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Unravelling the impact of obstacles in diffusion
and kinetics of an enzyme catalysed reaction

Márcio Mourão,a Doree Kreitmanb and Santiago Schnell*acd

Lattice gas automata simulations of diffusion-limited reactions in heterogeneous media exhibit fractal-like

kinetics, which is a generalised mass action kinetics with time-dependent rate constants. We develop a

two dimensional lattice gas automata simulation of the Michaelis–Menten mechanism in diffusion-limited

conditions to investigate the effect of density and size of obstacles on reactant diffusion and rate

coefficients. In order to simulate more physicochemical realistic conditions, reactants rotate and interact

according to their specific orientation. We also model weak interaction forces between reactants and

obstacles. Our results show that obstacle density and size affect diffusion, first- and second-order rates.

We also find that particle rotations and weak force interactions among particles lead to a significant decay

in the fractal-like kinetic exponent h. These results suggest that the effects of fractal-like kinetics

disappear under less restricted conditions than previously believed in lattice based simulations.

1. Introduction

The law of mass action states that the velocity of a reaction
is proportional to the product of the concentrations of the
participating molecules.1 Although extensively applied to model
biochemical reactions inside cells, the law of mass action
assumes that reactions occur in homogeneous, well stirred
volumes.2 This is inconsistent with the heterogeneous environ-
ment that characterizes intracellular reactions.3 Intracellular
environments possess a high macromolecular content, also
known as macromolecular crowding, in the range of 5% to
40% of the total cellular volume.4 Macromolecular crowding
qualitatively and quantitatively affects molecule diffusion and
reaction kinetics.3–6

The role of crowding in diffusion has been extensively
investigated.7–17 Theoretical and computational studies show
that in two-dimensional (2D) media, diffusion is characterized
by three main distinct time periods: a very fast initial period,
where diffusion is regular i.e., constant; a fast transient period,
where diffusion is anomalous, i.e., not constant; and a final
period where diffusion is regular again.11 These three phases have
been shown to exist in the diffusion of Cajal bodies in the nucleus
of HeLa cells18 and in the diffusion of gold-labeled dioleoyIPE
in the plasma membrane of fetal rat skin keratinocyte cells.19

Tracer-obstacle simulations have also shown that the
anomalous diffusion slope and occurring period increase with
increasing obstacle density.7 More recently, Vilaseca16 show
that at long-times the diffusion coefficient increases with the
size of the obstacles.

Since diffusion directly relates to the probability of encounters
between two molecules in a finite space, diffusion is important in
understanding reaction kinetics, particularly in crowded media.
Theoretical and experimental work show that diffusion-limited
elementary reactions depend on the space in which they
occur.20,21 Notably, Kopelman22,23 shows that the law of mass
action breaks down in heterogeneous crowded environments,
where in the presence of obstacles or obstructions, the second-
order rate decays linearly on a logarithmic time scale as time
tends to infinity. Kopelman interprets the rate of this decay as a
measure of the dimensionality of the system, where the higher
the decay, the lower the dimensionality. This is the hallmark of
fractal-like kinetics.3,24

Numerous computer simulations, predominantly using
lattice gas automata, have been implemented to investigate
the role of obstacles in reaction kinetics.3,7,15,16,24,25 While these
studies appear to support Kopelman’s theory, lattice approaches
restrict a particle’s degree of movement and hence, may affect
diffusion and reaction kinetics. In 2010, using an off-lattice
model, Grima26 showed that deviations from diffusional iso-
tropy significantly reduce the diffusion coefficient of tracer
particles in crowded environments. Also in 2010, McGuffee
and Elcock27 developed an off-lattice Brownian dynamic simu-
lation that includes both rotational and translational diffusion
of the fifty most abundant cytoplasmic E. coli proteins. Their
work provides some insights on diffusion, association and
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disassociation rates, but does not explicitly consider reaction
kinetics of proteins. The effects of obstacle size and density in
reaction kinetics have also been studied using a modified
chemical master equation and an off-lattice Brownian model.28

However, many of these studies are under reaction-limited
conditions, where reactants interact with low probability.

Here, we investigate the role of obstacle density and size
on the kinetics of an enzyme-catalysed reaction in diffusion-
limited conditions, where second-order rates are expected to
be time-dependent and follow fractal-like kinetics. For this
purpose, we develop an enhanced 2D lattice simulation with
cyclic boundary conditions of the Michaelis–Menten (MM)
mechanism of enzyme action. Our enhanced model of the
lattice simulation explicitly models a particle’s rotation and
weak force interactions among particles in the lattice.

2. Theory
2.1. Diffusion

The well-known Einstein–Smoluchowski equation describes the
relationship between the diffusion D and the distance r taken
by a particle at time t:

hr2(t)i = (2d)Dt (1)

where d is the topological dimension of the medium surrounding
the particle. If diffusion is constant, the mean square displace-
ment of a particle is proportional to time. However, in a crowded
medium, the diffusion of a particle may be hindered by large
macromolecules. In this case, the diffusion process may have a
non-linear relationship with respect to time, and eqn (1) is
generalized to:29

hr2(t)i = (2d)Gta (2)

where G is the anomalous diffusion coefficient, a is the anomalous
diffusion exponent (0 o a o 1) and D(t) = Gta. Using l as the
unit of length in the lattice, o as the unit of time, y as the
density of obstacles, and D0 as the diffusion coefficient of a
particle in an unobstructed system (y = 0), we simplify eqn (1)
by making r = lr*, t = ot*, D = D0D*(y) and l2 = 2dD0o. We then
obtain the following dimensionless equation:7

hr*2i = D*(y)t* (3)

Note that D*(0) = 1. In addition, notice that the term ‘2d’
disappears in the simplified equation and that the lattice model
does not describe dynamics on timescales faster than o. To
simplify our notation, we drop the stars of eqn (3) throughout
the paper.

Using a log–log plot of diffusion over time, diffusion is
characterised by three distinct parameters: the anomalous
diffusion exponent (a); the limit diffusion (D*); and the cross-
over time (tCR). The slope a � 1 of the initial time steps is used
to calculate a. D* is the value of diffusion as time approaches
infinity. tCR is the time required to crossover from anomalous
to regular diffusion by intersecting the slope a � 1 of
anomalous diffusion and the constant slope of regular

diffusion at long times. If a = 1, diffusion is constant at all
times and no crossover exists.7

2.2. The Michaelis–Menten mechanism and fractal-like
kinetics

In the MM mechanism of enzyme action, an enzyme (E) and
a substrate (S) bind reversibly to form a complex (C), which
irreversibly yields a product (P):

Eþ S �! �
k1

k2

C �!k3 Eþ P (4)

where k1, k2 and k3 are rate constants. When few obstacles are
present in the reaction media, k1 remains constant over time in
agreement with the law of mass action. However, in diffusion-
limited conditions, the time required for any two reactants
to interact increases and k1 decays over time.22,23 As a con-
sequence, log (k1) decays linearly at long times in a logarithmic
time scale:

log k1 = log k0 � h log t (5)

where k0 is the rate at t = 0 and h is the fractal-like kinetic
parameter. Notice that when h is 0, k1 is no longer time-
dependent. Therefore, h can be used to measure deviations from
the law of mass action.24 Note that h is only greater than 0 in
diffusion-limited reactions, i.e., when the binding probability
of S and E is approximately equal to 1 and diffusion plays a
significant role.22,23

3. Methods
3.1. Lattice gas automata algorithm

Each simulation begins with E, S, and obstacle molecules
(if present) randomly placed on a 2D lattice of size 100 � 100
with cyclic boundary conditions. At each time step, the number
of potential moves for a particle is given by the coordinate
number of the type of lattice used. In our model particles can
move into six directions (coordinate number = 6). We select a
coordinate number equal to 6 rather than a coordinate number
equal to 4 because the former provides a better approximation
to physically realistic reaction conditions.24

Unless otherwise stated, the initial fraction density of E, S, C
and P in the lattice are [E0] = 0.01, [S0] = 0.1, [C0] = 0 and [P0] = 0.
y varies between 0 and 0.40. Obstacles are mobile, square and of
size 1 (1� 1), 16 (4� 4), 49 (7� 7) or 100 (10� 10). If the obstacle
size is (l1� l2), then its width is l1 and height is l2, which represent
the number of occupied lattice sites in each direction. The rate
coefficients k1, k2 and k3 are modelled by the reaction prob-
abilities f, r and g, respectively (Table 1). Here, f is the probability
that E and S will react to form C (E + S - C) given that they have
collided, and r and g are the probabilities that a given C will
disassociate into E and S (C - E + S) or E and P (C - E + P),
respectively. With only one exception (Section 4.3), the values of f,
r and g are 1, 0.02 and 0.04, respectively. These values are identical
to those used in previous simulations,3,25 which makes these results
suitable for comparison with published literature in the subject.
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The movement of a particle follows Brownian motion, so at
each time-step of the Monte Carlo sequence, a ‘‘subject’’
molecule moves and interacts according to the following rules
(Fig. 1):

Randomly choose a ‘‘destination’’ site from six possible
positions neighbouring the ‘‘subject’’ site.

(a) If the ‘‘destination’’ site is not vacant,
(i) If the molecule occupying the ‘‘subject’’ site is E or S and

the molecule occupying the ‘‘destination’’ site is S or E respec-
tively, generate a random number between 0 and 1. If this
random number is lower than reaction probability f, replace the
‘‘destination’’ site molecule with C and remove the molecule
occupying the ‘‘subject’’ site, making that a vacant site. Set
y = y + 1, where y counts the number of E + S - C reactions that
have occurred in the interval [0,t].

(ii) Otherwise, no movement or reaction occurs.
(b) If the ‘‘destination’’ site is vacant and the ‘‘subject’’

molecule is C,
(i) Generate a random number between 0 and 1.
(ii) If the random number is less than the reverse reaction

probability r, place E on the ‘‘subject’’ site and S on the
‘‘destination’’ site. This corresponds to a reverse reaction
C - E + S.

(iii) If the random number is greater than r but less than
r + g, where g is the probability of a catalytic reaction, place E on
the ‘‘subject’’ site and P on the ‘‘destination’’ site. This corre-
sponds to the catalytic reaction C - E + P.

(iv) Otherwise, move C to the ‘‘destination’’ site.
(c) If the ‘‘destination’’ site is vacant and the ‘‘subject’’

molecule is not C,
(i) Move the molecule to the ‘‘destination’’ site.
At each time step, the total number of possible moves is

equal to the total number of mobile molecules present in
the lattice, so that on average, every molecule is moved once.

Notice that in the MM mechanism, as particles bind together
and break apart, the total number of mobile particles changes
throughout the simulation. One simulation ends when either
the density of substrates is lower than 0.01, or the number of
time steps reaches 1000. For each time step of the simulation,
we obtain the average mean square displacement, lifetime and
fraction of occupied sites (densities) of every reacting molecule
and obstacle. We run 500 replicates of each set of parameter
values to obtain averages at each time step.

3.2. Estimation of a, D* and tCR

To obtain the average diffusion of a particular type of particle,
we interpret t* in eqn (3) as the mean lifetime (t) of the particle.
We obtain a, D* and tCR by analysing the logarithm of diffusion
on a logarithmic timescale. We calculate a from the slope (a � 1)
of diffusion in the initial five time steps of the simulation, as
seen in the log–log plot. D* is obtained by collecting the average
diffusion of the last 250 simulation time steps, when diffusion
is already at steady state. We obtain tCR, the time required to
crossover from anomalous to regular diffusion, by intersecting
the slope line of anomalous diffusion with the constant line
obtained from regular diffusion at long times.

3.3. Estimation of k1, k2 and k3

As explained in Section 3.1, we use y as a counter of the forward
reactions (E + S - C) that occur in the interval [0,t]. We assume
that this counter is related to k1 by the following integral
expression:

yðtÞ ¼
ðt
0

k1ðt 0Þ½E�ðt 0Þ½S�ðt 0Þdt 0 (6)

We deduce k1 with a simple derivative of eqn (6). Using this
derivative and making a simple algebraic rearrangement of
the law of mass action equations for the substrate and product,
we also obtain k2 and k3:3,25

k1ðtÞ ¼
1

½E�ðtÞ½S�ðtÞ
dyðtÞ
dt

k2ðtÞ ¼
1

½C�ðtÞ
dyðtÞ
dt
þ d½S�ðtÞ

dt

� �

k3ðtÞ ¼
1

½C�ðtÞ
d½P�ðtÞ
dt

(7)

For the estimation of these parameters, we assume that
fluctuations are small enough such that the mean densities are
accurately given by the rate equations.30 Parameter values are
chosen arbitrarily in the simulations to facilitate comparison
between our results and those published in the literature.

3.4. Particle initialization and orientation

Every particle, except obstacles of size greater than one, is
randomly initialized with a given orientation and direction of
rotation. There are six possible orientations, corresponding to
the coordinate number equal to six. The direction of rotation is
always clockwise (CW) or counter-clockwise (CCW). Every time
a particle moves, the particle is reoriented one unit in the

Table 1 Notation used in the model and simulations

Symbol Description

t Time
t Lifetime of a particle
E Enzyme
S Substrate
C Complex
P Product
O Obstacle
y Density of obstacles
d Size of obstacles
a Anomalous diffusion exponent
D* Limiting diffusion coefficient
tCR Crossover time from anomalous to regular diffusion
h Fractal-like kinetic parameter
Spin Probability of spinning per time step
Z Fraction of obstacles that interact with enzymes to form EO
k1 Simulated rate of E + S - C
k2 Simulated rate of C - E + S
k3 Simulated rate of C - E + P
w1 Probability of E + O - EO
w2 Probability for EO - E + O
f Probability of E + S - C
r Probability of C - E + S
g Probability of C - E + P
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predetermined direction, so as to maintain an angular momentum.
This reorientation occurs according to a spin probability (spin).
Every time a particle ‘collides’ with another particle and
no reaction occurs, both particles are reoriented in a new
randomly chosen direction. E only binds to S when both
particles’ orientations are complementary for an interaction.
The particle’s movement is also always independent of its
orientation, except in the reversible or catalytic step of the
MM mechanism. Here, the movement of S (reversible step) or
P (catalytic step) occurs in the direction that is complementary
to its position of molecules in C.

3.5. Weak force interactions

In order to mimic non-specific interactions, we allow the
binding of E to obstacles of similar size. E reversibly binds to

an obstacle (O) the same way it binds to S, except there is no
catalytic step:

EþO �! �
w1

w2

EO (8)

In eqn (8), w1 and w2 are the rates at which E associates to and
dissociates from O, respectively. In this particular implementa-
tion, O acts as a trap to E and the time E remains trapped
increases with an increasing ratio of w1 to w2. This approach is
somehow similar to the approach of Saxton,13 in which tracer
particles (E) have to search through a large number of non-
reactive binding sites to find its target site (S). At the beginning
of each simulation, we randomly assign which O may interact
with E. This fraction of O (Z) is predetermined and given as

Fig. 1 Decision process for the movement and rotation of a particle in the simulations.
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an input to the simulation. The rules of interaction follow the
algorithm described in Section 3.1.

4. Results
4.1. As obstacle density increases, obstacle size plays a larger
role in fractal-like kinetics

In order to test how diffusion and h are affected by either the
size or the density of obstacles, we run simulations varying
y = [0, 0.1, 0.2, 0.3, 0.4] and the obstacle size, d = [1, 16, 49, 100].
Using an average of 500 replicate simulations for each parameter
combination, we obtain a, D* and tCR as characteristics of the
diffusion process (see Section 3). The log–log plot of diffusion over
time shows anomalous diffusion. Diffusion is irregular (non-
constant) during an initial transient, but then becomes regular
after a longer timescale (see Fig. 2A). This behaviour is consistent
with the findings of Platani et al.18 and Saxton.11 D* for a density of
1% of a single particle holds D* = 1 (results not shown). In the
absence of O our 2D simulations of the MM mechanism exhibit
constant diffusion at long times. The diffusion coefficient is close
to, but not exactly 1 due to auto-crowding effects. Auto-crowding
effects become visible when a fraction of sites occupied by E and S
is large enough to affect reaction kinetics, even in the absence of O.

The log–log plot of k1, i.e., the rate of the reaction E + S - C,
yields a linear decay at long times (see Fig. 2B). This outcome is
consistent with fractal-like kinetics and supported by previous
work.3,25 Note that in the absence of O, fractal-like kinetics is
still observed in 2D environments, contrary to what is observed in

a 3D system.3,25 A systematic analysis of the diffusion parameters
of S and h as a function of y and d shows that a and tCR do not
significantly change with y (Fig. 3A and C). These results contra-
dict previous work that suggests a decrease of the anomalous
diffusion exponent (higher slope) and an increase of h with
increasing y.20–23 While it seems clear that anomalous diffusion
is related or contributes to anomalous kinetics, it is not so clear in
what conditions the anomalous diffusion exponent decreases
with increasing y. Our observations may in part be due to the
low dimensionality of our system. In 3D simulations, y may have
lower impact on D* at the initial time steps and the system may
respond differently to different y. This 3D behaviour is seen in the
work of Vilaseca,16 where a is shown to decrease with increasing y.
However, the authors only model single particle type diffusion
and do not explicitly model reactions (see Discussion). Notice that
a is on average lower than one in all of our results. This implies
that anomalous diffusion is always present at short times.

Our results show that the limiting D* of S is dependent on y
and d (Fig. 3B). As y increases, D* decreases. In fact, D* can be
reduced from B0.9 in an obstacle free environment to B0.5 in
a highly crowded environment. The diffusion of S also increases
as d increase. These results are consistent with the recent work
of Vilaseca.16 For a fixed occupied fraction of sites, increasing d
creates more space for free diffusion.

As expected, h increases with increasing y (Fig. 3D). As
y increases, d plays a larger role in fractal-like kinetics. While
differences between obstacles of size greater than one are not
very clear, there are obvious differences between the value of h
obtained with obstacles of size one and greater. When no

Fig. 2 Log–log plots of simulated substrate diffusion and forward rate k1 as a function of time in the Michaelis–Menten mechanism. (A) Diffusion is
anomalous for short times and regular for long times. Diffusion in a non-crowded environment is close to, but not exactly equal to 1 because of auto-
crowding effects. (B) Long time behaviour shows fractal-like kinetics characteristics. We use the slope of the curve at long times to measure the fractal-
like kinetic parameter h. Plotted values represent averages of 500 replicates each running for a maximum of 1000 time steps, with [E0] = 0.01, [S0] = 0.1,
f = 1, r = 0.02 and g = 0.04.
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obstacles are present, h is B0.2. However, when y is 0.4, h is
B0.3 for obstacles of size 1, but B0.45 for obstacles of size 100.
Together, these results indicate that increasing diffusion of S and
lowering diffusion of O exacerbate fractal-like kinetics behaviour. As
previously shown by Saxton7 in tracer-obstacle studies, the diffusion
coefficient of O is similar to the diffusion of tracers at long times
when the two particle types have similar size. However, as y
increases, the ratio of diffusion of O to the diffusion of S diminishes
approximately linearly for obstacles of size greater than one (Fig. 4).

4.2. Both first- and second-order rate coefficients exhibit
dependence on the density of obstacles

We evaluate the dependence of the first-order (k2 and k3) and
the second-order (k1) rate coefficients of the MM mechanism on
y and d. Because we are interested in k1 at long times, we obtain
the average and standard deviations of the last 100 time steps
of k1. As expected, k1 decreases with increasing y for particles of
size 1 and 16 (Fig. 5A). When obstacles of size 1 (d = 1) are
present in the system, k1 is B0.9. At the maximum density of
obstacles (y = 0.4), k1 is reduced to an average of B0.6. When
larger obstacles (d > 16) are present, k1 seems to increase at

lower densities and then decrease at higher densities. The slope
increases when the higher diffusion of S and E (induced by
increasing d) trumps the lower diffusion coefficient (induced by
increasing y). This explains the decreasing slope at a higher y for
particles of size 100 (between y = 0.3 and y = 0.4). We also evaluate
the first-order rate coefficients as a function of y and d. As
y increases, both reversible and catalytic rates decrease. This
decrease is linear for obstacles of size 1, but appears with slight
curvature for obstacles of greater size (Fig. 5B and C). For obstacles
of size 1, k2 and k3 change from B0.017 and B0.035 when no
obstacles are present in the system, to B0.01 and B0.02, respec-
tively, when a maximum density of obstacles are present. The
slope diminishes for obstacles of larger size, indicating that the
values of k2 and k3 become less dependent on y as d increases. This
is the expected outcome when the diffusion of particles, other
than O, increases with the increasing d.

Previous simulations of MM mechanism do not reveal
dependence of the first-order rate coefficients on y.3,25 In our
simulations (Section 3), we find that k2 and k3 are constant
(consistent with the law of mass action), but with values that
are only a fraction of the first-order rates obtained when no

Fig. 3 Anomalous diffusion exponent (a) (A), diffusion values at long times (D*) (B), crossover time (tCR) (C), and fractal-like kinetic parameter (h) (D) as a function
of obstacle density (y) and obstacle size (d). (A) The anomalous diffusion exponent shows no significant differences as a function of either obstacle density or size.
(B) Diffusion is inversely proportional to obstacle density, but proportional to obstacle size. (C) Like a, the crossover time from anomalous to regular diffusion
shows no significant differences as a function of either obstacle density or size. (D) As expected, h increases with increasing obstacle density. Plotted values
represent averages of 500 replicates, each running for a maximum of 1000 time steps, with [E0] = 0.01, [S0] = 0.1, f = 1, r = 0.02 and g = 0.04.
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obstacles are present in the system (see Section 5). Since
diffusion of a particle only occurs when a selected destination
is vacant, we hypothesise that the fraction by which k2 and k3

diminish in a simulation is exactly set by the dimensionless
diffusion value of the complex C at long times. To test this
hypothesis, we compare the existent theoretical approaches
with a modified version of the fractal-like kinetics over the
time course of E, S, C and P. The corresponding governing
ordinary differential equations are:

dS

dt
¼ �k0t�hSEþ k2 lim

t!1

r2
� �
t

C

dE

dt
¼ �k0t�hSEþ ðk2 þ k3Þ lim

t!1

r2
� �
t

C

dC

dt
¼ k0t

�hSE� ðk2 þ k3Þ lim
t!1

r2
� �
t

C

dP

dt
¼ k3 lim

t!1

r2
� �
t

C

(9)

In the above system, k1 is represented by the traditional fractal-
like rate coefficient k0t�h, where h is the fractal-like kinetic
parameter. k2 and k3 are multiplied by the dimensionless
complex diffusion value at long times. The above governing
rate – a new form of anomalous reaction kinetics – describes
the governing behaviour of the time course of the four MM
species with higher accuracy than classical kinetics (CK) and
the fractal-like kinetics (FK) (Fig. 6). The classical kinetics (law
of mass action) expression is obtained making h = 0 and having
no diffusion explicitly represented in the equations. In the
traditional fractal-like kinetics, the parameter h is obtained by
computing the slope of a linear fit to the last 100 iterations of
the log (k1) on a logarithmic timescale note that log (k1) decays
linearly at long times in a logarithmic timescale, as shown

in eqn (5). As with the classical kinetics expression, no diffusion
is explicitly considered. We tested the same [E0], [S0] and
reaction probabilities applied by Berry25 and obtained the same
outcome. In addition, we tested several other different condi-
tions with no observed changes (results not shown).

4.3. Particle orientation reduces forward rate coefficient and
fractal-like kinetics behaviour

Previous studies consider two different probabilities for the
formation of C: (a) the probability that both E and S compete
for the same lattice spot at the same time; and (b) the prob-
ability that E and S react given that they compete for the same

Fig. 4 Ratio of the diffusion of obstacles to the diffusion of substrates as a
function of obstacle density (y) and obstacle size (d) in the Michaelis–Menten
mechanism. When d = 1, all particles have the same size, and hence, similar
diffusion. When d > 1, diffusion of obstacles is inversely proportional to
obstacle density and diffusion of substrates proportional to obstacle density
(see also Fig. 2B). Plotted values represent averages of 500 replicates, each
running for a maximum of 1000 time steps, with [E0] = 0.01, [S0] = 0.1, f = 1,
r = 0.02 and g = 0.04.

Fig. 5 k1, k2 and k3 mean and standard deviations as a function of obstacle
density (y) and obstacle size (d) in the Michaelis–Menten mechanism. (A) k1 is
inversely proportional to obstacle density for d = 1 and d = 16. However, when
d = 49 and d = 100, k1 increases with increasing obstacle density. The latter
behaviour shifts at high densities. (B and C) k2 and k3 are inversely proportional
to obstacle density, but proportional to the obstacle size. We obtain the mean
and standard deviations of k1 by averaging the last 100 iterations of each
simulation. We obtain the mean and standard deviations of k2 and k3 by
averaging the entire time course of each simulation. Plotted values represent
averages of 500 replicates, each running for a maximum of 1000 time steps,
with [E0] = 0.01, [S0] = 0.1, f = 1, r = 0.02 and g = 0.04.
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lattice spot at the same time.3 While the former is affected by
obstacles in the media that may increase the average time taken
by any two particles to interact, the latter is solely affected by
the affinity of the two molecules. In reality, although (a) and (b)
are necessary, they are not sufficient. E and S can only react and
form C if the orientation of the active site of E is complementary
to the orientation of the binding site of S. The introduction of an
orientation to every particle is expected to reduce the rate at
which complexes are formed and as a consequence, reduce h. To
test this hypothesis, we modify our algorithm to introduce an
orientation to every particle in the system (see Section 3 and
Fig. 1). At each time step, every particle is rotated with a ‘spin’
probability in a predetermined direction (CW/CCW). The higher
the ‘spin’ probability, the faster the particles will rotate. Even at
the maximum obstacle density (y = 0.4), spin reduces k1 and h
(see Fig. 7). At the initial transient, log (k1) reduces from B0.4 to
B�0.5 by adding a ‘spin’ of 100%. We systematically analyse h
as a function of ‘spin’, y and d. With y = 0.1, h is clearly reduced
as ‘spin’ increases. For instance, when we consider d = 1, h is
reduced from B0.2 to B0.05 (Fig. 8A). As y increases, the effects
of spinning on h diminish, except for the significant decrease
one obtains by just adding 20% ‘spin’ (Fig. 8B–D). From ‘spin’ = 0
to 0.20, h reduction is B0.1 in Fig. 8B and C and 0.15 in Fig. 8D.
No major differences appear significant between obstacles of

different size. Also, and as expected, notice that as y increases,
h increases. On average, from no ‘spin’ to 100% ‘spin’, we see a
reduction of B66% for y = 0.1, B40% for y = 0.2, and B50% for
y = 0.3 and y = 0.4 (Fig. 8).

Fig. 6 Lattice gas automata (LGA), classical kinetics (CK), fractal-like kinetics (FK) and the new form of anomalous kinetics (AK) over time for the enzyme (A),
substrate (B), complex (C) and product (P) species in the Michaelis–Menten mechanism. This new form of anomalous kinetics explains lattice gas automata
simulation results with higher accuracy. We use [E0] = 0.01, [S0] = 0.1, [O] = 0.4, d = 16, f = 1, r = 0.02, g = 0.04.

Fig. 7 Log–log plot of rate k1 over time comparing the use of particle
orientation versus the traditional method. When particle orientation is taken
into account, the probability of a forward reaction event is diminished and the
fractal-like kinetic parameter h decreases. Plotted values represent averages
of 500 replicates, each running for a maximum of 1000 time steps, with
[E0] = 0.01, [S0] = 0.1, [O] = 0.4, f = 1, r = 0.02 and g = 0.04.
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E and S that have less binding affinity should also reduce
fractal-like kinetics, as the rate of C formation is decreased. We
evaluate h as a function of f, y and d. With or without obstacles,
h increases with f (Fig. 9). When no obstacles are present (y = 0),
h is reduced from B0.18 ( f = 1) to B0.03 ( f = 0.02), a reduction
of more than 80% (Fig. 9A). At higher obstacle densities, the
reduction between f = 1 and f = 0.2 is less pronounced. The
reduction is B0.57% and B0.55% with y = 0.2 and y = 0.4,
respectively. Obstacle size does not appear to be significant,
although as expected, obstacles of lower size exhibit less fractal-
like kinetics behaviour.

4.4. Weak force interactions reduce fractal-like kinetics
behaviour

We analyse the effects of weak force interactions on the fractal-
like kinetics. In particular, we allow a fraction of obstacles (Z) to
bind and trap enzymes (see Section 3 and Fig. 1). The time an
enzyme remains trapped increases with an increasing ratio of
w1 to w2. For simplification, we restrict the interaction of E and
O to cases where both particles have the same size and occupy
one spot in the lattice. Also we only analyse different Z fractions
with a fixed obstacle density (y = 0.4). When w1 = 10w2, h is B0.
This can be seen in the long time behaviour of the log–log plot
of k1 over time (Fig. 10A).

We systematically analyse h as a function of Z and three
different ratios of w1 to w2. When w2 = 10w1, h is approximately
constant (B0.28) as Z is increased (Fig. 10B). No significant
differences appear, since there is a very low trapping probability.
When w1 = w2, h appears to decrease as Z increases to 0.4 and 0.6,
so to maintain or slightly increase afterwards. When w1 = 10w2,
h appears to decrease as Z increases. It is important to notice that
as obstacles trap enzymes, enzymes exist at lower densities in
comparison to what is expected without the weak force inter-
actions. The exacerbated effect on h as the ratio of w1 to w2

increases is due to a larger number of enzymes trapped by
obstacles. As a result, fewer enzymes are available to bind and
react with S. P formation is therefore reduced, and slowly
increases over time.

5. Discussion

Reactions inside cells can take place in a heterogeneous
crowded environment, far from the homogeneous, well mixed
solution that characterizes the typical test tube experiments.
Macromolecular crowding affects reaction kinetics because
it influences the displacement of molecules, and hence, the
probability of interactions between two reacting molecules.
There is ample evidence on the impact of obstacles on diffusion

Fig. 8 Fractal-like kinetic parameter h as a function of the probability of spinning for the obstacle size (d) and obstacle density y = 0.1 (A), y = 0.2 (B), y = 0.3
(C) and y = 0.4 (D). It is not clear that particle size plays a significant role, but h decreases with increasing spinning. Plotted values represent averages of
500 replicates, each running for a maximum of 1000 time steps, with [E0] = 0.01, [S0] = 0.1, f = 1, r = 0.02 and g = 0.04.
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and reaction kinetics.3,7,11 Importantly, Kopelman23 shows that in
diffusion-limited elementary reactions, the law of mass action
breaks down in spatially heterogeneous environments with obsta-
cles. His new description of reaction dynamics, known as fractal-
like kinetics, has been shown to be accurate predominantly using
lattice based models in the diffusion-limited regime.3,25 However,
scepticism remains on these results as lattice approaches spatially
restrict the degree of particle movement.24 In 2010, Grima28 used a
modified chemical-master equation to investigate the role of
obstacle crowding in reaction kinetics. His theory is consistent
with a simulated dimerization reaction, which suggest that fractal-
like kinetics could be an artefact of lattice-based simulations. This
result was also confirmed analytically using the generalised mass
action kinetics theory.31 However, these results are only valid in the

reaction-limited regime, where the probability of a reaction is low.
Here, we took a new approach and developed an enhanced 2D
lattice simulation of the MM mechanism in the diffusion-limit
regime, where fractal-like kinetics is predicted to take place. Our
enhanced version of the lattice simulation provides a consistent
diffusion coefficient for all particles of similar size and explicitly
models particle rotation and weak force interactions among
particles in the lattice. In this new context, we investigate the role
of obstacle density and size on diffusion and rate coefficients.

We made obstacles mobile, so as to have obstacle diffusion
implicitly set as a function of its size. We also measured the
diffusion coefficients of every particle with respect to their life-
time, so as to understand the relations between diffusion of
obstacles and any of the four constituents of the MM mechanism
(Fig. 2 and 4). In this work we choose obstacle densities within the
intracellular macromolecular crowding density range reported in

Fig. 9 Fractal-like kinetic parameter h as a function of reaction probability
f and the obstacle size (d) for obstacle densities y = 0 (A), y = 0.2 (B) and
y = 0.4 (C). The fractal-like kinetic parameter h increases with increasing f.
h seems distinctly lower for obstacles of size 1. No significant differences
are seen for obstacles of larger size. Plotted values represent averages
of 500 replicates, each running for a maximum of 1000 time steps, with
[E0] = 0.01, [S0] = 0.1, r = 0.02 and g = 0.04. Note that f is always at least
five times higher than the catalytic rate g.

Fig. 10 Log–log plot of rate k1 over time (A), and plot of fractal-like kinetic
parameter h as a function of the fraction of obstacles (Z) with which
enzymes may interact (B). (A) Comparison of k1 when Z = 0, and k1 when
Z = 1 with w1 = 10w2, where w1 and w2 are probabilities of the reactions
E + O - EO and EO - E + O, respectively. h is B0 for the latter case.
(B) Fractal-like kinetic parameter h as a function of Z. When w2 = 10 w1, no
differences are seen as Z is increased. When w1 Z w2, h decreases with
increasing Z. The rate at which h decreases is proportional to the prob-
ability of an enzyme being trapped by an obstacle. Plotted values represent
averages of 500 replicates, each running for a maximum of 1000 time
steps, with [E0] = 0.01, [S0] = 0.1, [O] = 0.4, f = 1, r = 0.02 and g = 0.04.
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the literature and four obstacle sizes that provide significantly
distinct diffusion coefficients.4 In all of our simulations, E, S, C
and P diffusion coefficients exhibit a crossover from anomalous
to regular diffusion and approach similar values at long times
(Fig. 3). This is also observed in the linear behaviour of log–log
plots of the mean square displacement over lifetime, although
C naturally exhibits short lifetimes in comparison to E, S and P
(results not shown). Our results are consistent with previous
findings.7 Our simulation results also show that the anomalous
diffusion exponent or crossover time is independent of the
density and size of obstacles (Fig. 3). If such dependence exists
as previous work suggests, such behaviour can become visible
in 3D simulations, where the effect of obstacle densities would
have lower impact on initial time step measurements of the
diffusion coefficient.7,9,16 Our results are in good agreement with
the full energy simulation model of McGuffee and Elcock,27 where
anomalous diffusion behaviour of several interacting molecules
appears independent of their molecular weight. Our simulations
show that increasing obstacle size contributes to increased diffu-
sion, which in turn contributes to higher fractal-like kinetics when
that diffusion is hampered by a higher obstacle density (Fig. 3).

Previous attempts to model biochemical reactions using lattice
gas automata did not explicitly consider particle diffusion.3,25

They also considered particles moving on four directions, rather
than on six directions. However, the major difference between
those models and our model resides on the behaviour of the
complex particle or C. In previous models, while E, S and P are
allowed to react or move in a time step using one randomly
selected neighbouring position, C is allowed to move or react
using any of the vacant neighbouring positions. This endows C
with a special behaviour, and it is not realistic as it makes C move
faster than any other MM species (results not shown). Provided
that C has the same size as E, S or P and therefore has similar
diffusion coefficients at long times, we apply the same rule to
every particle and make C react or move only if the selected
destination (one of the six possible destinations) is unoccupied
(see Section 3 and Fig. 1). This behaviour explains the first-order
rates dependency on obstacle density, which has not been pre-
viously reported (see Fig. 5). Importantly, it may explain the
dependency of Vmax and KM on obstacle concentration observed
in in vitro enzyme-catalysed reaction experiments.32,33 We com-
pare different theoretical models of reaction kinetics over the time
course of the MM species and show that the difference between
fractal-like kinetics occurring with and without obstacles is exactly
given by the diffusion coefficient of C at long times (Fig. 6).

We showed here that particle rotation can reduce the fractal-
like kinetic parameter by B50% (Fig. 7 and 8). This reduction
can be further augmented in 3D simulations of biochemical
reactions.34 We also systematically reduced the forward prob-
ability f to show the relationship between the affinity of two
particles and fractal-like kinetics. As the particle’s affinity
decreases, so does fractal-like kinetics (Fig. 9). In sum, even if
reactants have high affinity, they may only react if their orienta-
tions are complementary, which reduces the rate coefficient. In
2008, Saxton13 showed that the time taken for a mobile reactant
to find its target site increases with the number and affinity of

nonreactive binding sites in the environment. Here, we show
that weak force interactions, specifically those that cause
enzyme sequestration, contribute to diminishing the density
of free enzymes, resulting in slower enzymatic reactions and
lower fractal-like kinetics behaviour (Fig. 10). These results
suggest that fractal-like kinetics behaviour is also dependent
on the ratio of enzyme to substrate densities, reducing its
impact as this ratio is also reduced.

6. Conclusions

Previous research has focused on the effects of density and size
of obstacles in diffusion. Here, we expand this investigation to
diffusion-limited enzyme-catalysed reactions. We show that
both first-order and second-order rate coefficients as well as
the fractal-kinetic parameter are affected by the density and
size of obstacles. We also propose a new form of anomalous
kinetics that includes diffusion to explain lattice gas automata
simulation results.

In addition, we investigate the effects of particle rotation
and weak force interactions in the reaction kinetics. We find
that both particle rotation and weak force interactions shift the
balance from diffusion-limited to reaction-limited kinetics.
This significantly reduces fractal-like kinetics, suggesting that
in lattice based models, fractal-like kinetics generally appear
under more restrictive conditions than previously believed.
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