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Quantitative studies of crystal nucleation at constant
supersaturation: experimental data and models

Richard P. Sear

Crystallisation starts off with nucleation, which is rather poorly understood. However, over the last few years

there have been important quantitative experiments at constant supersaturation, and the modelling of this

data has also advanced. Experiments in which the supersaturation is varying, e.g., those at constant cooling

rate, are important but hard to interpret. This review focuses on the state of the art in quantitative studies of

nucleation at constant supersaturation. We can now test reliably for heterogeneous nucleation and

somewhat less reliably for the rarer case of homogeneous nucleation. In the case of heterogeneous

nucleation, we can also obtain at least some information on what is responsible for nucleation. We also now

have (unfortunately currently untested) predictions for the scaling of nucleation timescales with system size.

These predictions may prove important both for scaling up from small droplets to larger volumes, and for

scaling down to crystallisation at the nanoscales relevant for nanotechnology applications. Finally, it is worth

noting that in many experiments the dynamic range of nucleation times is too large to be measured. This is

presumably due to highly variable impurities, and this problem may need to be addressed in future work.
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1. Introduction

Crystallisation lies at the heart of many natural phenomena,
and of many technologically important processes. Our climate
is affected by clouds of ice particles, and most pharmaceuticals
are crystalline. Crystallisation starts with nucleation. Nucleation
is the dynamic process that determines how difficult it is for
a crystal to form in the system. Here I will only review studies
at constant supersaturation, because studies with varying
supersaturation are much harder to interpret and to model.
At constant supersaturation, nucleation is the process that
determines how long you have to wait before a crystal appears
in the system. As an example, this waiting time is approxi-
mately 160 000 simulation cycles in the system of Fig. 1.

In practice there is some ambiguity as to how big this
crystal has to be. In experiments the nucleation time is
approximated by the time the crystal is first observed, tOBS.
This observation is typically via optical microscopy, and is
when the crystal is at least many micrometres across. The time
to nucleate is probably best defined as the time for the crystal
nucleus to reach the (nanoscale) size such that the probability
that it will redissolve is negligible, tN. Then if the time for a
nucleus this size to grow to be large enough to be observed,
tG ≪ tN, tOBS will be a good approximation to a well-defined
nucleation time tN. In computer simulations we can observe
tN itself, it is about 160 000 simulation cycles in Fig. 1.
The study of nucleation at constant supersaturation is
essentially the attempt to measure, understand and predict
the waiting time before the crystal appears. Ultimately, we
want to understand and be able to predict whether the
nucleation time will be seconds, minutes, hours, days, years,
oyal Society of Chemistry 2014

s rapidly and irreversibly, as
er about 160 000 cycles. A
r when it has approximately
Mithen.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ce00344f
https://pubs.rsc.org/en/journals/journal/CE
https://pubs.rsc.org/en/journals/journal/CE?issueid=CE016029


CrystEngComm Highlight

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ay
 2

01
4.

 D
ow

nl
oa

de
d 

on
 7

/1
2/

20
25

 1
0:

10
:1

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
or too long to be measured. Once nucleation in a system at
constant supersaturation is quantitatively understood and
modelled then predicting how nucleation occurs at varying
supersaturation (e.g., varying temperature) should be possible.

Although control over crystal growth is also important,
nucleation can probably define which polymorphs can form,
and can set both the lattice orientation2 and the size of the
crystals produced. Too fast nucleation can produce a shower
of small crystals when perhaps a single crystal is desired.
However, if nucleation is slower than the experimental
timescale then crystallisation will be prevented altogether.

There is considerable evidence that nucleation is a
stochastic process, i.e., there is randomness inherent in it. In
the computer simulation of simple systems this is clearly
true. If the simulation of Fig. 1 was rerun the waiting time
before nucleation would not be the same. It could be 20 000
simulation cycles, 300 000 cycles, etc.

In molecular, ionic and metal systems, nucleation occurs
on time and length scales that are inaccessible to conventional
experiments: the nucleus is only briefly at the top of the
barrier and is then only a few molecules (and hence nm)
across. The nucleus in Fig. 1 is of a few hundred molecules,
and if we convert from simulation to experimental time units,
then it spends only nanoseconds near the top of the
nucleation barrier. Also, the nucleation of a crystal is almost
always heterogeneous, i.e., it occurs on a surface in contact
with the fluid. Typically this is the poorly characterised surface
of an impurity. This is well established for the best studied
system: ice nucleation.3,4 For all these reasons, despite its
importance nucleation is poorly understood.

The structure of this review is as follows. The next section
introduces isothermal nucleation. The heart of this review is
sections 3 and 5. Section 3 reviews quantitative experimental
data on isothermal nucleation, and section 5 reviews the
models that have been fitted to this data. In between these
sections we briefly cover the classical theory of nucleation.

Then there a few short sections highlighting particular
features of the data or approaches to modelling it. This starts
with section 6, which points out that there are many results
from the field of survival data analysis5,6 that may be useful
in the study of nucleation. Section 7 covers the important
problem of how nucleation times scale with volume, and
section 8 highlights the common observation that the spread
of nucleation rates is often so large that it exceeds the
dynamic range of the experiment. The final section is a
conclusion and consideration of future work.

2. Introduction to nucleation at
constant supersaturation

The cleanest and so easiest to interpret experimental data on
the nucleation of crystals is that on small droplets at
constant supersaturation. We refer to this as isothermal
crystallisation, because to keep the supersaturation constant
the temperature must be kept constant. The pressure, and in
the case of solutions, the concentration must also be kept
This journal is © The Royal Society of Chemistry 2014
constant. If the supersaturation is varying with time then this
will cause any free energy barriers to nucleation to also vary
with time, greatly complicating analysis of the data.

Small droplets mean that only one nucleation event is
needed for crystallisation, and the crystal that results from this
event can easily be observed. To accurately measure a nucleation
time, the time for the nucleus to grow large enough to be
observable, tG, should be short, in comparison to the nucleation
time, tN. For example, the time for a single microscopic nucleus
to grow to freeze all of a small water droplet, may be of order
seconds or less. Then we can measure the crystallisation time
and this will provide a good approximation for the time for
nucleation (the time we are interested in), provided this
nucleation time is at least around 10 minutes or more.

2.1. P(t) plots

A useful way to plot isothermal nucleation data is to plot the
cumulative probability P that nucleation has not occurred as
a function of time t. In experiment this is straightforward to
obtain. Some large number, perhaps 50 or more, nominally
identical droplets are prepared, and then followed over time.
The fraction of droplets in which nucleation has not occurred
is then an approximation to P(t). The probability density
that nucleation occurs at a time t, p(t), is related to P(t)
by p(t) = −dP(t)/dt. It is in general probably better to work with
P(t) rather than p(t), because p(t) will be noisier.

We can also define an effective nucleation rate as a
function of time, h(t), via the differential equation

d
d
P t
t

h t P t 
      (1)

which defines h(t) as being the nucleation rate of those subset of
the droplets that are still liquid at time t. Note that equivalently,
h(t) can be defined as: h(t) = p(t)/P(t). The function h(t) is what
is called the hazard function or failure rate in the field of
survival data analysis.5,6 See the textbooks of Lee,5 or Cox and
Oakes6 for an introduction to the statistics of P(t) and h(t).

If the effective nucleation rate is constant, h(t) = k. Then
the solution to eqn (1) is the simple exponential

P(t) = exp[−kt] exponential (2)

We show the results of nucleation in a simple lattice
model (the lattice gas or Ising model) in Fig. 2. This is
heterogeneous nucleation, nucleation is occurring at a surface.
The result for nucleation at a surface that is not changing with
time is shown as the purple curve in Fig. 2. The curve is well
fit by a simple exponential: P(t) = exp[−1.22 × 10−6t], so here
the nucleation rate is k = 1.22 × 10−6 per cycle (time here is in
units of simulation cycles).

An exponential decay of P(t) is expected whenever there is
a well-defined and time independent nucleation rate. Thus
when we review experimental P(t) data below, when we see a
simple exponential P(t) we state that this data provides
evidence for a well defined nucleation rate. We call this class I
CrystEngComm, 2014, 16, 6506–6522 | 6507
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Fig. 2 Plot of the probability that nucleation has not occurred, P(t), as
a function of time, t, for computer simulation of nucleation in a simple
lattice model.7 Time is in units of computer simulation cycles. The
solid purple curve is at a supersaturation of 2h/kT = 0.16, and is for
nucleation on a surface that is not changing with time (rD = 0). The
magenta dotted curve is a fit of an exponential function to this P(t).
The solid black and green curves are for nucleation on surfaces that are
changing with time. The surfaces are slowly dissolving, at rates rD = 10−6

and rD = 2 × 10−6, respectively. In both cases, the supersaturation is lower
than for the purple curve at 2h/kT = 0.12. The brown and turquoise
dotted curves are fits of the function of eqn (11) to the black and green
P(t)'s respectively. In all cases the simulation P(t)'s are obtained from
250 nucleation runs. From ref. 7. Copyright 2014 Sear. Distributed under
Creative Commons Attribution 3.0 license.

Fig. 3 Plot of the logarithm of the fraction of unfrozen water droplets,
Nu(t)/N0, as a function of time. The plot is from Duft and Leisner,8 and is
for the freezing of water droplets to form ice at T = 237.1 K. The green
circles are for droplets of radius 49 μm, and the purple squares are for
smaller droplets of radius 19 μm. Copyright 2004 Duft and Leisner.
Distributed under Creative Commons Attribution 3.0 license.
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nucleation. As in class I nucleation P(t) is exponential, ln P(t)
is a straight line, of slope −k, and the effective rate h(t) is a
constant.

We use P(t) and h(t) to define two more classes of
nucleation, class II and class III. Class II is where the
effective rate h(t) is a decreasing function of time, dh/dt < 0.
Then ln P(t) curves upwards. Class III is the opposite case,
where the effective nucleation rate is an increasing function
of time dh/dt > 0. Then ln P(t) curves downwards. All three
classes are seen in experiment and will be reviewed here.

3. Experimental results on the
isothermal nucleation of crystals

In this section we review experimental results for P(t) for the
isothermal nucleation of the crystal phase in small droplets
or in small volumes in vials. We will mention some models,
but the models themselves are reviewed in the next two
sections. In this section, the work reviewed is divided up
according to the class (I, II or III) of P(t) found. We start
with the simplest class, class I where P(t) is a simple
exponential.

3.1. Class I: exponential P(t)

The 2004 paper of Duft and Leisner8 is a particularly clear
example of a system where there is evidence for a nucleation
rate that is well defined, and where in addition this rate is
proportional to the volume. If we look at Fig. 3 we see that if
6508 | CrystEngComm, 2014, 16, 6506–6522
an initial transient due to temperature-equilibration is
excluded, the plot of ln P(t) is a straight line. Thus, P(t) is a
simple exponential. Also, the slope of ln P as a function of
time is 16.5 ± 0.6 times larger for the large droplets than for
the small droplets. The ratio of the volumes of the two
droplets is 17.2 ± 0.8, and so the data is consistent with a
nucleation rate that scales as the volume. The rate per unit
volume is of order 1012 m−3 s−1, or 10−24 nm−3 ns−1.

As Duft and Leisner state, this provides good evidence
that the nucleation is actually homogeneous nucleation. Note
that this is at the low temperature of T = 237.1 K (−36 °C).
At higher temperatures water freezes via heterogeneous
nucleation.3 However, note that even here, this behaviour is
also consistent with nucleation on microscopic impurities
which are present in the water at a fixed concentration, and
where the spread of nucleation barriers is small.10

But if we assume that indeed this is homogeneous
nucleation, then a rate per unit volume of order 10−24 nm−3 ns−1

implies a free energy barrier to homogeneous nucleation
of around kT ln(1024) = 55kT. This assumes a molecular
volume of 1 nm3 and a molecular timescale of 1 ns. So even
though nucleation is rapid here (within seconds, see Fig. 3)
there is a still a substantial free-energy barrier.

The work of Duft and Leisner8 is a good example of how
to use quantitative experimental data to provide evidence
that nucleation occurs according to the standard classical
nucleation theory picture for homogeneous nucleation. They
show both that a rate is well defined and time independent
(as P(t) is exponential), and that it is proportional to the
volume, as a homogeneous nucleation rate should be. This
is obviously superior to just asserting that nucleation is
homogeneous, without providing evidence, which a number
of other authors do. It should be noted that this work is far
from the first work to see a clean exponential dependence for
This journal is © The Royal Society of Chemistry 2014
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Fig. 5 AFM images of crystallised PEO droplets on PS substrates, from
Carvalho and Dalnoki-Veress.9 The droplets are about 8 μm across. (a) is
a droplet on a smooth amorphous PS substrate. (b) and (c) are droplets
on the rougher of the two crystalline substrates. The arrows indicate
assumed nucleation sites, which are at the edges of the droplets for
(b) and (c). Copyright 2010 by The American Physical Society.
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P(t). For example, in 1974 Miyazawa and Pound11 found
similar behaviour for the crystallisation of liquid gallium.

Massa and Dalnoki-Veress12 also found exponentially
decaying P(t) curves, with slopes that scaled approximately
with volume. This was for the nucleation of the crystal phase
in droplets of the polymer poly(ethylene oxide) (PEO). Again
this data is consistent with homogeneous nucleation.

The second study I wish to discuss in detail is by Carvalho
and Dalnoki-Veress,9 who studied the crystallisation of small
(of order 10 μm across) PEO droplets on three different
polystyrene (PS) substrates. Results for P(t) are shown in
Fig. 4. They also studied the crystallisation of polyethylene.13

In most cases ln P(t) is, to a reasonable approximation, a
straight line, indicating a well-defined and time-independent
nucleation rate. Note that these plots are all for only a subset
of the droplets studied. In each experiment some droplets
crystallised on cooling from high temperatures to the
temperature studied in that experiment, and some crystallised
in the first 400 s of the experiment. All these droplets were
discarded. Thus the complete sets of droplets do not have a
well-defined nucleation rate, presumably due to some of them
having impurities that are very active at inducing nucleation.
However, for a subset of the droplets it is possible to define a
nucleation rate, via the plots in Fig. 4.

For PEO droplets on a smooth PS substrate, this nucleation
rate was found to scale as the volume of droplets. The scaling is
shown in Fig. 4(d). It is consistent with homogeneous nucleation
and is just what Duft and Leisner8 found for ice (Fig. 3). On two
different rougher PS substrates, Carvalho and Dalnoki-Veress9

found nucleation rates that scaled as droplet area in one case,
and droplet linear dimension in the other. This is shown in
Fig. 4(d). The scaling with area was found for the less rough of
the two rough PS surfaces. A nucleation rate that scales as
droplet area is consistent with nucleation on a reasonably
homogeneous interface. As the only interface that changes
between the data of Fig. 4(a) and (b) is the PS/PEO interface, this
suggests that the PEO crystals in (b) are nucleating at the
interface between the liquid PEO and the rough PS substrate.
This journal is © The Royal Society of Chemistry 2014

Fig. 4 (a)–(c) The logarithm of the fraction of droplets not crystallised
polyethylene oxide (PEO), and they are on polystyrene (PS) substrates. Thi
each plot are for droplets of different sizes, as measured by the areas of the
(a)–(c). (a) Droplets of PEO on smooth amorphous PS (T = −2 °C). (b) PE
rougher crystalline PS substrate (T = 10 °C). The crystalline substrates ar
create the different roughness. The variation in nucleation timescale τ with
of ln(Na(t)/N). The nucleation timescale varies approximately as one over th
over the droplet area (n = 2.1) on the rough crystalline substrate, and as o
2010 by The American Physical Society.
On a PS substrate with a larger roughness, the rate scales
with the linear size of the droplet. This is the behaviour
expected when nucleation occurs on something that is
proportional to the diameter of the droplet. The obvious object
with size proportional to the diameter is the contact line at the
edge of the droplet where the PEO/air interface meets the
PEO/PS interface. Studies of the final crystallised droplets via
atomic force microscopy (AFM) are consistent with this idea.
AFM images of crystallised PEO droplets are shown in Fig. 5.
It appears (Fig. 5b) and c)) that on the roughest substrate the
droplets started to crystallise from a point on their edge.

It is not known why on the rougher substrates, the
droplets should crystallise at the contact line. The nucleation
barrier can be lower at a contact line than at an interface,14,15

but it is not clear how changing the substrate roughness will
affect this. The nucleation of ice has been studied at contact
lines where the air/water interface hits a solid surface.
However, mixed results have been found in the sense that
some studies find nucleation preferentially at the contact
line,16 while other studies do not.17,18 See Gurganus et al.18

and my earlier review15 for discussion of this point.
Finally, both Jiang and ter Horst,20 and Quon et al.21 also

found approximately exponential P(t)'s. In the case of Jiang
and ter Horst this needed a small time offset, to account for
CrystEngComm, 2014, 16, 6506–6522 | 6509

, Na(t)/N0, as a function of time t. The droplets are of the polymer
s is the work of Carvalho and Dalnoki-Veress.9 The different curves in
substrate the PEO droplets cover. These areas are given in the keys of

O on a rough crystalline PS substrate (T = 4 °C). (c) PEO on an even
e annealed at different temperatures, (b) at 185° and (c) at 175 °C, to
droplet radius R is plotted in (d). The timescale τ = one over the slope

e droplet volume (n = 2.9) for droplets on the smooth substrate, as one
ne over the radius (n = 1.0) on the even rougher substrate. Copyright
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growth. The results of Jiang and ter Horst,20 and Quon et al.21

are also consistent with well defined nucleation rates
that are in the thermodynamic limit. Jiang and ter Horst's20

data is on the crystallisation from solution of the molecules
m-aminobenzoic acid (m-ABA) and L-histidine (L-His), while
Quon et al.'s21 is for crystallisation of the drug paracetamol
(also called acetaminophen).
3.2. Class II: decreasing effective nucleation rate

Our first example of a system with a decreasing effective rate,
h(t), is shown in Fig. 6. This is the work of Diao et al.19

on the nucleation of crystals of aspirin from solution. Diao
and coworkers have also studied other systems, such as the
molecules ROY and paracetamol, and also found results
where the effective rate is a decreasing function of time.22–24

In most of the work reviewed here, nucleation is
presumably occurring on either impurities in the solution or
at a surface in contact with the solution. The work of
Diao et al.19 is an exception. They deliberately added particles
of a hydrogel to their solutions to induce nucleation. Material
added to provide surfaces for nucleation is sometimes called
a nucleant.26–28 Nucleants are particularly common in
protein26–28 and ice crystallisation.4,25,29–32 Often the surfaces
of the nucleants are both disordered and poorly characterised,
i.e., we know little more about them than we do about any
impurities that might be present. However, progress is being
made at characterising these surfaces,28,30–33 and here at least
6510 | CrystEngComm, 2014, 16, 6506–6522

Fig. 6 Plots of the probability P that nucleation has not occurred in a
droplet, as a function of time. This is the work of Diao et al.,19 and is
for the nucleation of aspirin from solution. The solvent is a mixture of
water and ethanol. The supersaturation is 2.1. Polymer microgel
particles are added to the solution in all three cases. The polymer is
poly(ethylene)glycol diacrylate (PEGDA), made with PEG of varying
molecular weights: 200, 400 and 700 g mol−1. The microgel particles
were added to induce nucleation. The curves are fits of the Weibull
function, eqn (3), to the data. The values of β are 0.52, 0.69 and 0.36
for polymer made with PEG molecular weights of 200, 400 and
700 g mol−1, respectively. Reprinted with permission from ref. 19.
Copyright 2012 American Chemical Society.
we have a good idea what nucleation is occurring on. So
nucleants are a promising way to improve our understanding
of the mechanism of nucleation.

If we focus on the data plotted in red, we see that around
20% of the samples crystallise inside around 50 min but that
almost 40% of the samples have still not crystallised after
almost 1400 minutes. Thus the nucleation times span two
orders of magnitude and more. This is very different from
nucleation at a constant rate where P(t) is exponential and the
standard deviation of nucleation times is equal to the mean.
Here as not all the samples crystallised we cannot even calculate
the standard deviation or mean of the nucleation time. This
implies that work that does not report a P(t) but does report
both a mean nucleation time and a standard deviation, would
be inconsistent with a well-defined constant rate if the ratio
standard-deviation/mean is significantly different from one.

Diao et al.19 fitted a function called a Weibull function to
their data. The Weibull function is

P(t) = exp[−(t/τ)β] Weibull (3)

It is the exponential of a power law, with exponent β.
The parameter τ is a timescale that is related to the median
nucleation time, tMED, by τ = tMED(ln 2)1/β. The Weibull
function is a two-parameter cumulative distribution function.
For β = 1 it reduces to a simple exponential. For a Weibull,
the effective nucleation rate h(t) = βtβ−1/τβ. For β < 1, the
effective rate h(t) decreases monotonically with time, so then
nucleation is class II, while if β > 1, h(t) increases with time,
so then nucleation is class III.

The best fit values for β found by Diao et al.19 were all less
than one, so their data is in class II. It is worth noting
that when β < 1, the Weibull function is also known by other
names. It is often called a stretched exponential.34 Also in the
study of glassy behaviour it is sometimes called a Kohlrausch
or Kohlrausch–Williams–Watts function. When β > 1 the
Weibull function is also called a compressed exponential.

Not all Diao et al.'s19 data was well fit by a stretched
exponential, some was better fit by the sum of two
exponentials. As a sum of two exponentials has three
parameters, one more than the Weibull has, this is however
not a fair comparison. But it may well be that in some of
their data there are two types of droplet, each with a well
defined but different rate, and then P(t) will genuinely be the
sum of two exponentials. A sum of two exponentials is always
in class II.35 Earlier work by Kabath et al.36 on the nucleation
of ice, also found two slopes and hence possibly two rates.

Although the work of Duft and Leisner8 on the nucleation
of ice (Fig. 3) found a well-defined nucleation rate, other
work on ice nucleation25,37 has found a rate that decreases
with time. Both Welti et al.37 and Herbert et al.25 found that
they could fit their data reasonably well with models that
include quenched disorder. Results from Herbert et al.25 are
shown in Fig. 7. We see that ln fliquid(t) = ln P(t) is far from a
straight line. It curves upwards. In this work the mineral
potassium-feldspar was added to the water droplets to induce
This journal is © The Royal Society of Chemistry 2014
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Fig. 7 Plot of the logarithm of the fraction of a set of water droplets
that are still liquid, fliquid, as a function of time. This is the work of
Herbert et al.25 The water droplets contain the mineral potassium-
feldspar added to induce nucleation. The right-hand axis shows the
actual number of droplets of water that are still liquid. This is at a
temperature of 262.15 K. The experimental data is shown by the red
triangles. The dashed curve is the prediction of a model fit to data at
constant cooling rate, between approximately 260 and 265 K. This
model incorporates a spread of nucleation rates between the droplets
(quenched disorder). The solid curves are predictions of a model that
assumes that the rate is the same in all droplets, and so that fliquid
decays exponentially. The two solid curves are obtained for data at
two different constant cooling rates, 0.2 and 2 K min−1. The shaded
areas indicate the uncertainty in predicted fliquid curve due to
uncertainty in the measured temperature. Copyright 2014 Herbert et al.
Distributed under Creative Commons Attribution 3.0 license.

Fig. 8 Plot of the logarithm of the fraction of droplets that have not
crystallised, as a function of time. This is the work of Knezic et al.,38

and is for the nucleation of the protein lysozyme in solution. Three fits
to the data are shown. A simple exponential, eqn (2), which is the
brown curve labelled ‘Turnbull’. A simple exponential with a time
offset, which is the green curve labelled ‘Exponential decay’. A Weibull
function, eqn (3), which is the blue curve labelled ‘Two step’. For this
fit, β = 0.6. Reprinted from ref. 38 with permission. Copyright 2004
American Chemical Society.
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nucleation. This mineral is common in the atmosphere and
affects ice nucleation there. Instead of fitting this curve
directly they fitted to data obtained at a constant cooling
rate, over a temperature range of 4 K that includes the
temperature of this experiment. The model used includes
quenched disorder, and we see that it predicts the time
dependence of P(t). This model relates nucleation data at
constant cooling rate to isothermal data.

Knezic et al.38 also found a P(t) with an effective nucleation
rate that was decreasing with time. This was for the
crystallisation of the protein lysozyme from solution, in
levitated droplets. Their data is shown in Fig. 8. They also
found that a Weibull function with β < 1 provided a
reasonable fit to the data. Their best fit value for β was
β = 0.6. This work, in 2004, is the earliest work I am aware of
that fitted P(t) data with a Weibull function.

However Knezic et al. were far from the first to observe an
effective nucleation rate that decreased with time. Over 50 years
before them, Pound and La Mer39 studied the crystallisation of
oxide coated droplets of liquid tin. They also found an effective
nucleation rate that was a decreasing function of time. To
model this, they developed the Pound–La Mer model for P(t).
We will discuss this model in the model section.

The Pound–La Mer model was also used by Laval et. al.40

They used it to fit data on the crystallisation of potassium
nitrate from aqueous solution. The results of Laval et al. are
This journal is © The Royal Society of Chemistry 2014
shown in Fig. 9. Also Teychené and Biscans41 used the model
to fit data on the crystallisation of elfucimibe from octanol
solution. Elfucimibe is a pharmaceutical molecule. In
both40,41 cases the Pound–La Mer model fits the data well,
although it should be noted that as this model has 3
parameters (one more than Weibull and two more than a
simple exponential) we should expect it to fit well.

A weakness of P(t) plots is that they do not directly
distinguish between what is called thermal disorder, and
what is called quenched disorder. Thermal disorder is
disorder (which is just another word for randomness here) in
the time nucleation occurs in a droplet due to the fact that
nucleation is a thermal fluctuation. This is the disorder seen
in spread of nucleation times in the simulation data of the
purple curve in Fig. 2. Quenched disorder is disorder, i.e.,
randomness, due to fixed, i.e., time-independent, variability
in the impurities present in droplets.

For example, if nucleation occurs in droplet 1 before
droplet 2, we do not immediately know if this is because just
by chance the nucleation fluctuation occurred earlier in
droplet 1 than droplet 2, or if droplet 1 has an impurity
particle in it that makes a large contribution to the nucleation
rate, but droplet 2 does not. In the second case but not the
first the nucleation rate is different in droplets 1 and 2.

A direct way to distinguish between quenched and thermal
disorder is to do multiple crystallisation runs on the same set
of droplets. To do this, care needs to be taken to test for any
significant changes in the droplets when crystallisation
CrystEngComm, 2014, 16, 6506–6522 | 6511
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Fig. 9 Plots of (a), the probability P, and (b), ln P, both as a function of
time. This is the work of Laval et al.,40 and is for the nucleation of
potassium nitrate crystals in water, at a concentration of 40 g of
potassium nitrate added to 100 g of water. From top to bottom the
curves are at temperatures 3.8, 2.8, 1.9, and 0.9 °C. The solubility of
potassium nitrate decreases with decreasing temperature so the lower
the temperature the higher the supersaturation. The fits to the data in
(b) are of the Pound–La Mer model, eqn (7). Reprinted from ref. 40
with permission. Copyright 2009 American Chemical Society.

Fig. 10 Results from an experiment by Laval et al.40 to directly
observe time-independent droplet-to-droplet variability. The
experiments are done on a set of approximately 160 droplets of
potassium nitrate solution (produced using microfluidics). Part (a) has
two parts. The top part is the temperature profile as a function of time
applied to the set of droplets. The temperature is cycled seven times
between a high supersaturation maintained for a fixed time to drive
crystallisation, and undersaturated conditions to dissolve the crystals
before the next cycle. The bottom part of (a) is 6 (14 × 25 mm2) images
taken of the set of droplets at the point on the temperature profile
indicated by the circle, the diamond, the triangle, etc. Each of these
images is taken at the end of the low-temperature part of a single
temperature cycle, when nucleation has occurred in about one fifth of
the droplets. The image is taken between cross polarisers and so (only)
the droplets with crystals appear as bright spots. Images are shown for
only 6 of the 7 temperature cycles. Part (b) of the figure is the function
pg(nc), the probability that a droplet crystallised exactly nc times in the
7 cycles. The experimental data is shown as the histogram, while the
squares joined by lines is the theoretical prediction, eqn (4), in the
absence of quenched disorder. Reprinted from ref. 40 with permission.
Copyright 2009 American Chemical Society.

CrystEngCommHighlight

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ay
 2

01
4.

 D
ow

nl
oa

de
d 

on
 7

/1
2/

20
25

 1
0:

10
:1

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
occurs, and that after one crystallisation run, the crystals are
completely dissolved before the next run. Laval et al.40 did
this. They checked that the mean number of crystals found in
each cycle did not drift (evidence that the nucleation sites
were not being altered by crystallisation and dissolution), and
that varying the temperature and time used to dissolve the
crystals did not change the results in the next cycle (evidence
that the crystals dissolved completely erasing any memory of
what occurred in the previous cycle). Their results are in
Fig. 10. When the sample is crystallised multiple times the
thermal disorder will be different each time but the quenched
disorder, by definition, remains the same. Essentially, the
barrier stays the same but the time to cross still has random
variability, as crossing is a thermal fluctuation. Haymet and
coworkers have also studied42 this, for the freezing of water,
but they worked at constant cooling rates.

Laval et al.40 performed 7 crystallisation runs (by cycling
the temperature) on a set of about 160 droplets. On average
in a single run a fraction 0.19 of the droplets crystallised. If
there is no quenched disorder in the system then all 160
droplets are equivalent and so equally likely to crystallise in
any given run. Then the probability that a randomly selected
6512 | CrystEngComm, 2014, 16, 6506–6522
droplet crystallises nc times in total in the 7 experiments is
just given by the standard expression from combinatorics

p n
n n

n n
g c

c c

c c   
  

  7
7

0 19 0 817
(4)

This function is plotted as the solid squares joined by lines
in Fig. 10. The experimental data is shown as a histogram.
Clearly the prediction assuming no quenched disorder is very
far from the experimental data. This large difference rules out
This journal is © The Royal Society of Chemistry 2014

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4ce00344f


Fig. 11 Freezing kinetics at four different temperatures, for tin
nanoparticles, from the work of Schwind et al.43 The nanoparticles are
on a sapphire substrate and are coated with SiO2. They are approximately
100 nm across by 50 nm high.43 Plotted is the normalised difference
between the localized surface plasmon resonance (LSPR) signal when
all droplets are crystal and the LSPR signal when they are all liquid.
Assuming that the droplets contribute independently to the LSPR
signal, this is P(t). The data do not fall on simple exponential curves.
The data was fitted using a power-law function, 1/(1 + rt)n. The fitted
parameter values n and r are as follows: 0.782 and 8.98 × 10−5 s−1

(100.3 °C); 1.42 and 2.96 × 10−4 s−1 (97.1 °C); 2.49 and 2.67 × 10−4 s−1

(95.1 °C); 5.94 and 2.40 × 10−4 s−1 (94.3 °C). Reprinted from ref. 43 with
permission. Copyright 2010 American Chemical Society.
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the possibility that the droplets are all equivalent. There is
quenched disorder present; there is droplet-to-droplet
variability that is independent of time, i.e., is present from
one temperature cycle to the next.

We can approximately quantify the relative contributions
of thermal and quenched disorder as follows. If quenched
disorder dominated thermal disorder then a particular
droplet would either freeze 0 times or 7 times, i.e., freezing of
a droplet would be completely predictable after the end of
the first temperature cycle. Here, about 70% of the droplets
froze 0 or 7 times, leaving only 30% where thermal disorder
apparently played a role. It is worth noting that in the
literature on ice nucleation at constant cooling rate, extensive
use25,29,31,37,44–47 is made of models which have quenched
but no thermal disorder. These are called3 ‘singular’ models.

In other systems cycling the temperature and so
repeatedly crystallising and then melting may change the
system. I am not aware of any study of the effect of cycling
on P(t), but Durant and Shaw48 observed an effect of cycling
on the freezing temperature of water droplets. It appears that
initially the droplets had small air bubbles inside them.
These bubbles affected nucleation, but they were expelled by
repeated crystallisation cycles. Further cycles in this system
caused particles to move from the bulk of the water droplet
to its surface and this also affected nucleation. Any work that
cycles the system into and back out of the crystalline state,
for example to test for the affects of quenched disorder, will
need to carefully check to see if processes similar to those
seen by Durant and Shaw are occurring.

In all the experiments we have reviewed so far,
crystallisation was observed by direct observation of the crystals
formed, using optical microscopy (sometimes with crossed
polarisers). For nanoscale droplets, less than the wavelength of
light across, direct visual inspection of crystallisation is not
possible. However, Schwind et al.43 used the difference in
localized surface plasmon resonance (LSPR) signal between the
liquid and crystal states, to follow isothermal crystallisation in
tin nanodroplets. Their results are shown in Fig. 11.

It appears that P(t) is not a simple exponential for these
very small crystallising systems. They fit a two-parameter
function of the form P(t) = 1/(1 + rt)n (n, r > 0) to their data.
This corresponds to an effective nucleation rate as a function
of time, h(t) = nr/(1 + rt), which is a decreasing function of
time. Thus, to the extent that this function fits the data well,
the nucleation here is in class II. Techniques such as LSPR
mean that, at least in some systems, we can study nucleation
kinetics down to very small droplet sizes.
3.3 Class III: increasing effective nucleation rate

A nucleation rate that increases with time will result in a plot
of ln P(t) curving downwards. Examples of this behaviour are
rare, but Kim et al.49 find just such behaviour for the
crystallisation of the explosive RDX from acetone solution.
Their results are shown in Fig. 12. The only other examples I
know of are those of Weidinger et al.,50 Toldy et al.51 and
This journal is © The Royal Society of Chemistry 2014
Boinovich et al.52 Note that the P(t)'s plotted in Fig. 12 are
initially almost horizontal and close to one, indicating very
little nucleation, and then curve downwards, dropping more
and more steeply as time increases. The effective nucleation
rate is a rapidly increasing function of time.

In Fig. 12, Kim et al.49 have fitted both simple exponential
functions (dashed curves) and Weibull functions (solid
curves). For the Weibull fits, Kim et al.49 obtain best fit
values of β that are greater than one, indeed they find values
up to ≃5.5. This is true without additives (black squares),
with solutephilic polymer molecules added (green diamonds),
and with amphiphilic molecules added (the other data
points). Thus although the additives do affect the rate they
do not affect the qualitative shape of the P(t) curves. It is not
known why the additives have this effect. Weidinger et al.50

fitted their data for the freezing of the alkane C15H32 with a
function close to a Weibull and used values of 2 and 3, for
the equivalent parameter to β.

For β > 1 the effective nucleation rate h(t) is an increasing
function of time, so this is class III nucleation. When β > 1 the
slope of the Weibull function tends to zero, as t → 0, i.e., there
is an initial plateau at short times. We see that this feature is
clearly present in the data in Fig. 12. The larger the value of β,
the longer the initial plateau, in relation to the time taken for
nucleation to occur once P(t) starts to drop. So the large best-fit
values of β are due to the long initial plateau followed by a steep
drop. We discuss the Weibull function in the models section.
CrystEngComm, 2014, 16, 6506–6522 | 6513
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Fig. 12 Plot of the fraction of vials N/N0 (on a logscale) in which
nucleation has not occurred, as a function of time. This is the work of
Kim et al.,49 and is for the nucleation of RDX crystals from acetone
solution, in 3 ml vials. The black squares are data for just RDX in
acetone, while the other symbols are data where in addition different
molecules were added to affect the nucleation. Solid curves are fits of
the Weibull function, eqn (3), to the data, and dashed curves are fits of a
simple exponential, eqn (2), to the data. Reprinted from ref. 49 with
permission. Copyright 2013 American Chemical Society.
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It is worth noting that the Gompertz function (see eqn
(10) in the models section) fits the data of Kim et al.49

approximately as well as the Weibull function.53 The
Gompertz function has the same number of parameters
as the Weibull (two), and it looks qualitatively like the
Weibull with β > 1. The Gompertz function can be derived,
see section 5.2, from the assumption that the rate is an
exponentially increasing function of time.

As Kim et al.49 note, the measured nucleation time is the
time to first observe a crystal in the solution, and this will
differ from the true nucleation time by tg, the time needed
for the nucleated crystal to grow large enough to be visible.
Thus it is difficult to rule out some of the width of the initial
plateau in P(t) being due to this growth time. It is also
possible that some of it may be due to time taken for the
sample to equilibrate at the temperature of the experiment,
from the higher temperature used to dissolve the RDX. Note
that in Fig. 3 there is a short initial plateau that is believed to
be due to temperature equilibration.

Thus, due to the nature of the P(t) curves it is harder to
demonstrate that there is an increasing nucleation rate than
to demonstrate that there is an decreasing nucleation rate.
Delays due to the time for crystals to grow large enough to be
observed, and due to the time required for temperature
equilibration are alternative sources of an initial plateau in
P(t) at short times.

Earlier work by Weidinger et al.50 not only also observed
an initial plateau in P(t) but they observed changes in the
droplet during that plateau, and proposed a plausible
mechanism for the plateau. Their work is on the freezing of
levitated droplets of the alkane C15H32. Interestingly, they
observed changes, probably in the surface of the levitated
6514 | CrystEngComm, 2014, 16, 6506–6522
droplet, prior to nucleation. It is known50,54 that alkanes can
undergo surface freezing. Surface freezing is a surface phase
transition where surface layers can crystallise before the bulk.
Any change at the droplet surface will affect nucleation
there.15,54–57

Thus, as Weidinger et al.50 note, it seems possible
that here the nucleation rate is low until a surface phase
transition occurs, which then greatly increases the nucleation
rate. This would be consistent with the class III behaviour
observed. Such a mechanism may even be common. In many
systems surface phase transitions may go unnoticed, for
example if they occur on the surfaces of small impurity
particles. This is worth further investigation.

Finally, Toldy et al.51 see similar behaviour to Kim et al.49

and Weidinger et al.50 They studied glycine crystallising in
solution, but in the work of Toldy et al. the crystallising
droplets may not be independent of each other. They
sometimes observe that once one droplet has crystallised,
then neighbouring droplets may crystallise. This means
droplets are not independent, which can give an effective
nucleation rate for the ensemble of droplets that increases
with time, even when the rate in an isolated droplet may not
be increasing with time. This effect complicates understanding
the nucleation behaviour.

4. The classical theory for the
nucleation of crystals

The standard theory for the nucleation of crystals is classical
nucleation theory.15,55,58 This assumes that nucleation is an
activated process where the rate is low because there is a free
energy barrier to nucleation F*. By low we mean that the
timescale for nucleation can be seconds, hours or more,
which is many orders of magnitude larger than the nanosecond
timescale for the dynamics of molecules in solution.

The classical nucleation theory prediction for the nucleation
rate of homogeneous nucleation, RHOM, is given by55,58

RHOM = MjZ exp(−FH*/kT) (5)

I define homogeneous nucleation to be nucleation where
the nucleus consists just of the molecules of the new crystal
phase and where the nucleus is not in contact with anything.
FH

* is the free energy change on forming a nucleus at the top
of the barrier, in the bulk of the liquid. In eqn (5), M is the
number of molecules of the crystallising substance, j is the
flux of monomers onto a critical nucleus, and Z is essentially
the probability that the critical nucleus goes forward into the
new phase not back into the metastable phase.55

If the nucleus is in contact with anything or contains
another species that alters the barrier, I call that heterogeneous
nucleation. See an earlier review15 for a discussion of the
assumptions that are made to derive eqn (5).

But as we have seen, nucleation is rarely homogeneous.
Nucleation is usually heterogeneous, it occurs at a
surface.15,19,22,55,59,60 This surface may be of a nanoscale
This journal is © The Royal Society of Chemistry 2014
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Fig. 13 A schematic plot of the log of the probability density p(F*/kT)
of free energy barriers to heterogeneous nucleation, F*. The plot is just
a simple illustrative probability density, meant to show possible
features of a distribution of nucleation barriers. Illustrated is an
effectively delta-function peak at large barriers for nucleation at a free
liquid surface, a broader peak at lower barriers due to nucleation at a
contact line, plus a tail at low barriers, due to impurities.
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object.28,59 These surfaces are often rough and
disordered7,19,27,59 and the nucleation rate at a surface is very
sensitive to almost all details of local surface chemistry and
geometry.15,33,61–64 Thus there will only be a single nucleation
barrier at a totally flat smooth edgeless surface. On a rough
surface there is not one barrier but many different nucleation
barriers. The barrier will be high at points on the surface
where it is difficult for the nucleus to form and low at points
where it fits well onto the surface.

Thus, within classical nucleation theory, the nucleation
rate, RHET, in the presence of rough disordered surfaces is
given by27,65

R j Z F kT
i

N

i i iHET    



1
exp * (6)

where ji, Zi and Fi
* are the flux, Z-factor and free energy barrier

for nucleation at site i. The sum is over all N nucleation sites
on the surfaces in contact with the molecules of the liquid.
The sites can be at any surface in contact with the liquid, for
example, the surface a droplet is sitting on, or that of impurity
particles either within the liquid or at the liquid's surface.
Each nucleation site should be around the size of the cross-
sectional area of the critical nucleus, which for molecular
systems and metals should be roughly of order tens of nm2.

As the nucleation rate varies exponentially with the barrier
at a site, Fi

*, it is reasonable to assume that the variation in
rate from site to site is dominated by the variation in Fi

*, i.e.,
that we can neglect any variability on ji and Zi. If over the
course of the experiment the surface is not changing with
time, then the Fi

* are fixed.
In practice we are never in a position to calculate the sum

in eqn (6). The surfaces nucleation is occurring on are
typically very poorly characterised. And without knowledge
of the surface geometry and surface chemistry we cannot
calculate the Fi

*.
However, for disordered surfaces the Fi

* should be
random variables drawn from an (unknown) probability
density function p(F*). We show a schematic of a possible
probability density function for the site barriers in Fig. 13.
Even without knowing anything about the distribution
of nucleation barriers, we can say that there are two
qualitatively different possibilities.

The first possibility is that a number ≫ 1 of the N terms
contribute significantly to the sum. Then the central limit
theorem of statistics tells us that the fluctuations in RHET

from one droplet to another, due to variations in the
impurities between the droplets, will average out. The rate of
heterogeneous nucleation will then be in the thermodynamic
limit, and so be the same for all droplets.10 Nucleation will
then be in class I.

The second possibility is that RHET is dominated by one or
a few terms with the lowest free energy barriers.27,65 Then the
variability from one droplet to another will not average out
and different droplets will have different nucleation rates.
Nucleation will then be in class II.35
This journal is © The Royal Society of Chemistry 2014
5. Models

Nucleation of crystals appears to be quite complex. But,
experimental data in the form of P(t) curves is typically only
enough to adequately constrain the parameter values of a
fitting function with two or at most three parameters.

So with the data at hand we need physically reasonable
but simple models, models with no more than three
parameters. As nucleation appears to be complex, these
models will be at least a little, and sometimes a lot, wrong.
But as the distinguished statistician George Box said66

“Essentially, all models are wrong, but some are useful”.
In this spirit we will outline some physical motivation for

the models, and then review some wrong but hopefully useful
models. In the field of ice nucleation some quite complex
models with quenched disorder are used.25,31,37,46 These are
often based on classical nucleation theory, sometimes
assuming perfectly planar substrates and then taking effective
contact angles for the nucleus from an imposed probability
distribution.37,46 I will not review those here.

We assume that classical nucleation theory is correct in
assuming that nucleation involves a rare thermal fluctuation
crossing a free energy barrier. Essentially exact computer
simulations have found this to be true for many different
simple models.55,61,62,64,67 Then if there is just one barrier
and it is not changing with time, P(t) is exponential and h(t)
is a constant. However, we have seen that h(t) is frequently
not a constant. There are two obvious sources of time
dependence in h(t). We label them A and B. They are:

A. The nucleation rate is not the same in all droplets. This
means that the rate is not in the thermodynamic limit.10

Consider a very simple example of N = 100 nominally
identical droplets. In 50 there are impurities with a nucleation
rate of k = 1 h−1, and in the other 50 there are, by chance,
CrystEngComm, 2014, 16, 6506–6522 | 6515
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different impurities which yield a nucleation rate of k =
0.1 h−1. Over the first hour, very few of the droplets with the
slow rate will nucleate, but many of the droplets with the fast
rate will nucleate. So then the effective nucleation rate will be
approximately (1/2) × 1 = 0.5 h−1. However after 10 h almost
all the droplets with the fast rate will have nucleated and so
will not be contributing to the nucleation rate. Then the rate
will be dominated by the slow nucleating droplets, and so
the effective rate will now be close to 0.05 h−1. The effective
nucleation rate has dropped. This was just a toy example, in
general there will be a distribution of rates, but this does not
change the result that here nucleation is in class II.35

B. The nucleation rate is the same in all droplets, but in
all droplets it is evolving with time, either increasing or
decreasing. For example, if nucleation is occurring on a surface
and that surface is changing with time, then the nucleation
barriers and hence rates will change with time.7 An example of
this, but in a simple lattice model, not for the nucleation of
crystals, is shown in Fig. 2. The black and green curves in
Fig. 2 show P(t) for simulations of nucleation on a slowly
dissolving surface. Note that this time-dependent surface
causes the effective rate h(t) to increase with time. Surfaces can
change irreversibly over time,68,69 for example initially smooth
metal surfaces can corrode and become pitted.69 Also, if even a
fraction of the molecules are themselves changing, e.g., by
aggregating, that can also affect the rate,59 and hence if this
occurs on the timescale of the experiment, h(t) will vary with
time. Microscopic changes in surface geometry15,61–64 can
change nucleation rates on the surface by orders of magnitude.

We have now outlined the two most obvious physical
mechanisms for a time dependent effective rate. Of course
both may be true of a system although here we will only
consider models where one dominates. We will now outline
three models that go beyond the simple exponential model,
and are used to fit P(t) data. The models and mechanisms
are summarised in a simple table, Table 1. We start with the
earliest model, the Pound–La Mer model.
5.1 Pound–La Mer model

The model proposed by Pound and La Mer39 is a model for a
rate that is not in the thermodynamic limit, i.e., it assumes
physical mechanism A, and so gives a h(t) that is always in
class II. It is a model for nucleation affected by a handful of
6516 | CrystEngComm, 2014, 16, 6506–6522

Table 1 Comparison of the different functions used to fit nucleation
data. In the left-hand column we list the functions while in the
remaining columns we use ticks to indicate the physical mechanisms
that can give rise to that function, and the nucleation class to which
they belong

Mechanism h(t) class

Model A B I II III
Exp ✓

P-LaM ✓ ✓

Gompertz ✓ ✓ ✓ ✓

Weibull ✓ ✓ ✓ ✓
impurity particles per droplet. It is based on the idea that
all impurity particles are the same but that droplets contain
variable numbers of these particles. It makes two
assumptions:39

1. Only one type of microscopic impurity particle is
present, and it is randomly (Poisson) distributed among the
droplets. All impurity particles of this type make the same
contribution, k, to the nucleation rate.

2. If a droplet has no impurity particles in it, then its
nucleation rate is k0 ≪ k.

The Pound–La Mer P(t) is given by39–41

P(t) = exp[−m(1 − exp(−kt))] Pound–La Mer
+ exp(−m)[exp(−k0t) − 1] (7)

where m is the mean number of impurity particles per
droplet.

In the Pound–La Mer model, the droplets have a range of
different nucleation rates, k0 (zero impurity particles), k (one
impurity particle), 2k (two), 3k (three), …, and so the effective
nucleation rate h(t) is a decreasing function of time.35 The
mechanism here is that the droplets with the largest number
of impurity particles nucleate at early times, resulting in
large observed nucleation rates, while at longer times only
the droplets with a few or no impurity particles are left to
contribute to the nucleation rate.

When m is of order one or smaller, the nucleation rate is
not in the thermodynamic limit, and so varies dramatically
from one droplet to another. As m → ∞ the thermodynamic
limit is recovered. In that limit nucleation occurs at times
around t = 1/(mk). Then exp(−kt) ≃ 1 − kt, and the Pound–La
Mer P(t) reduces to the simple exponential; exp(−mkt) – as we
would expect for a rate that is in the thermodynamic limit
and where there is no explicit time dependence.

As it has three parameters (cf., Weibull's two parameters)
we would expect it to provide good fits to data, which it
does.39–41 Stronger tests of the Pound–La Mer model are that
the fit values should be reasonable, m of order 0.1 or 1 and
k0 ≪ k, and that if the impurities are in the bulk m should be
proportional to the volume.

If in the absence of impurity particles, the nucleation rate
is effectively zero, k0 = 0, and the Pound–La Mer model
simplifies to the two-parameter model

P(t) = exp[−m(1 − exp(−kt))] Gompertz (8)

Here we have indicated that P(t) now has the mathematical
form of the Gompertz function, although it should be noted
that as m is a mean number of particles, m ≥ 0, and as k is a
nucleation rate k ≥ 0. In general in the Gompertz model these
parameters can take negative values, as we will see in the next
section. The Gompertz function is widely used in a number of
other fields, e.g., human mortality,70 cancer recurrence,
machine failure, etc.5,6

The Pound–La Mer model can be viewed as a modified
Gompertz model. The Gompertz model decays to exp(−m) for
This journal is © The Royal Society of Chemistry 2014
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t → ∞, whereas the Pound–La Mer model modifies this by
causing the exp(−m) term to decay to zero at a rate k0.
5.2 Model for nucleation in a system evolving with time

In this section we review a model in which the time
dependence of h(t) comes from physical mechanism B: the
rate in all droplets is the same but this rate is evolving with
time. This was studied in earlier computer simulation work
on a lattice model by the author.7

The model follows directly from the assumption that h(t)
is an exponential function of time5,70

h(t) = R0 exp[λt] (9)

where R0 > 0 is the nucleation rate at t = 0, and λ is the rate
of increase or decrease of the nucleation rate. If λ > 0 the
rate increases while if λ < 0, the rate decreases. Note that
this assumption of an exponential variation is just a simple
model; in general we have no reason to believe that the
dependence is precisely exponential.

Putting eqn (9) into eqn (1), and solving the differential
equation, we obtain7,70

P(t) = exp[(R0/λ)(1 − exp(λt))] Gompertz (10)

This is what is called the Gompertz function. The RDX
crystallisation data of Kim et al.49 can be fit by the Gompertz
function.53 The fits are approximately as good as the Weibull
function fits shown in Fig. 12.53

In this section we derived the Gompertz function using an
explicitly time-dependent h(t), but note that the k0 = 0 limit of
the Pound–La Mer model (shown in eqn (8)) gives the same
function. So, fitting the Pound–La Mer model with k0 = 0 is
equivalent to fitting the Gompertz model. However the fit
parameters are interpreted differently in the two cases. The
parameters of the two models are related by m = −R0/λ > 0 and
k = −λ. Also note that, for the Pound–La Mer model both
parameters must be positive, while for the time-evolving model,
λ can have either sign while R0 must be positive. This means
that in the time-evolving model, nucleation can either be class
II (λ< 0) or class III (λ> 0), whereas for the k0 = 0 Pound–LaMer
case it is always class II.

When the initial rate R0 is much lower than a λ > 0, the 1
in parentheses in eqn (10) can be neglected and the
Gompertz function simplifies to

P(t) ≃ exp[−exp[λt + ln(R0/λ)]] Gumbel (11)

where we have noted that eqn (11) has the functional form of
the Gumbel distribution of extreme-value statistics.71 The
same function is also obtained by setting ξ = 0 in eqn (12)
below. Thus an equation of this form can also be obtained
from a different model. Fits of eqn (11) to simulation data for
nucleation on a dissolving surface are shown as the dotted
curves in Fig. 2. They provide reasonably good fits to the data.
This journal is © The Royal Society of Chemistry 2014
5.3 Extreme-value statistics models

These are statistical models that are based on the assumption
that the observed nucleation time is the minimum of a very
large set of nucleation times at the individual sites. They are
useful for modelling the effect of quenched disorder; only
when the rate is not in the thermodynamic limit do they make
useful predictions. If the rate is in the thermodynamic limit
they give results that are more easily obtained by other means,
e.g., if the rate is constant and in the thermodynamic limit,
they just yield an exponential P(t).

Extreme value statistics is the branch of statistics that deals
with the situation where we have a large number N of random
variables and want to know the probability distribution function
of the smallest or largest one of these N variables. For example,
if we are given the probability distribution function for the
heights of British men, then extreme value statistics allows us
to determine the probability that say the tallest one of 100 British
men is above 2 m. See Castillo71 or Jondeau et al.72 for an
introduction to extreme-value statistics. The use of extreme
value statistics in nucleation was pioneered by Levine in
1950,3,73,74 although he did not use the term extreme-value
statistics. However this was not for isothermal crystallisation
but for crystallisation at a constant cooling rate. I considered the
use of extreme value statistics for isothermal nucleation in 2013.10

We consider a simple extreme-value statistics model here.
The model relies on the following three assumptions:

1. Each droplet contains a total of N nucleation sites.
These sites are independent.

2. The nucleation sites have a wide range of nucleation rates
and so a wide range of nucleation times, ti. These nucleation
times ti are drawn from a probability density function p1(ti).

3. Only one nucleation event is required to induce
crystallisation of the droplet, and so the droplet crystallises
at a time equal to the shortest ti of the set of N values from
the N nucleation sites.

Once assumption 3 is made, the crystallisation time t is
the minimum of a large number of independent random
variables and so we can use extreme-value statistics.71,72 Also,
note that the distribution of the rates at the nucleation sites
has to be sufficiently broad for the droplet rate to not be in
the thermodynamic limit. Otherwise, the P(t) can be obtained
without using extreme-value statistics, and will be exponential
if it is one-step and with a time-independent rate.

Extreme-value statistics then tells us that in the large N
limit, and if relatively weak conditions are imposed on p1,
P(t) is given by what is called the generalised extreme value
(GEV) distribution. The GEV of extreme-value statistics is con-
ventionally written as71,72,75

P t
t w

t w
  

     

    













exp exp

exp
/

 

  


0

1 0
1


GEV (12)

See ref. 71, 72, 75 for details. The conditions on p1 that are
required to obtain the GEV are also described there. Roughly
CrystEngComm, 2014, 16, 6506–6522 | 6517
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speaking they amount to assuming that N is large enough that
only the small time tail of p1 matters and that this should
have a simple functional form, e.g., power law, exponential,
etc. Particularly if there is a complex mixture of impurities in
the droplets this assumption may be rather approximate.

The GEV is a three-parameter cumulative probability
distribution function. The parameters are a width parameter
w, a location parameter μ, and an exponent ξ. The GEV
includes three different classes of extreme-value distribution,
with each corresponding to a range of values of ξ. For ξ = 0,
the GEV is the Gumbel distribution, while for ξ > 0, the GEV
is the Fréchet distribution, and for ξ < 0, it is the Weibull
distribution.

If we set ξ < 0, and insist that P(t = 0) = 1, then the GEV
of eqn (12) reduces to the Weibull of eqn (3). Setting P(t = 0) =
1 reduces the number of parameters from three to two, as
then μ = −w/ξ. The Weibull parameters are related to the GEV
parameters by β = −1/ξ and τ = w/ξ. It is also worth noting
that for ξ = −1, the GEV reduces to a simple exponential.

We can use extreme-value statistics to determine the
experimental observable, P(t), from the property of the
impurities nucleation is occurring on, p1(ti). Or we can use it
in the other direction, to infer properties of p1(ti) from an
experimental P(t).

The probability density function p1(ti) will depend on
whatever surfaces are present. And its form determines
whether P(t) is Weibull, Fréchet or Gumbel. It was the
Weibull function, eqn (3), that fitted the data in Fig. 6, 8 and
12. The requirements on p1 needed to get the Weibull
distribution are discussed in extreme-value statistics
textbooks.71,72 Very roughly speaking, we expect the Weibull
distribution if the nucleation time t is near a hard lower limit
on p1. Here such a limit is provided by the fact that
nucleation must occur at a time t ≥ 0. In particular if p1(ti)
has a small time tail p1 ~ ti

x, with −1 < x < 0, then it is
straightforward10 to show that P(t) is a Weibull with exponent
β = x + 1 < 1. If the tail of p1 does not diverge, i.e., x ≥ 0,
then the rate is in the thermodynamic limit and P(t) is
exponential. The exponent x must be greater than −1 in order
for the integral over p1 to be finite. The integral must equal
one of course.

Thus, the data of Diao et al.,19 and Knezic et al.,38 are
consistent with the presence of nucleation sites with a
probability density of nucleation times that diverges as a
power law at short times. If this is correct, then we expect the
predictions for the scaling of the median nucleation time
with N made in section 7, to be correct.
5.4 Comparison of the three models

So far we have considered the following functions to fit
experimental P(t): Gompertz; Pound–La Mer which is a type
of modified Gompertz; and GEV (which includes Weibull).
The models are compared in Table 1. The Gompertz function
can be derived in two very different ways. One way is from a
model that assumes the rate varies from droplet to droplet.
6518 | CrystEngComm, 2014, 16, 6506–6522
Another way is from a model in which the rate is the same in
all droplets, but where this rate varies with time in each
droplet. When the Gompertz function is derived from a
model that assumes variable rates, the effective rate h(t) can
only be a decreasing function of time.

Experiments of the sort shown in Fig. 10, from
Laval et al.'s40 work, can determine if the nucleation rates in
a set of droplets are the same or if there is droplet to droplet
variability. It should however be noted that these necessarily
involve repeated crystallisation cycles of the same sample,
and so as Laval et al. discuss, care must be taken to eliminate
the possibility of history dependence on the nucleation
kinetics. See also Durant and Shaw48 who found that the
temperature at which water droplets froze varied between the
first few temperature cycles and subsequent cycles.

Distinguishing between the Pound–La Mer and GEV
models, which both have quenched disorder, is perhaps best
done by fitting both to the data and determining if the fits
are better for one function, and checking if the best-fit
parameter values are physically reasonable.76 The book of
Castillo71 discusses general fitting approaches for the GEV. It
is worth noting that he does not recommend the standard
unweighted least-squares fitting procedure as that gives a low
weight to errors in the tail of P(t).

6. Survival data analysis

This review focuses on P(t), which is what is called a survival
function;5,6 it is the survival function of the liquid state.
There is an entire sub-field of statistics called ‘survival data
analysis’ devoted to analysing the statistics of P(t) and h(t).
For example, in medicine the probability of a person
surviving to an age t is studied, whereas in engineering the
probability of a machine still functioning at time t is often of
interest. See the textbooks by Lee,5 and by Cox and Oakes6

for introductions to this statistics field.
Perhaps surprisingly, the methods developed in survival

data analysis have not been applied to crystallisation. I
believe there are opportunities to apply these methods to
nucleation. For example, although the exponential, Weibull
and Gompertz distributions are all widely used in survival
data analysis,5,6 other distributions are also used, and at least
some of them may be useful in the study of nucleation. For
example, it has been suggested that nucleation of the final
crystal produced may in some systems be a two-step
process.15,55,77–81 This includes important systems such as
calcium carbonate15,78 and the protein lysozyme.15,55,81 In the
field of survival data analysis, it is known that P(t) for a two-
step process with the two steps having similar rates should
be well approximated by what is called an Erlangian
distribution.5 The Erlangian distribution is a special case of
the Gamma distribution. Thus if nucleation of the crystal
really is two step and the rates are comparable, then we
already have a ready-made prediction for P(t). All we have do
is perform constant-supersaturation nucleation experiments.
Note that if the rates of the two steps are very different then
This journal is © The Royal Society of Chemistry 2014
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typically the slower one will be rate determining, and the
nucleation will be effectively one-step.

One result in the field of survival data analysis may be
particularly useful. Proschan35 considered a P(t) of the form

P t M k t
j

M

i    


1

1
exp (13)

for ki the rate in object i. He was considering failures of air-
conditioning units on airliners but his findings are general.
In our crystallising droplets, the objects would be M droplets,
with ki the nucleation rate in droplet i.

If classical nucleation theory is a reasonable description of
the physics of nucleation in M droplets, but where the
barriers vary from droplet to droplet, P(t) will be of this form.
Put into the language of this review, Proschan's35 result is
that whenever P(t) can be written as in eqn (13), nucleation
must be in class II, i.e., h(t) must be a decreasing function of
time.

7. Scaling with system size

All the models make predictions for the scaling of the
nucleation times with system size, and these predictions are
different. So varying the size of the droplets, or the amount
of material added to induce nucleation, are useful ways of
testing the models. Also, as the system-size scaling is so
variable, if we wish to use results from small droplets to
make predictions for crystallisation in larger systems, then it
is essential to have at least some understanding of the
mechanism of nucleation.

The characteristic timescale for nucleation can be
measured using the median nucleation time tMED, which is
by definition such that P(tMED) = 1/2. The simple model of a
constant rate that is the same in all droplets, gives an
exponential P(t) and tMED ~ 1/N for a nucleation rate k ∝ N
the number of nucleation sites.

Earlier work by the author10 on the Weibull model of
extreme-value statistics with β < 1, found that the median
nucleation time varies with the number of nucleation sites as
N−1/β. This means that the smaller the value of β the faster
the nucleation timescale varies with N.

For the Pound–La Mer model in the k0 = 0 limit, tMED

varies as

t
k mMED   








1 1 2ln ln
(14)

The median nucleation time can also vary rapidly for this
model. It diverges to infinity as m → ln 2 ≃ 0.69 from above.
This is because for m < ln 2 more than half the droplets do
not have any impurity particles in them and so never
nucleate. In the other limit, that of large m, we can expand
out the logarithm and tMED then scales as 1/m, i.e., one over
the mean number of impurities. This is just we should expect
as here the rate is in the thermodynamic limit.
This journal is © The Royal Society of Chemistry 2014
The other model we considered was one where the
nucleation rate was increasing with time. This gives a
Gompertz distribution for P(t) which simplifies to a Gumbel
function, eqn (11), in the limit R0 ≪ λ. Then the scaling of
tMED is given by
t RMED 



lnln ln ln2 1

0


 
(15)

The median nucleation time scales logarithmically
with the initial rate R0. We expect R0 ∝ N, the number of
nucleation sites. Then we have a very slow, tMED ~ −lnN,
scaling of the nucleation timescale with system size.

Having considered all three models, we can present an
overview of the scalings of the median nucleation time
MED

exponential 

Weibull 1
rate increasing



1

1 1

N P t

N
N

 
 



  <
ln   with t









(16)

It is notable that for the systems with rates not in the
thermodynamic limit (Weibull and Pound–La Mer), the
median nucleation time varies rapidly with the number of
nucleation sites. Here by rapidly we mean faster than 1/N.
And by contrast when the nucleation time is set by the time
for an initially slow rate (R0) to increase, the median
nucleation time varies only slowly with N.

We end this section on scaling with size with a few example
predictions. Diao et al.24 studied the crystallisation of ROY
from solution. They did so with nothing added, and so where
nucleation presumably occurs on impurities, and with the
addition of poly(ethylene glycol) diacrylate (PEGDA) hydrogel
particles. With the PEGDA hydrogel particles their fit to the
surviving fraction of liquid drops yielded a best-fit value of
β = 0.25. The prediction10 is then that on scaling the exposed
surface area A of hydrogel, the median time to observe
crystallisation will scale as A−4. Without the hydrogel particles,
the best-fit value was found to be β = 0.37, and so at constant
impurity concentration and assuming the impurities are in the
bulk of the liquid drop bulk (not at the surface) the median
nucleation time should scale with the volume V, as V−2.7. We
should note that the data of Diao et al.24 are not perfectly fit by
the stretched exponential function, and so there is probably
considerable uncertainty in the exact value of the exponent,
and the model itself is of course an approximation.

8. Large dynamic range in nucleation
times

Carvalho and Dalnoki-Veress note that “upon cooling there is
a population of droplets that nucleate at higher temperatures
either because of heterogeneous nucleation or because the
variations in the substrate result in a range of activation
barriers to nucleation.” A fraction of their droplets crystallise
while they are cooling to the temperature at which they will
study isothermal crystallisation. As we can see in Fig. 4 most
CrystEngComm, 2014, 16, 6506–6522 | 6519
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of the remainder crystallise over the 1500 s of their experiment.
Clearly some of the droplets have barriers to nucleation that
are so much lower than the barriers in the majority of the
droplets that they cannot be studied in the same experiment.
In effect the dynamic range of nucleation rates in the droplets
is too large to be studied in an experiment that can only access
timescales from seconds to a thousand seconds.

This observation that the experiment is not able to study the
nucleation times of all droplets is common.9,12,13,22–25,39,40,43

For example, in Pound and La Mer's work on tin droplets39

the P(t) curves often seem to be plateauing at fractions of
tens of per cent, and in all cases some droplets remain unfrozen
at the end of the experiment. Also, some droplets froze so
rapidly that the nucleation times are at the time resolution of
the experiments. Diao and coworkers observed similar
behaviour.22,24

Experiments typically have a dynamic range of around 100
or more, so the fact that this is not enough to observe
nucleation in all droplets implies that the dynamic range of
nucleation rates is larger than this, possibly much larger. It
appears that it is common that the rate is so far from the
thermodynamic limit that the dynamic range of rates is at
least a thousand and possibly much more.

9. Conclusions

“Everything should be made as simple as possible, but no
simpler” is a very appealing principle, often attributed to
Albert Einstein. The standard theory of nucleation is classical
nucleation theory. This makes a number of simplifying
assumptions.15,55,58 Essentially exact computer simulations of
simple models shows that these simplifying assumptions are
typically reasonable approximations.55,67,82 So for homoge-
neous nucleation, it seems likely that classical nucleation
theory is reasonable for many systems.

For example, in the important example of water, we used
the Duft and Leisner8 data to obtain an estimated nucleation
barrier of 55kT, at a supercooling of 36 °C. Computer
simulations plus ideas from classical nucleation theory were
used by Sanz et al.83 to estimate a barrier of 85kT. This was
at a supercooling of 35 °C, and was for a simple water model
(TIP4P/ice). Given that both numbers are estimates and the
model for water is approximate, this is actually good
agreement.

However, homogeneous nucleation is very much the
exception. Heterogeneous nucleation is far more common.
Here it is still possible that classical nucleation theory may
provide a reasonable estimate of the barrier to nucleation at
a particular point on a surface. But, apart from in the study
of ice nucleation, it is often assumed that there is just one
barrier and that this is the same in all droplets. The large
volume of nucleation data in our class II, directly contradicts
this assumption of a single barrier, as does the huge
dynamic range of nucleation times often observed. So, this
assumption is too simple. It should be abandoned, except
where there is evidence for it, i.e., an exponential P(t).
6520 | CrystEngComm, 2014, 16, 6506–6522
To understand nucleation data, it would be very helpful
to obtain direct information on the surfaces nucleation is
actually occurring on. One way is to add material that
induces nucleation. We then have a good idea of at least
the basic chemistry of the surface. Also, Parmar et al.,59

Asanithi et al.28 and Jawor-Baczynska et al.79 have all done
work on characterising objects in solution that affect
nucleation. However the nucleation site may be only 10 nm
across and so its geometry and any deviations from typical
surface chemistry are unknown even in these cases. Future
work should address this difficult problem of better char-
acterising the sites where nucleation occurs. Finally, in many
systems it may also be important to determine where in the
liquid nucleation is occurring. For example, if it is occurring
on an impurity, is this impurity at a surface or is it even at a
contact line.15,18
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