gy (X) is estimated
to be &2 kJ mol .

For all other salts in Fig. 4(a) except for Na,SO, and TMACI,
Hglymy (X) may be regarded as remaining constant and inde-
pendent of xg, taking into account the estimated uncertainty,
+2 kJ mol~". For Na,SO,, Héyaly (X) clearly increases as x§
increases. This is an interesting and important finding. From
the 1P-probing, SO,>~ was found to belong to a special case of
the “hydration center”.'®** As the mole fraction of the probe
1P, x,p, increases, both S and 1P together were found to reduce
the hydrogen bond probability of bulk H,O just as a hydro-
phobe stronger than the probe 1P does, while in the absence of
1P (i.e. at x;p = 0), SO, alone acts as purely a hydration center.
Thus the present finding suggests that the increase in Hyg at
point X is independent of the identity of the probe B. Namely,
as xg increases and hence the available bulk H,O decreases,
there must be some inherent mechanisms due only to SO4>~
to reduce the hydrogen bond probability of bulk H,O.
Self-aggregation of SO,>~ could be a reason, as observed for
urea above ¥ > 0.08 (S = urea),”® for the 1-butyl-2,3-
dimethylimidazolium cation at x2 > 0.006! and for the
1-butyl-3-methylimidazolium cation at x2 > 0.014.>> However,
they all show a sudden decrease in the slope of Hgg (X) vs. xJ in
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Fig. 4 (a) The values of HElyGLy at presumed point “X", HElyGLy (X) against x2for various salts (S). Filled symbols; present work and hollow symbols; ref. 24.
The uncertainty is estimated to be £2 kJ mol™. (b) The values of HE.yGLy at presumed point X", Hély@y (X), against x2 for non-electrolytes. Evaluated using
the data in the previous Gly-probing study.?* The uncertainty is estimated to be +£2 kJ mol™.
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the respective 1P-probing studies. For Na,SO, aqueous solutions,
a dielectric relaxation study suggests the formation of H,O
separated cation-anion pairing as its concentration increases,*®
but this would also reduce Hgg (X) rather than increase as
observed here. We rather speculate that as the availability of
un-hydrated bulk H,O decreases, SO,>~ ions may start to interact
more strongly with the existing hydrogen bond network of bulk
H,O rather than just forming hydration shells. This may be due
to the fact that SO,>~ ions presumably spread O atoms out in
four tetragonal directions. As a result, the average hydrogen
bond probability of bulk H,O is reduced progressively. Recent
studies using modern non-linear spectroscopic techniques aided
by MD simulations®”** revealed how the ClO,~ ion exchanges
hydrogen bonds from a H,O molecule with another in concen-
trated aqueous solutions of about 0.1 mole fraction. At this
concentration, there are therefore hardly any H,O molecules left
to study the state of bulk H,O away from hydration shells.
Similar studies on SO,*~ in H,O could provide an important
clue with more dilute aqueous solutions so that the state of bulk
H,0 away from hydration shells could be studied.

In the case of TMACI, TMA" being hydrophilic, slightly more
so than Gly'®*® and Cl~ being a weak hydration center,"®"” the
decrease in H glycly (X) reflects the effect of TMA" and indicates
the reduction in the effect of the solute on the degree of
fluctuation in the bulk H,O.

For NH,Cl and NaCl, the constituent ions are all hydration
centers. Hence, these salts do not alter the bulk H,0 away from
hydration shells, and hence the effect of the solute on the
degree of the S-V cross fluctuation should remain constant
independent of x{. This is exactly what we observe in Fig. 4(a).
For the 1P-probe, however, not only at point X but also at xz =0
the values of HE; were found to remain constant. For the
present Gly-probe, the values of H%lymy (0) at xgy = 0 do not
remain constant, as shown in Fig. 3(a). OAc™, on the other
hand, was found to act as a hydrophobe with the total ny =
3.7 and to reduce the hydrogen bond probability of bulk H,O to
the same degree as the probe 1P."®'”*” Fig. 4(b) indicates the
behavior of typical hydrophobes, TBA and 1P. They are
hydrated by 20 and 29 H,O molecules, respectively,'® and
reduce the hydrogen bond probability of bulk H,O away from
hydration shells, more so for TBA than 1P. As a consequence,
the effect of the solute on the degree of S-V cross fluctuation
density increases due to a decrease in the negative contribu-
tion. Namely, as the hydrogen bond probability of liquid H,O
decreases, the chances for local and instantaneous formation
of highly hydrogen bonded patches which contributes
negatively to the S-V cross fluctuation decrease. Thus the net
fluctuation increases, which should manifest in an increase in
Hgpg. It was indeed the case for the 1P-probing, B = 1P, and the
value of HEy (X) is larger for TBA at point X than for 1P.'°
Fig. 4(b) shows, on the other hand, that for the Gly-probing, the
values of Hgly(;ly (X) remain constant, independent of x2 for
both hydrophobes. Similarly, the values of H¢yyqy (X) for NaOAc
remain constant as observed in Fig. 4(a).

The remaining three Na-salts are made of hydrophilic
anions as found by the 1P-probing.'®"” The hydrophilicity is
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stronger in the order of SCN~ > I" > Br, the values of
hydrophilicity being b = —2800, —2050, and —920 respectively.'®
In spite of the almost three-fold difference, the distinction in the
xg-dependence of Hgyary (X) among them is not apparent. Thus,
the Gly-probe appears to be insensitive to the difference in the
modified H,O by hydrophiles as well as by hydrophobes. Or it
could be due to the constant additive term in the partial
proportionality of the partial molar S-V cross fluctuation and
Hyely that makes the Héyayy (X) appear insensitive.

Thus, while the extra constant term in the partial propor-
tionality between Hgyyaly and *"d¢i, must be measured and its
nature ought to be elucidated, we suggest that the behavior of
Hglymy is not entirely inconsistent with the effects of S on
H,0 deduced by the 1P-probing methodology.'®"” It is
clear, however, that the Gly-probe is not so sensitive as the
1P-counterpart. This would have an important implication for
understanding the Hofmeister rankings, in that it is the hydro-
phobic part of a biological polymer that will respond more
strongly to the slight modification of liquid H,O caused by the
presence of an ion.

Appendix

Fig. 5 shows the plots of HEpip and 5V,p for the binary 1P-H,O
system. The ordinate for 58, is scaled by a single factor ¢, The
definition of Hip;p is given in eqn (1) in the main text except for
swapping subscripts Gly with 1P. Hipp signifies the 1P-1P
interaction in terms of enthalpy in the solution. The S-V cross
fluctuation density, 5*9, is defined as,*®'**

575 = ((AS)(AV))/K(V) = Ta,. (2)
250
200 | ° SV@PE(scaled)
é O O Hippp
: :
S 150
£ ‘é e
2 100] & X “ © Y
w 6 ‘ O
> |® o
Fof N,
Oo
01 ® o °
0.00 0.05 0.10 015 020
X1p

Fig. 5 The partial molar S—V cross fluctuation density of 1P, *Vd,p, and the
enthalpic 1P-1P interaction, H5p1p, in 1IP=H,0 at 25 °C. The ordinate for
*Vs,p is scaled by a single factor. Reproduced with permission from ref. 18.
Copyright (1999), NRC Research Press, National Research Council of
Canada, Ottawa.
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AS and AV are the variation of the instantaneous value of S and
V in a coarse grain containing a fixed number of molecules
from their ensemble average (S) and (V) respectively. k is the
Boltzmann constant, o, the thermal expansivity and V,, the
molar volume of the solution. This quantity is important for
studying H,O and aqueous solutions in that it contains a
negative contribution due to putative formation of ice-like
patches in H,O, which contributes negatively to the S-V
cross fluctuation density, °V5. Its partial molar derivative is
defined taking into account the fact that 5§ is an intensive
quantity as,>®

5510 = N(©%V8/0n1p) = (1 — x1p)(0°"6/021p). (3)

5V5.p so defined is regarded as the effect of solute 1P on the S-V
cross fluctuation density of the entire system. Of course, SV5G1y
is also defined by swapping the subscript 1P with Gly.

What Fig. 5 indicates then is that Hyp;p and °V6,p are directly
proportional with a single factor £ within the dilute region up to
point X; namely,

H]1EP11> = 65‘/511)- (4)

As discussed at some length elsewhere,'®'® the 1P-1P enthalpic
interaction and the effect of 1P on the S-V cross fluctuation
density of the entire solution share the same fundamental
cause and thus the enthalpic interaction is operative via bulk
H,0."®'° This finding was instrumental in devising the 1P-probing
methodology.'®"” The initial increase in Hipp up to point X is
related to a net increase in 5"9,p due to the decrease in the negative
contribution in °"3 because the hydrogen bond probability of bulk
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Fig. 6 The partial molar S-V cross fluctuation density of Gly, *Ydgy,. and
the Gly—Gly enthalpic interaction, H(E;ly@y, in binary Gly—H,O at 25 °C. The
ordinate for *“dg, is scaled by a single factor. The data of «, were taken
from ref. 41. Hély@y data are represented by two straight lines as shown in
Fig. 2(b) etc.
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H,O0 is reduced progressively by the presence of a hydrophobic
solute 1p.2%?"3!

The equivalent quantities of binary Gly-H,O, Hglycly and
%¥5¢y are plotted in Fig. 6. The raw data of o, determined by
dilatometry™® are used to calculate *"5. A clear distinction is evident
between Fig. 5 and 6 in their xg-dependence patterns. The former
pattern is unique to a hydrophobic solute, 1P, and the latter to a
hydrophilic solute, Gly. Or rather, we used this qualitative
difference in the xp-dependence pattern of HE, to distinguish
“hydrophobes” and “hydrophiles”. Furthermore, Hgycy is only
partially proportional to *"Sg), up to point X. Namely,

HglyGly = nsvéGly + C: (5)

with appropriate constants, n and {. Thus the Gly-Gly inter-
action is only partially proportional with an extra constant
term, {, the nature and property of which are not yet elucidated.
Further investigations on its 7T- or p-dependencies or the effect
of the third component on these constants are required. For
this purpose, systematic determination of Hf;lyGly and SV{SGIy is
necessary.
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