Cite this: CrystEngComm, 2014, 16, 4587

Received 21st January 2014,
Accepted 10th March 2014

DOI: 10.1039/c4ce00155a
www.rsc.org/crystengcomm

Effect of anion on $\mathrm{Ag}(\mathrm{I})$ meso-helical chains formed with 4,4'-dipyridyl ketone: solvent versus anion bridging and anion effects on the strength of ligand binding \dagger

Komal M. Patil, Scott A. Cameron, Stephen C. Moratti and Lyall R. Hanton*

Abstract

The synthesis and characterisation by IR spectroscopy and elemental analysis of ten new $\mathrm{Ag}(1)-\mathrm{L}$ complexes are described. Of these complexes, nine are characterised by single crystal X-ray diffraction: $\left\{[\mathrm{Ag}(\mathrm{L})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}(1),\left\{[\mathrm{Ag}(\mathrm{L})]\left(\mathrm{ClO}_{4}\right) \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}(2),\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}^{2} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (3), $\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}_{2}\right)_{2}(\mathrm{ClO})_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}\right\}_{\infty}(4),\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}_{2}\right](\mathrm{PF})_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right\}_{\infty}(5),\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}\right.$ $(6),\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{BF}_{4}\right)\right\}_{\infty}(7),\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right][\mathrm{PF})_{6}\right\}_{\infty}(8)$ and $\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{PF}_{6}\right) \cdot 2 \mathrm{CH}_{3} \mathrm{CN}_{\}_{\infty}}(9)\right.$. The primary structures of $1-6$ were meso-helical one-dimensional (1D) polymers, while 7 was a helical 1D polymer and 8 and 9 were $(4,4)$ networks. Complexes 1-5 possessed 1:1 metal-to-ligand ($M: L$) ratios, while complexes $6-9$ possessed $1: 2 \mathrm{M}: \mathrm{L}$ ratios. The meso-helical chains of complexes 1 and 2 were di- μ-bridged at the $\mathrm{Ag}(1)$ nodes by the counteranions $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$and $\mathrm{ClO}_{4}{ }^{-}$, respectively, while the meso-helical chains of complexes $3-5$ were di- μ-bridged at the $\mathrm{Ag}(1)$ nodes by the $\mathrm{CH}_{3} \mathrm{CN}$ molecules. The effect of counteranions and solvent molecules on delicate anion-Ag, $\pi-\pi$-stacking and argentophilic interactions was studied through complexes 1-5. The 1D chains of complexes 6 and 7 possessed monodentate L ligand side arms. The uncoordinated N -donors of these side arms were inclined towards the $\mathrm{Ag}(1)$ centre of the adjacent chains and demonstrated narrower $\mathrm{Ag}-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{(\text {pyridy) }}$ angles. In the case of complexes 8 and 9 , wider $\mathrm{Ag}-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\text {(pyridy) }}$ angles and stronger $\mathrm{N} \cdots \mathrm{Ag}$ interactions resulted in (4,4) nets. The effects of the size and the nature of the counteranions on the topology were studied through complexes 6-9.

Introduction

1D architectures form an extensively explored area of coordination polymer chemistry. About 40% of the total reported coordination polymers in the last decade are 1D in nature. Yet there have been very few reviews dedicated to 1D coordination polymers between the years 1993 and 2010, because many researchers perhaps consider 1D coordination polymers to be structurally less attractive than their higher dimensional counterparts. ${ }^{1}$ However, through weaker interactions these simple and seemingly less attractive structures possess the ability to demonstrate unusual and interesting architectures. In this regard, $\operatorname{Ag}(\mathrm{I})$ is particularly useful, and a significant number of 1D coordination polymers contain $\mathrm{Ag}(\mathrm{I})$, as its low dimensional

[^0]and accommodating stereochemistry often allows it to interact with additional donor atoms from solvent or a counteranion. ${ }^{2}$

Rigid linear bridging ligands enable the formation of predictable arrays because of their configuration, coordination activity, and relative orientation of the donor groups. Rigid linear linking ligands such as 4,4'-bipyridine and pyrazine have already been extensively studied for designing linear 1D coordination polymers and higher dimensional networks. ${ }^{3}$ Introduction of a bend in these ligands presents a new variable to the study of the coordinating aspects of these linear linkers. The bend provides an opportunity to study lower dimensional structures such as helical, ${ }^{4}$ meso-helical, ${ }^{5,6}$ zigzag ${ }^{7-9}$ chains and other structures of current interest. ${ }^{10}$ One simple bent ligand is 4,4'-dipyridyl ketone (L) (Fig. 1). In the solid state, L contains a chiral axis passing through the carbonyl group of the ligand. NDDO calculations reported for L determined that the two rotational energy maxima for rotation of both pyridine rings through or orthogonal to the molecular plane are approximately 45 and $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. ${ }^{11}$ In solution, these two enantiomers readily interconvert from one form to another because of the low

Fig. 1 Top: view from the X-ray structure of L showing this ligand as a two-bladed molecular propeller; ${ }^{16}$ bottom: two enantiomers of L.
energy of conversion, effectively making them appear achiral. ${ }^{12,13}$ However in the solid state, the conjugating effect between $\mathrm{C}=\mathrm{O}$ and Py-rings and the hydrogen repulsion in the planar form provide resonance stability to this ligand. ${ }^{11}$ The process of stabilisation "freezes" the racemates making L behave as a two-bladed chiral molecular propeller in the solid state. ${ }^{14}$ An analogous ligand, 4,4'-dipyridyl amine, acts in a similar fashion as a two-bladed molecular propeller. ${ }^{15}$ Surprisingly, there have been a few examples of the use of \mathbf{L} in coordination polymer chemistry. LaDuca and co-workers have reported the use of \mathbf{L} as a linking ligand with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ forming three-fold double helices of $[\mathrm{Cu}(\mathrm{L})]_{n}{ }^{12}$ and with AgNO_{3} forming zigzag 1D chains of $\left[\mathrm{Ag}(\mathrm{L})\left(\mathrm{NO}_{3}\right)\right]_{n} .{ }^{13}$ The \mathbf{L} ligand formed a pair of 1D meso-helical chains $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridged at the $\operatorname{Ag}(\mathrm{I})$ nodes when a $\mathrm{CF}_{3} \mathrm{COO}^{-}$counteranion was employed. These chains extended their framework by virtue of weak $\pi-\pi$ interactions. ${ }^{17}$

Linear and zigzag polymers are widely encountered in the literature. Helical polymers have gained added interest in the past decade because of their inherent chirality, ${ }^{18}$ while meso-helical polymers remain relatively uncommon. A meso-helix represents an alternative way, compared to a helix, of combining chiral components into an extended structure. ${ }^{19}$ Thus, a lemniscate (∞) or figure of eight can be converted into a meso-helix by transforming it into the third dimension (Fig. 2). ${ }^{20}$ This achiral 1D strand consists of alternate linkages of the M - and P-forms of the ligands to the metal centre (M). The chain is thus represented as $-M-(\mathrm{M})-P-(\mathrm{M})-M-(\mathrm{M})-P-$ and can sometimes be misinterpreted as a zigzag chain. ${ }^{21,22}$

Herein, we describe the use of the bent bridging ligand \mathbf{L} to form two series of related coordination polymers of $\mathrm{Ag}(\mathrm{I})$ salts with varying M:L ratios (1:1 and 1:2). These coordination polymers were structurally characterised by single crystal X-ray diffraction, IR spectroscopy and elemental analysis. The first $\operatorname{Ag}(\mathrm{I})$ series comprised six $1: 1$ complexes ($1-3,3 \mathrm{a}, 4$, and 5) generated by employing the counteranions $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}{ }^{-}$ and $\mathrm{PF}_{6}{ }^{-}$. Since all of the $1: 1 \mathrm{Ag}-\mathrm{L}$ complexes were meso-helical 1D chains, the diversity in counteranions did not play a profound role in determining the primary structure. However, these coordination polymers provided an opportunity to study the delicate anion- Ag versus $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Ag}$ bridging interactions and their consequences for π - π-stacking and

Fig. 2 Schematic representation of the formation of the helical and meso-helical chains. Enantiomeric ligands are represented as red and blue forms.
argentophilic interactions in this series of related 1D meso-helical chains. The second $\mathrm{Ag}(\mathrm{I})$ series comprised four related $1: 2$ complexes ($6-9$) generated by employing the counteranions $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, \mathrm{PF}_{6}{ }^{-}$and $\mathrm{BF}_{4}{ }^{-}$. In contrast to the first series, the primary structure of these coordination polymers was influenced by the nature of the counteranion, which moderated the extent of interaction between the N -pyridyl (N_{py}) donor on the peripheral arms and the $\mathrm{Ag}(\mathrm{I})$ ion. The counteranion did not directly interact with the $\mathrm{Ag}(\mathrm{I})$ ion.

Results and discussion

Coordination polymers 1-9 were all prepared using the same $1: 1 \mathrm{v} / \mathrm{v} \mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{OH}$ solvent system. Reactions were carried out in $1: 1$ and $1: 2 \mathrm{M}: \mathrm{L}$ molar ratios. The products formed showed a considerable degree of sensitivity towards the nature of the counteranion and also the $\mathrm{M}: \mathrm{L}$ ratio. For $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ and AgBF_{4}, two products were isolated and the final products had M:L ratios in agreement with the starting ratios as determined by microanalyses. For AgPF_{6}, regardless of the $\mathrm{M}: \mathrm{L}$ ratio used, a mixture of products was formed and a $1: 1$ and two $1: 2$ pseudo-polymorphic coordination polymers were isolated. For AgClO_{4}, regardless of the M:L ratio, only polymorphic 1:1 products could be isolated. Even when a $2: 1 \mathrm{M}: \mathrm{L}$ ratio was used, only a $1: 1$ product was formed which was found to be a pseudo-polymorph of the other two $1: 1 \mathrm{AgClO}_{4}$ products.

Synthesis and structure of $\left\{[\mathrm{Ag}(\mathrm{L})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot \mathbf{1} / \mathbf{2} \mathbf{H}_{2} \mathrm{O}\right\}_{\infty}, 1$

The 1:1 molar reaction between $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ and L resulted in a \tan solid. The microanalysis was consistent with the $1: 1$ formulation. Infrared studies of these samples confirmed the
presence of L as the peaks at 1682 (ketonic $\mathrm{C}=\mathrm{O}$ group), 3124-3053 (aromatic C-H stretching), 1611 and 1555 ($\mathrm{C}=\mathrm{C}$ bending) and $759-660 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ bending) were observed. The peak corresponding to the $\mathrm{C}=\mathrm{O}$ moiety of this complex was lower $\left(1682 \mathrm{~cm}^{-1}\right)$ than that observed in the free ligand ($1731 \mathrm{~cm}^{-1}$). The peaks corresponding to the stretching of the $\mathrm{S}=\mathrm{O}, \mathrm{C}-\mathrm{F}, \mathrm{S}-\mathrm{O}$ and $\mathrm{C}-\mathrm{S}$ bonds of the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion were observed at 1330-1271, 12361018, $940-844$ and $759-572 \mathrm{~cm}^{-1}$, respectively. In infrared studies of $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$, Johnston and Shriver have demonstrated that the peak at $1271 \mathrm{~cm}^{-1}$ arises from asymmetric SO_{3} stretching, at $1236 \mathrm{~cm}^{-1}$ from symmetric CF_{3} stretching and at $760 \mathrm{~cm}^{-1}$ due to the CF_{3} angle deformation and the symmetric C-S stretching. ${ }^{23}$

Complex 1 crystallised in the monoclinic space group $\mathrm{C} 2 / \mathrm{c}$ with one $\mathrm{Ag}(\mathrm{I})$ cation, one complete L ligand, one $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$ counteranion and half a $\mathrm{H}_{2} \mathrm{O}$ of crystallisation in the asymmetric unit. Complex 1 formed a 1D meso-helical strand running along the $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ diagonal axis (Fig. 3). The $\mathrm{Ag}(\mathrm{I})$ ion was essentially linear with an $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ angle of $175.72(6)^{\circ}$. The slight bend was a consequence of weak interactions between the $\mathrm{Ag}(\mathrm{I})$ cation and the O -atoms of adjacent $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anions (Fig. 3). ${ }^{24}$ The pyridyl rings of \mathbf{L} formed a two-bladed chiral propeller at an angle between the rings of $50.37(9)^{\circ}$ and generated 1D strands. From the viewpoint of chirality, these 1D

Fig. 3 Left: view of the 1D cationic meso-helical polymeric strand of 1 running along the $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ direction (crystallographic numbering; ellipsoids 50% probability level). Right: view showing weak bridging in 1 by $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$counteranions. Only the major component of the disordered $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$counteranion is shown and $\mathrm{H}_{2} \mathrm{O}$ molecules have been omitted for clarity.
strands consisted of alternate linkages of the M - and P-forms of the ligands with the $\mathrm{Ag}(\mathrm{I})$ ions. The chain was thus represented as $-M-(\mathrm{Ag})-P-(\mathrm{Ag})-M-(\mathrm{Ag})-P-$, resulting in a meso-helical structure. ${ }^{19}$

Adjacent meso-helical chains were formed into antiparallel pairs through a weak $\pi-\pi$ interaction [centroid-to-centroid distance 3.803(2) Å; inter-planar dihedral angle 9.80(9) ${ }^{\circ}$, minimum interatomic distance $3.615(2) \AA$; minimum ring slippage between planes $1.664 \AA$ A]. The pairs of chains were $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridged by weak $\mathrm{Ag} \cdots \mathrm{OSO}_{2} \mathrm{CF}_{3}$ interactions which appeared to pull the $\mathrm{Ag}(\mathrm{I})$ ions closer together. The $\mathrm{Ag} \cdots \mathrm{Ag}^{2}$ distance was found to be $3.4704(16) \AA$. The bridging $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$ anions on each side of the pairs of chains were linked together by hydrogen-bonding interactions with $\mathrm{H}_{2} \mathrm{O}$ of solvate $[\mathrm{H} \cdots \mathrm{O}$ distance of 1.94(4) A corresponding to an $\mathrm{O} \cdots \mathrm{O}$ distance of $2.71(2) \AA]$. The pairs of chains interact with an adjacent pair of chains through $\pi-\pi$-interactions [centroid-to-centroid distance $3.766(2) \AA$, inter-planar dihedral angle 0°, minimum interatomic distance $3.746(2) \AA$; ring slippage between planes 1.680 A] such that the rings involved in the interaction are registered every fifth pyridyl ring along the chains.

Synthesis and structure of $\left\{[\mathrm{Ag}(\mathrm{L})]\left(\mathrm{ClO}_{4}\right) \cdot \mathbf{1} / \mathbf{2} \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}, 2$

Evaporation of the solvents from a $2: 1$ molar reaction between AgClO_{4} and L resulted in X-ray quality colourless crystals of 2 . However, the microanalysis was consistent with a 1:1 formulation. Infrared studies of these samples confirmed the presence of L as the peaks at 1680 (ketonic $\mathrm{C}=\mathrm{O}$ group), 3095 (aromatic C-H stretching), 1612-1555 ($\mathrm{C}=\mathrm{C}$ bending) and $759-657 \mathrm{~cm}^{-1}$ (aromatic C-H bending) were observed. The presence of peaks at $1285,1055,952$ and $691-619 \mathrm{~cm}^{-1}$ indicated the presence of ClO_{4}^{-}.

Complex 2 crystallised in the monoclinic space group $C 2 / c$ with one $\mathrm{Ag}(\mathrm{I})$ cation, one complete L ligand, one $\mathrm{ClO}_{4}{ }^{-}$ counteranion and half a $\mathrm{H}_{2} \mathrm{O}$ of crystallisation in the asymmetric unit. It formed infinite 1D meso-helical strands running along the $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ diagonal axis (Fig. 4). The $\mathrm{Ag}(\mathrm{I})$ ion was essentially linear with an $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ angle of $170.12(6)^{\circ} .{ }^{24}$ The slight bend indicated a relatively weak interaction between an adjacent $\mathrm{ClO}_{4}{ }^{-}$anion at $2.727(2) \AA$ and the $\mathrm{Ag}(\mathrm{I})$ cation. The $\mathrm{Ag} \cdots \mathrm{OClO}_{3}$ interactions fell in the middle of the range of $\mathrm{Ag} \cdots \mathrm{O}$ contact lengths [2.291-3.238 \AA] for similar twocoordinated $\mathrm{Ag} \cdots \mathrm{OClO}_{3}$ complexes as indicated in the CSD database (version 5.33). ${ }^{25,26}$ The pyridyl rings of L formed a two-bladed chiral propeller and registered an angle of $53.37(8)^{\circ}$ between the planes of the rings. This complex possessed achiral meso-helical 1D chains similar to 1.

The adjacent meso-helical chains were formed into antiparallel pairs through two complementary interactions. One of which was weak π - π-interactions involving all of the pyridine rings of the adjacent chain [centroid-to-centroid distance $3.763(2) \AA$, inter-planar dihedral angle $3.62(8)^{\circ}$, minimum interatomic distance $3.593(2) \AA$; minimum ring slippage between planes $1.589 \AA$ £ . The other involved the Ag ions of the chains being $\mathrm{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridged together by $\mathrm{ClO}_{4}{ }^{-}$

Fig. 4 Left: view of the 1D cationic meso-helical polymeric strand of 2 running along the $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ direction (crystallographic numbering; ellipsoids 50% probability level). Right: view showing weak bridging in 2 by ClO_{4}^{-}counteranions. $\mathrm{H}_{2} \mathrm{O}$ molecules were omitted for clarity.
anions on each side of the meso-helical pair (Fig. 4). The $\mathrm{Ag} \cdots \mathrm{Ag}$ distance was $3.369(17) \AA$ and the $\mathrm{Ag} \cdots \mathrm{OClO}_{3}$ distances were $2.727(2) \AA$ and $2.905(2) \AA$. The bridging $\mathrm{ClO}_{4}{ }^{-}$ anions on each side of the pairs of chains were linked together by H -bonding interactions with $\mathrm{H}_{2} \mathrm{O}$ of solvate [$\mathrm{H} \cdots \mathrm{O}$ distance of $2.37(4) \AA$ corresponding to an $\mathrm{O} \cdots \mathrm{O}$ distance of $3.039(3) \AA]$. There were no other noteworthy H -bonding interactions observed in the structure.

Synthesis and structure of

$\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}, 3$
Slow evaporation of the solvents from a 1:2 molar reaction between AgClO_{4} and L resulted in X-ray quality colourless crystals of 3 . Again, the microanalysis was consistent with a 1:1 formulation. Infrared analysis revealed that the peak corresponding to the $\mathrm{C}=\mathrm{O}$ moiety of this complex was lower $\left(1665 \mathrm{~cm}^{-1}\right)$ than that observed in $2\left(1680 \mathrm{~cm}^{-1}\right)$. The peaks corresponding to the stretching and bending of aromatic rings of \mathbf{L} and those for $\mathrm{ClO}_{4}{ }^{-}$were similar to 2 . Slow evaporation of the solvents from a 1:1 molar reaction between AgBF_{4} and L resulted in colourless crystals of $\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (3a) which were found to be isomorphous with 3 (experimental section).

Complex 3 formed infinite 1D meso-helical strands along the c axis which through bridging interactions were formed into two-dimensional (2D) sheets in the ac plane.

It crystallised in the monoclinic space group $P 2_{1} / c$ with two crystallographically distinct $\mathrm{Ag}(\mathrm{I})$ cations, two complete L ligands, two ClO_{4}^{-}counteranions, three $\mathrm{CH}_{3} \mathrm{CN}$ molecules and a $\mathrm{H}_{2} \mathrm{O}$ of crystallisation in the asymmetric unit. The crystallographically distinct $\mathrm{Ag}(\mathrm{I})$ cations were present in different 1D meso-helical polymeric strands running parallel to each other along the c axis (Fig. 5). One $\operatorname{Ag}(\mathrm{I})$ cation possessed a linear geometry by coordinating with two N -donors of the L ligand, while the other $\mathrm{Ag}(\mathrm{I})$ cation possessed a T-shaped geometry by exhibiting additional coordination to a $\mathrm{CH}_{3} \mathrm{CN}$ molecule. The linear $\mathrm{Ag}(\mathrm{I})$ cation displayed a slight bend and the $\mathrm{N}_{\mathrm{py}}-\mathrm{Ag} 2-\mathrm{N}_{\mathrm{py}}$ angle measured $174.57(14) \AA$. This bend may have been the consequence of the weak $\mathrm{Ag} 2 \cdots \mathrm{OClO}_{3}$ interactions [$\mathrm{O} 23 \cdots \mathrm{Ag} 2$ contact was $2.742(4) \AA]^{24}$ and the weak $\mathrm{N} \cdots \mathrm{Ag}$ interactions with the free $\mathrm{CH}_{3} \mathrm{CN}$ molecules [the $\mathrm{N} 7 \cdots \mathrm{Ag} 2$ contact was 2.853(5) \AA and the $\mathrm{N} 6 \cdots \mathrm{Ag} 2$ contact was $3.023(4) \AA]$. The $\mathrm{CH}_{3} \mathrm{CN} \cdots \mathrm{Ag}$ contacts for the two-coordinated $\mathrm{Ag}(\mathrm{I})$ cations were in the range of $2.555-3.265 \AA^{\circ} .^{25,26} \mathrm{~A} \mathrm{CH}_{3} \mathrm{CN}$ molecule coordinated to Ag1 at nearly perpendicular angles [the $\mathrm{N}(1)-\mathrm{Ag}(1)-\mathrm{N}(5)$ and $\mathrm{N}(5)-\mathrm{Ag}(1)-\mathrm{N}(2 \mathrm{~A})$ angles were $95.87(14)^{\circ}$ and $94.84(14)^{\circ}$, respectively] and generated T-shaped $\mathrm{Ag}(\mathrm{I})$ nodes. The $\mathrm{N}_{\mathrm{CH} 3 \mathrm{CN}}-\mathrm{Ag}$ distance was $2.505(4) \AA$. The $\mathrm{N}_{\mathrm{py}}-\mathrm{Ag} 1-\mathrm{N}_{\mathrm{py}}$ angle of the T-shaped $\mathrm{Ag}(\mathrm{I})$ cation was $163.77(14)^{\circ}$. The T-shaped Ag1 displayed a distorted geometry and deviated from the

Fig. 5 Left: view of the two distinct 1D cationic meso-helical polymeric strands of 3 running along the c axis (crystallographic numbering; ellipsoids 50% probability level). Right: view showing bridging of two distinct meso-helical strands of 3 with $\mathrm{CH}_{3} \mathrm{CN}$ molecules and weak bridging of the pair of strands with ClO_{4}^{-}and $\mathrm{CH}_{3} \mathrm{CN}$ molecule. A non-interacting $\mathrm{ClO}_{4}{ }^{-}$counteranion and the $\mathrm{H}_{2} \mathrm{O}$ molecules were omitted for clarity.
plane (N 5 N 1 N 2) by $0.2144 \AA$ A . The $\mathrm{Ag}-\mathrm{N}_{\mathrm{py}}$ bond lengths were found to be 2.171(4) \AA and 2.177(4) \AA, while the $\mathrm{Ag}-\mathrm{N}_{\mathrm{py}}$ bond lengths of T-shaped $\mathrm{Ag}(\mathrm{I})$ were slightly elongated [the $\mathrm{Ag} 1 \cdots \mathrm{~N} 1$ bond length was $2.203(4) \AA$ and the $\mathrm{Ag} 1 \cdots \mathrm{~N} 2$ bond length was $2.198(4) \AA$ A. The bound $\mathrm{CH}_{3} \mathrm{CN}$ displayed a bend in the $\mathrm{C}-\mathrm{N}-\mathrm{Ag}$ angle $\left[147.0(4)^{\circ}\right]$ by virtue of the weak interaction of $\mathrm{CH}_{3} \mathrm{CN}$ with Ag 2 of a neighbouring chain [the $\mathrm{N} \cdots \mathrm{Ag} 2$ contact was $3.121(4) \AA]$. The pyridyl rings of \mathbf{L} formed a two-bladed chiral propeller and bridged the $\operatorname{Ag}(\mathrm{I})$ cores and formed infinite 1D meso-helical strands running along the c axis. The pyridyl rings of L coordinated to linear $\mathrm{Ag}(\mathrm{I})$ registered an angle of $40.3(2)^{\circ}$ between the planes of the rings, while the pyridine rings of the other L registered an angle of $46.0(2)^{\circ}$ between the planes of the rings.

The linear and T-shaped $\mathrm{Ag}(\mathrm{I})$ ions were present in separate strands and formed a pair of dissimilar strands. This pair of strands was $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridged by the $\mathrm{CH}_{3} \mathrm{CN}$ molecules (Fig. 5) and displayed weak $\pi-\pi$-stacking interactions [the centroid-to-centroid distances were 3.717(3) Å (inter-planar dihedral angle $5.5(2)^{\circ}$, minimum interatomic distance 3.601(3) Å; minimum ring slippage between planes $1.293 \AA$) and $3.749(2) \AA$ (inter-planar dihedral angle $1.8(2)^{\circ}$, minimum interatomic distance $3.701(2) \AA$; minimum ring slippage between planes $1.600 \AA$)]. These distances were registered every alternate pyridine ring throughout the pair of strands. One $\mathrm{ClO}_{4}{ }^{-}$counteranion bridged this pair of strands by virtue of $\mathrm{C}-\mathrm{H} \cdots$ anion interactions [the $\mathrm{O} 11 \cdots \mathrm{H} 13$ contact was $2.59 \AA$ and the corresponding $\mathrm{O} 11 \cdots \mathrm{H}-\mathrm{C} 13$ contact was $3.222(6) \AA$; the $\mathrm{O} 14 \cdots \mathrm{H} 1$ contact was $2.46 \AA$ and the corresponding $\mathrm{O} 14 \cdots \mathrm{H}-\mathrm{C} 1$ contact was $3.143(6) \AA$. ${ }^{2}$. The $\mathrm{Ag} \cdots \mathrm{Ag}$ distance was $3.4858(6) \AA$. A pair of strands was linked with an adjacent pair of strands by the weak bifurcated bridging ($\mu: \kappa^{2} \mathrm{O}$) of the $\mathrm{ClO}_{4}{ }^{-}$counteranion on one side [the $\mathrm{O}_{3} \mathrm{Cl}-\mathrm{O} 23 \cdots \mathrm{Ag} 1$ and the $\mathrm{O}_{3} \mathrm{Cl}-\mathrm{O} 23 \cdots \mathrm{Ag} 2$ contacts were $3.205(5) \AA$ and $2.742(4) \AA$, respectively] and the weak bifurcated bridging ($\mu: \kappa^{2} N$) of a $\mathrm{CH}_{3} \mathrm{CN}$ molecule on the other side [the $\mathrm{N} 7 \cdots \mathrm{Ag} 2$ and $\mathrm{N} 7 \cdots \mathrm{Ag} 1$ contacts were 2.854(5) and $3.329(5) \AA$, respectively] (Fig. 5). This asymmetric bridging was augmented by virtue of weak $\pi-\pi$-stacking interactions [centroid-to-centroid distance was 3.790(2) Å, inter-planar dihedral angle $1.8(2)^{\circ}$, minimum interatomic distance $3.746(2) \AA$; minimum ring slippage between planes $1.681 \AA$ A] and these interactions were registered every second pyridyl ring. The $\mathrm{H}_{2} \mathrm{O}$ of crystallisation interacted with three $\mathrm{ClO}_{4}{ }^{-}$counteranions by virtue of H-bonding interactions. One interaction was relatively strong [$\mathrm{H} \cdots \mathrm{O}$ distance of $2.17(4) \AA$ corresponding to an $\mathrm{O} \cdots \mathrm{O}$ distance of $2.966(6) \AA$] , while the other two were weaker and interacted in a bifurcated fashion [$\mathrm{H} \cdots \mathrm{O}$ distances of $2.67(7)$ and 2.81(5) A corresponding to $\mathrm{O} \cdots \mathrm{O}$ distances of 3.168(7) and 3.468(6) Å, respectively].

Synthesis and structure of

$\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}, 4$
Slow evaporation of solvent from a solution of AgClO_{4} and L in a $1: 1 \mathrm{M}: \mathrm{L}$ ratio resulted in X-ray quality colourless
crystals of 4 . The infrared spectrum revealed that the peaks corresponding to the ketonic $\mathrm{C}=\mathrm{O}$ group, stretching and bending of aromatic rings of L and $\mathrm{ClO}_{4}{ }^{-}$were similar to those of 2 .

Complex 4 formed infinite 1D meso-helical strands along the c axis which through bridging interactions were formed into 2D sheets in the ac plane. It crystallised in the monoclinic space group $P 2_{1} / c$ with two crystallographically distinct $\mathrm{Ag}(\mathrm{I})$ cations, two complete \mathbf{L} ligands, two $\mathrm{ClO}_{4}{ }^{-}$counteranions and three $\mathrm{CH}_{3} \mathrm{CN}$ molecules in the asymmetric unit. The crystallographically distinct $\mathrm{Ag}(\mathrm{I})$ cations were present in different 1D meso-helical polymeric strands running parallel to each other along the c axis (Fig. 6). One $\operatorname{Ag}(\mathrm{I})$ cation possessed a linear geometry by coordinating with two N -donors of the \mathbf{L} ligand, while the other $\mathrm{Ag}(\mathrm{I})$ cation possessed a four-coordinated geometry by exhibiting additional coordination to two $\mathrm{CH}_{3} \mathrm{CN}$ molecules. The linear $\mathrm{Ag}(\mathrm{I})$ cation displayed a slight bend and the $\mathrm{N}_{\mathrm{py}}-\mathrm{Ag} 1-\mathrm{N}_{\mathrm{py}}$ angle measured $165.85(18) \AA$. This bend may have been a consequence of the weak $\mathrm{N} \cdots \mathrm{Ag}$ interactions with the three $\mathrm{CH}_{3} \mathrm{CN}$ molecules [the $\mathrm{N} \cdots \mathrm{Ag}$ contacts ranged between 2.887(7) and 3.043(6) A]..25,26 The four-coordinated $\mathrm{Ag}(\mathrm{I})$ cation adopted a geometry between a seesaw and a trigonal pyramid as evidenced by a τ_{4} value of $0.70 .^{27}$ The N5-Ag2 and N7-Ag2 distances were $2.414(6) \AA$ and $2.657(6) \AA$, respectively. The

Fig. 6 Left: view of the two distinct 1D cationic meso-helical polymeric strands of 4 running along the c axis (crystallographic numbering; ellipsoids 50\% probability level). Right: view showing bridging of two distinct meso-helical strands of 4 with $\mathrm{CH}_{3} \mathrm{CN}$ molecules and weak bridging of the pair of strands with $\mathrm{ClO}_{4}{ }^{-}$and $\mathrm{CH}_{3} \mathrm{CN}$ molecule. Only the major component of the disordered ClO_{4}^{-}counteranion is shown and the other $\mathrm{ClO}_{4}{ }^{-}$counteranion was omitted for clarity.
$\mathrm{N}_{\mathrm{py}}-\mathrm{Ag} 2-\mathrm{N}_{\mathrm{py}}$ angle of the four-coordinated $\mathrm{Ag}(\mathrm{I})$ cation was $155.14(17)^{\circ}$. The $\mathrm{Ag} 1-\mathrm{N}_{\mathrm{py}}$ bond lengths were found to be equal [2.186(5) \AA], while the $\mathrm{Ag} 2-\mathrm{N}_{\text {py }}$ bond lengths were slightly elongated [the $\mathrm{Ag} 2 \cdots \mathrm{~N} 3$ bond length was $2.223(5) \AA$ and the $\mathrm{Ag} 2 \cdots \mathrm{~N} 4$ bond length was $2.222(5) \AA$. $]$. The bound $\mathrm{CH}_{3} \mathrm{CN}$ displayed a bend in the $\mathrm{C}-\mathrm{N}-\mathrm{Ag}$ angle [the $\mathrm{C} 23-\mathrm{N} 5-\mathrm{Ag} 2$ angle was $141.5(6)^{\circ}$ and the C27-N7-Ag2 angle was $\left.166.1(5)^{\circ}\right]$ by virtue of the weak interaction of $\mathrm{CH}_{3} \mathrm{CN}$ with Ag 1 of a neighbouring chain [the $\mathrm{N} 5 \cdots \mathrm{Ag} 1$ and $\mathrm{N} 7 \cdots \mathrm{Ag} 1$ contacts were $2.887(7)$ and $3.043(6) \AA$, respectively]. The pyridyl rings of L formed a two-bladed chiral propeller and bridged the $\mathrm{Ag}(\mathrm{I})$ cores and formed infinite 1D meso-helical strands running along the c axis. The pyridyl rings of L coordinated to the linear $\mathrm{Ag}(\mathrm{I})$ registered an angle of $45.6(3)^{\circ}$ between the planes of the rings, while the pyridine rings of the other L registered an angle of $50.7(3)^{\circ}$ between the planes of the rings.

The linear and four-coordinated $\mathrm{Ag}(\mathrm{I})$ cations were present in separate strands and formed a pair of dissimilar strands. This pair of strands was $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridged by $\mathrm{CH}_{3} \mathrm{CN}$ molecules (Fig. 6) and displayed weak $\pi-\pi$-stacking interactions [the centroid-to-centroid distances were 3.884(4) A (inter-planar dihedral angle $5.8(3)^{\circ}$, minimum interatomic distance $3.770(4) \AA$; minimum ring slippage between planes $1.254 \AA$) and $3.945(4) \AA$ (inter-planar dihedral angle $1.5(3)^{\circ}$, minimum interatomic distance $3.935(4) \AA$; minimum ring slippage between planes $1.939 \AA$ £̊)]. These distances were registered every alternate pyridyl ring throughout the pair of strands. The $\mathrm{Ag} \cdots \mathrm{Ag}$ distance was $3.694(3) \AA$. A pair of strands was linked to an adjacent pair of strands by the weak $\mu: \mathrm{K}^{2} O, O^{\prime}$-bridging of the $\mathrm{ClO}_{4}{ }^{-}$counteranion on one side [the $\mathrm{O}_{3} \mathrm{Cl}-\mathrm{O} 11 \mathrm{~A} \cdots \mathrm{Ag} 2$ and the $\mathrm{O}_{3} \mathrm{Cl}-\mathrm{O} 12 \mathrm{~A} \cdots \mathrm{Ag} 1$ contacts were $3.201(16) \AA$ and $2.953(13) \AA$, respectively] and the weak $\mu: \kappa^{2} N$-bridging of a $\mathrm{CH}_{3} \mathrm{CN}$ molecule on the other side [the $\mathrm{N} 6 \cdots \mathrm{Ag} 1$ and $\mathrm{N} 6 \cdots \mathrm{Ag} 2$ contacts were 2.886(6) and $3.217(6)$ Å, respectively] (Fig. 6). This asymmetric bridging was augmented by virtue of weak $\pi-\pi$-stacking interactions [centroid-to-centroid distance was 3.884(4) A (interplanar dihedral angle $5.8(3)^{\circ}$, minimum interatomic distance $3.770(3) \AA$; minimum ring slippage between planes $1.254 \AA$) and $3.944(4) \AA$ (inter-planar dihedral angle $1.5(3)^{\circ}$, minimum interatomic distance 3.935(4) A; minimum ring slippage between planes $1.939 \AA$)] and these interactions were registered every alternate pyridyl ring. The $\mathrm{Ag} \cdots \mathrm{Ag}$ distance between the adjacent pair of strands was 4.139(3) Å.

Synthesis and structure of

$\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot \mathbf{2 C H}_{3} \mathrm{CN}\right\}_{\infty}, 5$
A bulk reaction with a $1: 2 \mathrm{M}: \mathrm{L}$ ratio of AgPF_{6} and L resulted in the formation of a brown crystalline precipitate in moderate yield. However, the microanalysis of the bulk sample was consistent with a 1:1 formulation. Infrared studies of these samples confirmed the presence of L as the peaks at 1675 (ketonic $\mathrm{C}=\mathrm{O}$ group), 1612 and 1555 ($\mathrm{C}=\mathrm{C}$ bending) and $757-651 \mathrm{~cm}^{-1}$ (aromatic C-H bending) were observed. The very strong sharp peak at $821 \mathrm{~cm}^{-1}$ and strong sharp peak at $555 \mathrm{~cm}^{-1}$ indicated the presence of $\mathrm{PF}_{6}{ }^{-}$counteranions. ${ }^{28}$

Complex 5 formed infinite 1D meso-helical strands along the b axis which through bridging interactions were formed into 2D sheets in the $a b$ plane. It crystallised in the monoclinic space group $P 2_{1} / c$ and the asymmetric unit consisted of two crystallographically distinct $\mathrm{Ag}(\mathrm{I})$ cations, two complete L ligands, two $\mathrm{PF}_{6}{ }^{-}$counteranions and four $\mathrm{CH}_{3} \mathrm{CN}$ molecules. The two crystallographically distinct $\mathrm{Ag}(\mathrm{I})$ cations and ligands were alternately present in the same 1D meso-helical strand despite it running along the crystallographic b axis (Fig. 7). The $\operatorname{Ag}(\mathrm{I})$ cations displayed a pseudo T-shaped three-coordinated geometry by coordinating with two N_{py}-donors of two distinct L ligands and a $\mathrm{CH}_{3} \mathrm{CN}$ molecule. Ag 1 deviated from the plane of the donor atoms (N3 N1 N5) by $0.120 \AA$, while Ag 2 deviated from the plane (N 2 N 4 N 7) by $0.160 \AA$. The $\mathrm{Ag}(\mathrm{I})$ nodes were bridged by two L ligands and 1D meso-helical strands were generated. The pyridyl rings of L formed a twobladed chiral propeller. The pyridyl rings of the two L ligands registered the angles of $48.43(15)^{\circ}$ and $48.05(15)^{\circ}$ between the planes of the rings.

Two $\mathrm{CH}_{3} \mathrm{CN}$ molecules coordinated to Ag 1 and Ag 2 at distances of $2.632(3)$ and $2.664(3) \AA$, respectively. The bound $\mathrm{CH}_{3} \mathrm{CN}$ molecules displayed a bend in $\mathrm{C}-\mathrm{N}-\mathrm{Ag}$ angles [the C23-N5-Ag1 angle was $141.7(2)$ and the C27-N7-Ag2 angle was $143.6(2)^{\circ}$] by virtue of weak interactions with $\mathrm{Ag}(\mathrm{I})$ cations of neighbouring chains. These interactions resulted in the $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridging of the two antiparallel chains at

Fig. 7 Left: view of the 1D cationic meso-helical polymeric strand of 5 running along the b axis (crystallographic numbering; ellipsoids 50\% probability level). Right: view showing bridging of two adjacent meso-helical strands of 5 with $\mathrm{CH}_{3} \mathrm{CN}$ molecules. The $\mathrm{PF}_{6}{ }^{-}$counteranions and two uncoordinated $\mathrm{CH}_{3} \mathrm{CN}$ molecules were omitted for clarity.
alternate $\mathrm{Ag}(\mathrm{I})$ nodes by the bound $\mathrm{CH}_{3} \mathrm{CN}$ molecules generating a 2D sheet in the $a b$ plane (Fig. 7). The N5 $\cdots \mathrm{Ag} 1$ contact was $2.772(3) \AA$, while the $\mathrm{N} 7 \cdots \mathrm{Ag} 2$ contact was $2.751(3) \AA$. The bridging was augmented by very weak $\pi-\pi$-stacking interactions [the centroid-to-centroid contact was $3.9103(18) \AA$ (inter-planar dihedral angle 8.01(15) ${ }^{\circ}$, minimum interatomic distance $3.7430(18) ~ \AA$; minimum ring slippage between planes $1.175 \AA$) $)$. The $\mathrm{Ag} \cdots \mathrm{Ag}$ distances at the bridged nodes $\left[\begin{array}{lll}\mathrm{Ag} 1 \cdots \mathrm{Ag} 1 & 3.5632(4) ~ \AA \text { and } \mathrm{Ag} 2 \cdots \mathrm{Ag} 2 & 3.4709(4) \\ \AA\end{array}\right]$ were considerably shorter than that at the non-bridged nodes $\left[\begin{array}{lll}\mathrm{Ag} 1 \cdots \mathrm{Ag} 1 & 4.4372(5) ~ \AA \text { and } \mathrm{Ag} 2 \cdots \mathrm{Ag} 2 & 4.5448(5) ~ \AA\end{array}\right]$. The uncoordinated $\mathrm{CH}_{3} \mathrm{CN}$ molecules interacted with the pyridine rings of the anti-parallel chains through weak $\mathrm{N} \cdots \mathrm{H}-\mathrm{C}$ interactions that ranged between 2.30 and $2.83 \AA$. There were no noteworthy H -bonding interactions observed in the structure.

Synthesis and structure of $\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot \mathbf{1} / \mathbf{2} \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}, 6$

A 1:2 molar reaction between $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ and L resulted in colourless crystals of 6 . The microanalysis was consistent with a 1:2 formulation. Infrared studies of these samples confirmed the presence of L as the peaks at 1675 (ketonic $\mathrm{C}=\mathrm{O}$ group), 3200-3000 (aromatic C-H stretching), 1640-1554 ($\mathrm{C}=\mathrm{C}$ bending) and $756-660 \mathrm{~cm}^{-1}$ (aromatic $\mathrm{C}-\mathrm{H}$ bending) were observed. The peaks corresponding to the stretching of the $\mathrm{S}=\mathrm{O}$, $\mathrm{C}-\mathrm{F}, \mathrm{S}-\mathrm{O}$ and C-S bonds of the $\mathrm{SO}_{3} \mathrm{CF}_{3}^{-}$counteranion were observed at 1328-1284, 1222-1145, 949-830 and $660-634 \mathrm{~cm}^{-1}$, respectively.

Complex 6 crystallised in the monoclinic space group $C 2 / c$ to form a 1D meso-helical chain decorated with \mathbf{L} arms (Fig. 8). The chains ran along the c axis. The asymmetric unit contained one $\mathrm{Ag}(\mathrm{I})$ cation, two L ligands, one $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion and half a $\mathrm{H}_{2} \mathrm{O}$ of crystallisation. The $\mathrm{Ag}(\mathrm{I})$ ions formed a distorted trigonal planar arrangement with three nitrogens of the pyridyl rings at angles of $112.8(2)^{\circ}, 116.1(2)^{\circ}$ and 127.5(2) ${ }^{\circ}$ for N3-Ag1-N4, N1-Ag1-N3 and N1-Ag1-N4, respectively, while N 2 remained uncoordinated forming the decorating arm of the meso-helix. The $\mathrm{Ag}(\mathrm{I})$ ion deviated by $0.251 \AA$ from the plane of three bound N-donors. The weak interaction between $\mathrm{O}_{\mathrm{H} 2 \mathrm{O}} \cdots \mathrm{Ag} 1$ [2.825(6) \AA] distorted the planarity of the AgN_{3} moiety. In addition, the $\mathrm{H}_{2} \mathrm{O}$ molecule was H -bonded to the ketone O atom bridging two adjacent chains. The counteranions did not interact significantly with the polymeric stands.

The pyridyl rings of \mathbf{L} formed a two-bladed chiral propeller. The L ligands which formed the polymeric backbone registered an angle of $48.8(4)^{\circ}$, while the decorated L arms registered an angle of $58.6(4)^{\circ}$ between the planes of the pyridine rings. The uncoordinated N 2 of the dipyridyl ketonic arms showed a slight inclination towards Ag 1 of an adjacent chain with $\mathrm{N} 2 \cdots \mathrm{Ag} 1$ contact of $3.153(8) \AA^{29,30}$ and registered an angle of 111.95° between the $\mathrm{Ag}(\mathrm{I})-\mathrm{N} 2_{\mathrm{py}}-\mathrm{Cg}_{\text {py }}$. This long contact distance and very narrow angle indicated that there is essentially no interaction between pyridyl N 2 and Ag 1 (Fig. 9). The arrangement of the decorated arms created a cavity encompassing two $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranions.

Fig. 8 Top: view of the 1D cationic meso-helical polymeric strand of 6 running along the c axis (crystallographic numbering; ellipsoids 50\% probability level). Bottom: view of a 1D meso-helical polymeric strand of 6 showing inclusion of $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$counteranions. Only the major component of the disordered $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion is shown and $\mathrm{H}_{2} \mathrm{O}$ molecules have been omitted for clarity.

Synthesis and structure of $\left\{\left[\mathbf{A g}(\mathrm{L})_{2}\right]\left(\mathrm{BF}_{4}\right)\right\}_{\infty}, 7$

Slow evaporation of solvents from a solution of AgBF_{4} and \mathbf{L} in a $1: 2 \mathrm{M}$:L ratio resulted in X-ray quality colourless crystals of 7. The microanalysis of the bulk reaction with similar molar and solvent ratios was consistent with a 1:2 formulation. Infrared studies of these samples confirmed the presence of L as the peaks at 1677 (ketonic $\mathrm{C}=\mathrm{O}$ group), 3106-3054 (aromatic C-H stretching), 1608-1555 ($\mathrm{C}=\mathrm{C}$ bending) and $756-660 \mathrm{~cm}^{-1}$ (aromatic C-H bending) were observed. The peaks at 1032, 756 and $520 \mathrm{~cm}^{-1}$ confirmed the presence of the $\mathrm{BF}_{4}{ }^{-}$counteranion.

Complex 7 crystallised in the monoclinic space group $P 2_{1} / c$ to form infinite polymeric chains along the b axis. Each asymmetric unit contained one $\mathrm{Ag}(\mathrm{I})$ cation, two L ligands and one $\mathrm{BF}_{4}{ }^{-}$counteranion (Fig. 10). One L ligand bridged the three coordinated $\mathrm{Ag}(\mathrm{I})$ nodes and extended the polymer to a 1D chain, while the second L ligand interacted with $\mathrm{Ag}(\mathrm{I})$ through monodentate interactions and formed decorating side arms

Fig. 9 The anti-parallel meso-helical chains of complex 6 showing the disposition of the long $\mathrm{N} 2 \cdots \mathrm{Ag}$ contact (shown in purple).

Fig. 10 Top: view of the 1D cationic helical polymeric strand of 7 running along the b axis (crystallographic numbering; ellipsoids 50% probability level). Bottom: view of a $(4,4)$ network of 7 formed by virtue of $\mathrm{N} 2 \cdots \mathrm{Ag} 1$ interactions between the adjacent meso-helical chains.
of the chain. Surprisingly, the 1D chain of 7 existed as a helix rather than a meso-helix. This was the only example of a helical chain for this entire series of compounds. Of necessity, both M and P forms of the helices were present in the centrosymmetric structure. The uncoordinated N 2 of these side arms resided in the vicinity of Ag1 of the adjacent chain. The Ag1 bond distances to the other N_{py}-donors of 2.2121$2.3861(17)$ A were within the normal range. The $\mathrm{Ag}(\mathrm{I})$ cation adopted a slightly distorted trigonal-planar geometry with three N_{py} at the angle of $109.33(6)^{\circ}, 149.54(6)^{\circ}$ and $99.89(6)^{\circ}$ for N3-Ag1-N4, N1-Ag1-N3 and N1-Ag1-N4, respectively. The $\mathrm{Ag}(\mathrm{I})$ ion deviated by $0.133 \AA$ from the plane of three bound N -donors.

The pyridyl rings of \mathbf{L} formed a two-bladed chiral propeller. The \mathbf{L} ligands which formed the polymeric backbone registered an angle of $57.50(10)^{\circ}$, while the decorated \mathbf{L} arms registered an angle of $65.49(10)^{\circ}$ between the planes of the rings. The two crystallographically distinct L ligands were pseudo enantiomers of each other. The uncoordinated N2 of the L side arm showed a significant inclination towards Ag1 with a $\mathrm{N} 2 \cdots \mathrm{Ag} 1$ contact of $2.6582(18) \AA^{29,30}$ and registered an angle of 138.80° between the $\mathrm{Ag}(\mathrm{I})-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\text {py }}{ }^{31} \mathrm{~A}$ search of the CSD database identified 12 complexes with $\mathrm{Ag}(\mathrm{I}) \cdots \mathrm{N}$ (pyridine) contacts in the range of $2.60-2.70 \AA$. For 11 of these complexes, the $\mathrm{Ag}(\mathrm{I})-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\text {py }}$ angle ranged from 132 to 141°, while one had a value of 125°. The consistency of the angles within this range suggested the presence of a weak interaction between pyridyl N and $\mathrm{Ag}(\mathrm{I})$. By virtue of this close contact and the positioning of the decorated arms on the adjacent chains, cavities existed in what appeared to be a pseudo $(4,4)$ rhombic network (Fig. 10). The four Ag1 ions
occupied the corners of the rhombus, and the adjacent sides of the network measured $11.102 \AA$ and $11.471 \AA$. The four ligands of the rhombus were arranged such that two $\mathrm{C}=\mathrm{O}$ groups of the opposite ligands, which were pseudo enantiomers of each other, pointed above the plane of the rhombus and towards each other, while the remaining two $\mathrm{C}=\mathrm{O}$ groups of the ligands, which were also pseudo enantiomers, pointed below the plane and splayed away from each other (Fig. 10). This arrangement caused the pseudo $(4,4)$ network to be flat and achiral. The weak $\mathrm{CH}-\pi$-interactions between $\mathrm{C}-\mathrm{H} 25 \cdots \mathrm{Cg} 2$ (N 2 containing pyridine) [the distance between H-centroid was $2.72 \AA]^{32}$ and the weak $\pi-\pi$-interactions [the $\mathrm{Cg} 2 \cdots \mathrm{Cg} 2$ contact was $3.7572(16) \AA$, inter-planar dihedral angle 0°, minimum interatomic distance $3.736(16) \AA$; ring slippage between planes $1.525 \AA]^{33}$ may have helped to facilitate the positioning of N 2 near the Ag ion.

The BF_{4}^{-}counteranion resided within each cavity of the pseudo network by virtue of two weak attractive forces. A weak anion $-\pi$-interaction existed between $\mathrm{BF}_{4}{ }^{-}$and the pyridine ring containing $\mathrm{N} 3\left[\mathrm{~F}_{3} \mathrm{~B}-\mathrm{F} \cdots \mathrm{Cg} 3.314(9) \AA\right]^{34}$ and also weak CH -anion interactions existed between $\mathrm{BF}_{4}{ }^{-}$and pyridyl H atoms [the $\mathrm{F} \cdots \mathrm{H}$ contact distances ranged from 2.35 to $2.61 \AA$, and the corresponding $\mathrm{F} \cdots \mathrm{C}$ distances ranged from 3.027 (2) to $3.203(3) \AA$). The cation-anion interactions stacked the adjacent layers of grids in an offset -A-B-A-B- fashion.

Synthesis and structure of $\left\{\left[\operatorname{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{PF}_{6}\right)\right\}_{\infty}, 8$, and $\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{PF}_{6}\right) \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right\}_{\infty}, 9$
Slow evaporation of solvents from a solution of AgPF_{6} and L in a $1: 2 \mathrm{M}$: L ratio resulted in X-ray quality colourless crystals of both 8 and 9 . The microanalyses of these samples were consistent with a 1:2 formulation. Infrared studies of these samples confirmed the presence of \mathbf{L} as the peaks at 1686 and 1674 (ketonic $\mathrm{C}=\mathrm{O}$ group), 1604 and 1556 ($\mathrm{C}=\mathrm{C}$ bending) and 690$647 \mathrm{~cm}^{-1}$ (aromatic C-H bending) were observed. The environment around the ketonic $\mathrm{C}=\mathrm{O}$ may have caused the $\mathrm{C}=\mathrm{O}$ peak to split in two separate peaks. The very strong sharp peak at $818 \mathrm{~cm}^{-1}$ and strong sharp peak at $556 \mathrm{~cm}^{-1}$ indicated the presence of $\mathrm{PF}_{6}{ }^{-}$counteranions. ${ }^{28}$

Complex 8 crystallised in the monoclinic space group $P 2_{1} / n$ to form an infinite 2D network in the $a c$ plane. Each asymmetric unit of this complex contained one $\operatorname{Ag}(\mathrm{I})$ cation, two L ligands and one $\mathrm{PF}_{6}{ }^{-}$counteranion. The $\mathrm{Ag}(\mathrm{I})$ cation adopted a four-coordinated geometry between a seesaw and a trigonal pyramid as evidenced by a τ_{4} value of $0.78 .{ }^{27}$ The $\mathrm{Ag} 1-\mathrm{N}_{\mathrm{py}}$ bonds were in the normal range from 2.244(3) to 2.383(3) \AA A. The four N_{py} donors coordinated to the $\mathrm{Ag}(\mathrm{I})$ ion at angles between $94.52(11)$ and $138.04(12)^{\circ}$. These pyridyl rings demonstrated more regular $\mathrm{Ag}(\mathrm{I})-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\mathrm{py}}$ angles of between 150.51 and 175.69°. The \mathbf{L} ligand formed a two-bladed chiral molecular propeller, and the pyridyl rings of L registered angles of $54.44(16)^{\circ}$ and $42.16(17)^{\circ}$ between the planes of the rings. The two crystallographically distinct \mathbf{L} ligands had the same pseudo enantiomeric form. Both the \mathbf{L} ligands bridged the four coordinated Ag nodes, and a corrugated $(4,4)$ rhombic network was

Fig. 11 Top: view of a section of the $(4,4)$ net of 8 displaying $\mathrm{PF}_{6}{ }^{-}$ counteranions residing above and below the plane of the rhombus (crystallographic numbering; ellipsoids 50% probability level). Middle: view in the $a b$ plane showing a corrugated network of . $\mathrm{PF}_{6}{ }^{-}$counteranions were omitted for clarity. Bottom: view in the ac plane showing a $(4,4)$ network of complex 8. $\mathrm{PF}_{6}{ }^{-}$counteranions were omitted for clarity.
generated (Fig. 11). The adjacent sides of the network measured 11.070(3) \AA and 11.651(3) \AA. The four ligands of the rhombus were arranged in an irregular way such that the $\mathrm{C}=\mathrm{O}$ groups of three of the ligands pointed above and one pointed below the plane of the rhombus (Fig. 11). The three ligands with the $\mathrm{C}=\mathrm{O}$ groups which pointed above were of the same pseudo enantiomeric form, while the one with the $\mathrm{C}=\mathrm{O}$ group pointing below was of the other pseudo enantiomeric form. This arrangement caused the $(4,4)$ network to be achiral and extremely corrugated and the planes of the adjacent facing rhomboids oriented themselves at angles of 66.3°. The adjacent sheets of the $(4,4)$ network were interdigitated and stacked on top of each other in a -A-B-A- fashion along the b axis. These sheets interacted with each other by weak $\mathrm{O}_{\mathrm{C}}=\mathrm{O} \cdots \pi$ interactions $[\mathrm{O} \cdots \mathrm{C} 5 \text { contact was } 3.282(3) \AA]^{35}$ and weak $\pi-\pi$ interactions $[\mathrm{C} 44 \cdots \mathrm{Cg} 2$ contact was $3.899(3) \AA$, inter-planar
dihedral angle $12.50(17)^{\circ}$, minimum interatomic distance $3.739(3) \AA$; minimum ring slippage between planes $0.9035 \AA]{ }^{33}$

The two $\mathrm{PF}_{6}{ }^{-}$counteranions resided within the cavity being slightly above and below the plane of the rhombus by virtue of several weak anion-CH interactions [$\mathrm{H} \cdots \mathrm{F}$ contact distances between 2.44 and $2.97 \AA$] and strong anioncarbonyl interactions. The F11 \cdots C6 contact was 2.874(4) \AA and the $\mathrm{F} 14 \cdots \mathrm{C} 17$ contact was $2.959(4) \AA$. A search of the CSD database suggested that for complexes containing pyridyl ketone like ligands, there were only two out of 204 observations which displayed a $\mathrm{F} \cdots \mathrm{C}_{\mathrm{C}=\mathrm{O}}$ contact below the van der Waals limit of $3.2 \AA \AA^{\circ}{ }^{36,37}$ In total in the CSD there are 422 observations of general $\mathrm{O}=\mathrm{C} \cdots \mathrm{F}-\mathrm{PF}_{5}{ }^{-}$interactions which range from 2.53 to $3.17 \AA$ with a mean contact of $3.02 \AA \AA^{26,27}$

Complex 9 crystallised in the triclinic space group $P \overline{1}$ to form an infinite 2D network in the $a b$ plane. Each asymmetric unit comprised one $\mathrm{Ag}(\mathrm{I})$ cation, two L ligands, one $\mathrm{PF}_{6}{ }^{-}$ counteranion and two $\mathrm{CH}_{3} \mathrm{CN}$ of crystallisation. The $\mathrm{Ag}(\mathrm{I})$ cation adopted a distorted tetrahedral geometry as evidenced by a τ_{4} value of $0.91 .{ }^{27}$ The four pyridine N -atoms coordinated to the $\mathrm{Ag}(\mathrm{I})$ ion at angles between 93.43(12) and $119.90(12)^{\circ}$ and interacted with the $\mathrm{Ag}(\mathrm{I})$ ions in the regular range of $2.268(4)-2.352(4) \AA$. These pyridyl rings demonstrated $\mathrm{Ag}(\mathrm{I})-$ $\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\text {py }}$ angles between 168.46 and 175.58°. The L ligand formed a two-bladed chiral molecular propeller, and the pyridyl rings of \mathbf{L} registered angles of $53.78(14)^{\circ}$ and $77.2(9)^{\circ}$ between the planes of the rings. The two crystallographically distinct L ligands were of the same pseudo enantiomeric form. Both the \mathbf{L} ligands bridged the Ag nodes perpendicular to each other and a regular $(4,4)$ rhombic network was generated (Fig. 12). The adjacent sides of the network measured $10.950(7) \AA$ and $11.108(7) \AA$. These distances corresponded to the length of crystallographic a and b axes. The four ligands of the rhombus, all of the same pseudo enantiomeric form, were arranged such that the $\mathrm{C}=\mathrm{O}$ groups of the two ligands pointed above and two pointed below the plane of the rhombus (Fig. 12). This arrangement gave a more regular network which was also chiral. ${ }^{38,39}$ The adjacent sheets of the $(4,4)$ network, which were enantiomers of each other, were interdigitated and stacked on top of each other in a -A-B-A- fashion along the c axis.

The $\mathrm{PF}_{6}{ }^{-}$counteranions were embedded in the cavities of the $(4,4)$ network by virtue of weak anion $-\pi$ and $\mathrm{CH}-$ anion interactions. The distance between F15-to-centroid contact was $3.028(4) \AA{ }^{34}$ while the distance between $\mathrm{H} 1 \cdots$ F15 was $2.47 \AA$ and the corresponding C9 \cdots F16 distance was 3.369(5) Å. No other noteworthy $\pi-\pi$-stacking and H-bonding interactions were observed.

Comparison of structures

In structures 1-9, the coordination environment of the $\mathrm{Ag}(\mathrm{I})$ ions ranged from linear to trigonal pyramidal. The \mathbf{L} ligand bridged the $\mathrm{Ag}(\mathrm{I})$ cores and generated the primary structure of 1D meso-helical chains in complexes 1-6, a helical 1D chain in complex 7 and 2D networks in complexes 8 and 9.

Fig. 12 Top: view of a section of the $(4,4)$ net of 9 displaying $\mathrm{PF}_{6}{ }^{-}$ counteranion residing in the cavity (crystallographic numbering; ellipsoids 50\% probability level). Bottom: view in the ab plane showing a $(4,4)$ network of 9 .

The 1D meso-helical polymers in 1 and 2 existed as pairs of chains $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridged with counteranions, while in 3-5 they existed as 2D grids extended by bridging of the $\mathrm{Ag}(\mathrm{I})$ nodes of the 1D meso-helical polymers by counteranions and $\mathrm{CH}_{3} \mathrm{CN}$ molecules. Complex 6 existed as a genuine 1D meso-helical polymer, while complex 7 was a pseudo $(4,4)$ network and complexes 8 and 9 were $(4,4)$ networks. The L ligand also acted as a two-bladed chiral molecular propeller within each solid-state structure such that the planes of the two pyridine rings intersected each other at an angle summarised in Table 1. The average twist in the planes of the pyridine rings was 52.6°. It is interesting to note that the pseudo-polymorphous complexes 3 and 4 and complexes 8 and 9 displayed large variations in these angles for only one of the ligands incorporated in the structures.

The influence of the coordinating ability of the anions on the stoichiometry of the resultant $\mathrm{Ag}(\mathrm{I})$ complexes was demonstrated by our closely related series of coordination polymers. ${ }^{40-42}$ The weakly coordinating $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion did not have an influence on the variation in stoichiometry as the stoichiometries of both complexes 1 and 6 were consistent with the starting M:L ratios of $1: 1$ or $1: 2$, respectively. The $\mathrm{ClO}_{4}{ }^{-}$counteranions demonstrated stronger coordination to $\mathrm{Ag}_{(\mathrm{I})}$ in the presence of L as compared to the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion. This prevented the formation of coordination polymers with different $\mathrm{M}: \mathrm{L}$ ratios, as regardless of the starting M:L ratios, 2:1, 1:2 or $1: 1$, only the $1: 1$ complexes 2, 3 and 4, respectively, could be isolated. An excess of $\mathrm{ClO}_{4}{ }^{-}$present in the preparation of 2 resulted in $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$ bridging of the $1: 1$ polymer chain with $\mathrm{ClO}_{4}{ }^{-}$, while a deficiency as in the case of 3 and 4 instead resulted in $\operatorname{di}\left(\mu: \kappa^{2} N\right)$ bridging of the $1: 1$ chains with $\mathrm{CH}_{3} \mathrm{CN}$ molecules. The starting M:L ratio of $1: 2$ in the reaction of AgPF_{6} with L resulted in 5 with $1: 1$ and 8 and 9 with $1: 2 \mathrm{M}: \mathrm{L}$ ratios. Owing to the non-coordinating nature of the $\mathrm{PF}_{6}{ }^{-}$counteranion, the $1: 11 \mathrm{D}$ chains of 5 were $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridged by $\mathrm{CH}_{3} \mathrm{CN}$ molecules.

In the $1: 1 \mathrm{M}: \mathrm{L}$ complexes, the AgN_{2} moieties with the linear geometry displayed a slight bend in the $\mathrm{N}_{\mathrm{py}}-\mathrm{Ag}-\mathrm{N}_{\mathrm{py}}$ angles by virtue of weak Ag -anion interactions. ${ }^{24}$ In the isostructural complexes 1 and 2, the counteranions bridged the $\mathrm{Ag}(\mathrm{I})$ nodes of the adjacent meso-helical strands from both sides through $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridging of the $\mathrm{Ag}(\mathrm{I})$ cores of the adjacent strand. The bulky $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion of 1 displayed less influence on the bend in the linearity of $\mathrm{Ag}(\mathrm{I})$ cation $\left[175.72(7)^{\circ}\right.$ vs. $\left.170.12(6)^{\circ}\right]$ and registered higher $\mathrm{Ag} \cdots \mathrm{O}$ distances when compared with the less bulky $\mathrm{ClO}_{4}{ }^{-}$anion (Table 2). The tighter bridging of the $\mathrm{Ag}(\mathrm{I})$ nodes by the $\mathrm{ClO}_{4}{ }^{-}$ counteranions resulted in a shorter $\mathrm{Ag} \cdots \mathrm{Ag}$ contact distance and stronger $\pi-\pi$-interactions (Table 2). The $\mathrm{ClO}_{4}{ }^{-}$counteranions of the pseudo-polymorphous complexes 2,3 and 4 revealed various bridging modes. The adjacent strands of 2 were $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridged by $\mathrm{ClO}_{4}{ }^{-}$counteranions, while the chains of 3 and 4 were weakly $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridged by $\mathrm{CH}_{3} \mathrm{CN}$ molecules. However in 3 and 4, the $\mathrm{ClO}_{4}{ }^{-}$counteranions assisted the $\mu: \kappa^{2} N$ bridging of the $\mathrm{CH}_{3} \mathrm{CN}$ molecules by bridging the adjacent pair of strands through $\mu: \kappa^{2} O$ and $\mu: \kappa^{2} O, O^{\prime}$ interactions, respectively. The bridging of ClO_{4}^{-}counteranions

Table 1 Table showing angles between planes of pyridyl rings of ligand L in Ag-L complexes

Structure	Angle $\left(^{\circ}\right)$
$\mathbf{1}$	$50.37(9)$
2	$53.37(8)$
3	$40.3(2)$ and $46.0(2)$
4	$45.6(3)$ and $50.7(3)$
5	$48.05(15)$ and $48.43(15)$
6	$48.8(4)$ and $58.6(4)$
7	$57.50(10)$ and $65.49(10)$
8	$54.44(16)$ and $42.16(17)$
9	$53.78(14)$ and $77.2(9)$

Table 2 Table showing $\pi-\pi, A g \cdots A g$ and bridging interactions in the 1st series of $\mathrm{Ag}-\mathrm{L}$ complexes

Complexes	$\pi-\pi$	$\mathrm{Ag} \cdots \mathrm{Ag}$	Bridging
$\mathbf{1}$	$3.803(2) \AA$	$3.4704(16) \AA$	$2.927(2)$ and $3.160(4) \AA$
$\mathbf{2}$	$3.763(2) \AA$	$3.369(17) \AA$	$2.727(2)$ and $2.905(2) \AA$
3	$3.717(3)$ and $3.749(2) \AA$	$3.4858(6) \AA$	$2.742(4)$ and $3.023(4) \AA ; 2.505(4)$ and $3.121(4) \AA$
$\mathbf{4}$	$3.884(4) \AA$ and $3.945(4) \AA$	$3.694(3) \AA$	$2.414(6)$ and $2.887(7) \AA ; 2.657(6)$ and $3.043(6) \AA$
$\mathbf{5}$	$3.9103(18) \AA$	$3.5632(4)$ and $3.4709(4) \AA$	$2.632(3)$ and $2.772(3) \AA ; 2.751(3)$ and $2.664(3) \AA$

along with the bifurcated bridging of a $\mathrm{CH}_{3} \mathrm{CN}$ molecule from the other side extended the structures of 3 and 4 to 2 D grids. In 2 and 3, the meso-helical chains bridged by $\mathrm{ClO}_{4}{ }^{-}$recorded shorter $\mathrm{Ag} \cdots \mathrm{Ag}$ contact distances but weaker $\pi-\pi$-interactions than the meso-helical strands bridged by $\mathrm{CH}_{3} \mathrm{CN}$. Surprisingly, the meso-helical strands of 4 demonstrated slightly tighter bridging by $\mathrm{CH}_{3} \mathrm{CN}$ molecules but higher $\mathrm{Ag} \cdots \mathrm{Ag}$ contact and weaker $\pi-\pi$-interactions than the pseudo-polymorphous 3 . The $\mathrm{CH}_{3} \mathrm{CN}$ molecules of 5 bridged the pair of meso-helical chains more tightly as compared to the bridging observed in 3. This was evidenced by a shorter $\mathrm{Ag} \cdots \mathrm{Ag}$ contact in the case of 5 as compared to 3 . However, the $\pi-\pi$-interactions were found to be weaker in 5 . In 5 , the $\mathrm{Ag} \cdots \mathrm{Ag}$ contact at the bridged nodes was considerably shorter than that at the unbridged nodes, thus highlighting the effect of $\mathrm{CH}_{3} \mathrm{CN}$ bridging.

A search of the CSD database (version 5.33) for Ag -anion interactions shorter than the sum of the van der Waals radii suggested that out of 1182 reported AgClO_{4} complexes about 22% of the complexes demonstrate $\mu: \kappa^{2} O, O^{\prime}$-bridging of the counteranion, while in about 7% of the complexes the $\mathrm{ClO}_{4}{ }^{-}$ counteranions displayed $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridging of the $\mathrm{Ag}(\mathrm{I})$ ions. Similarly, out of 1038 reported $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ complexes about 13% of the complexes demonstrate $\mu: \kappa^{2} O, O^{\prime}$-bridging of the counteranion, while in about 5% of the complexes, the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranions displayed $\operatorname{di}\left(\mu: \kappa^{2} O, O^{\prime}\right)$-bridging of the $\mathrm{Ag}(\mathrm{I})$ ions. Out of 959 reported $\mathrm{AgCH}_{3} \mathrm{CN}$ complexes, only 2.2% of the complexes demonstrate $\mu: \kappa^{2} N$-bridging of $\mathrm{CH}_{3} \mathrm{CN}$

Fig. 13 Top: schematic representation of $\mu: \kappa^{2} O, O^{\prime}$-bridging (in green) and $\mathrm{di}\left(\mu: \kappa^{2} \mathrm{O}, \mathrm{O}^{\prime}\right)$-bridging (in purple) of pairs of 1 D strands by $\mathrm{CF}_{3} \mathrm{SO}_{3}$ counteranions at $\mathrm{Ag}(\mathrm{I})$ nodes. Bottom: schematic representation of $\mu: \kappa^{2} N$-bridging (in green) and $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridging (in purple) of pairs of 1D strands by $\mathrm{CH}_{3} \mathrm{CN}$ molecules at $\mathrm{Ag}(\mathrm{I})$ nodes.
molecules, while in 1.6% of the complexes, the $\mathrm{CH}_{3} \mathrm{CN}$ molecules displayed $\operatorname{di}\left(\mu: \kappa^{2} N\right)$-bridging of the $\mathrm{Ag}(\mathrm{I})$ ions (Fig. 13). ${ }^{25,26}$

In the 1:2 M:L complexes 6 and 7, the uncoordinated N 2 donor of the decorating \mathbf{L} side arms of the strands displayed inclination towards the $\mathrm{Ag}(\mathrm{I})$ centre on the adjacent polymeric chain and forced an unusual geometry on that metal centre. The counteranions in both these complexes did not coordinate to the $\mathrm{Ag}(\mathrm{I})$ ion. However, the size of the counteranion played a critical role in elaborating the dimensionality of the chains. In the former complex, the bulkier $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion reduced the $\mathrm{Ag}(\mathrm{I})-\mathrm{N} 2_{\mathrm{py}}-\mathrm{Cg}_{\text {py }}$ angle [111.95${ }^{\circ}$] and thus restricted the coordination of N 2 with the $\mathrm{Ag}(\mathrm{I})$ cation [the $\mathrm{N} 2 \cdots \mathrm{Ag}$ contact was $3.152(7) \AA$ § $]$. By contrast, the less bulkier $\mathrm{BF}_{4}{ }^{-}$counteranion displayed less interference in the $\mathrm{N} \cdots \mathrm{Ag}$ interactions [the $\mathrm{N} 2 \cdots \mathrm{Ag}$ contact was $2.6595(18) \AA$ and the $\mathrm{Ag}(\mathrm{I})-\mathrm{N} 2_{\text {py }}-\mathrm{Cg}_{\text {py }}$ angle was 138.80°] and thus facilitated the generation of a pseudo $(4,4)$ network. The pyridyl rings of the decorating \mathbf{L} side arms of 7 displayed more flexibility (as evident from Table 1) and thus assisted the formation of the pseudo $(4,4)$ network. The pyridyl rings of 8 displayed wider $\mathrm{Ag}(\mathrm{I})-\mathrm{N} 2_{\text {py }}-\mathrm{Cg}_{\text {py }}$ angles [150.51-175.69 ${ }^{\circ}$] and shorter $\mathrm{Ag}-\mathrm{N}$ contacts $[2.244(3)-2.384(4) \AA]$ and thus facilitated in the formation of a corrugated $(4,4)$ network. The pyridyl rings of 9 displayed further wider $\mathrm{Ag}(\mathrm{I})-\mathrm{N} 2_{\text {py }}-\mathrm{Cg}_{\text {py }}$ angles [168.46-175.58 ${ }^{\circ}$] and shorter $\mathrm{Ag}-\mathrm{N}$ contacts [2.267(4)-2.353(4) \AA] and thus helped form a regular $(4,4)$ network. Out of 2523 examples in the CSD database (version 5.33) for a search of $\mathrm{Ag}(\mathrm{I})-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\mathrm{py}}$ angles, 125 complexes were observed to be in the range of $89.8-140.8^{\circ}$. Scrutinizing the $\mathrm{Ag}(\mathrm{I}) \cdots \mathrm{N}_{\mathrm{py}}$ contact distances [ranging between 2.512 and $3.280 \AA$] in these complexes, it was observed that the distances are within the sum of the van der Waals radii for $\mathrm{Ag}-\mathrm{N}\left[3.25 \AA\right.$].${ }^{25,26}$ There were 2427 observations with $\mathrm{Ag}(\mathrm{I})-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\text {py }}$ angles between 144.6 and 180° and their $\mathrm{Ag}(\mathrm{I}) \cdots \mathrm{N}_{\mathrm{py}}$ distances range within 2.084-2.399 \AA. This shows that the wider the $\mathrm{Ag}(\mathrm{I})-\mathrm{N}_{\mathrm{py}}-\mathrm{Cg}_{\mathrm{py}}$ angle, the stronger the $\mathrm{Ag}(\mathrm{I}) \cdots \mathrm{N}_{\mathrm{py}}$ interaction.

The $\mathrm{C}=\mathrm{O}$ groups of the four ligands of the rhombus of 6 splayed outwards. In 7 , the $\mathrm{C}=\mathrm{O}$ groups of the four ligands of the rhombus were arranged such that two $\mathrm{C}=\mathrm{O}$ groups of the opposite ligands, which were pseudo enantiomers, pointed above the plane of the rhombus and towards each other, while the two $\mathrm{C}=\mathrm{O}$ groups of the remaining ligands, which were also pseudo enantiomers, pointed below the plane and were splayed away from each other. This arrangement produced an achiral sheet. The rhombus of the 2D network of 9 has a regular orientation with two $\mathrm{C}=\mathrm{O}$ groups pointing up and two pointing down and two $\mathrm{CH}_{3} \mathrm{CN}$ molecules in each cavity. All four ligands of the rhombus were of
the same pseudo enantiomeric form producing a chiral sheet. By contrast, the rhombus of the 2D network of 8 has an irregular orientation with three $\mathrm{C}=\mathrm{O}$ groups pointing up and one pointing down and no $\mathrm{CH}_{3} \mathrm{CN}$ molecules in the structure. Three ligands of the rhombus had the same pseudo enantiomeric form, while the remaining ligand was of the other pseudo enantiomeric form. This gave rise to an achiral sheet. Thus, the irregular orientation of the $\mathrm{C}=\mathrm{O}$ groups in 8 appeared to make the structure corrugated rather than flat, while the vacillations of the $\mathrm{C}=\mathrm{O}$ groups prevented the formation of true 2D networks in 6 and 7. These differences may have been the cause of the embedding of the counteranions and the solvent molecules in the network cavities.

Conclusions

In conclusion, we have described two series of related coordination polymers of $\mathrm{Ag}(\mathrm{I})$ salts and L ligand with varying $\mathrm{M}: \mathrm{L}$ ratio ($1: 1$ and $1: 2$). The primary structure of the first $\mathrm{Ag}(\mathrm{I})$ series was not sensitive to the counteranion. However, the delicate anion- Ag and $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Ag}$ bridging interactions showed a subtle effect on $\pi-\pi$-stacking and argentophilic interactions. Owing to these delicate interactions, a transition from 1D meso-helical chains to 2D grids was observed. The second $\mathrm{Ag}(\mathrm{I})$ series displayed a remarkable sensitivity to the counteranion showing a transition from ordered 1D meso-helical chains to 2D $(4,4)$ nets.

Experimental section

Commercially available 4,4'-dipyridyl ketone was acquired from Chem Bridge. All chemicals were used as received without further purification. All solvents were of LR grade or above. The samples for microanalysis studies were dried under vacuum to remove volatile sample residues. Elemental microanalyses were carried out at the Campbell Microanalytical Laboratory, University of Otago. All measured microanalysis results were within an uncertainty of 0.4%. Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR system.

Caution! Although no problems were encountered in this work, transition metal perchlorates are potentially explosive. They should be prepared in small amounts and handled with care.

Reaction of L with $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ in a $1: 1$ ratio

Solid $\mathrm{AgCF}_{3} \mathrm{SO}_{3}(13.94 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(0.8 \mathrm{~mL})$ was added dropwise to a methanolic solution of \mathbf{L} $(10 \mathrm{mg}, 0.054 \mathrm{mmol})$. The resultant solution was sonicated and allowed to evaporate slowly for a week to yield X-ray quality colourless crystals of $\left\{[\mathrm{Ag}(\mathrm{L})]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (complex 1) which on drying in vacuo converted into a tan powder. Yield: $11 \mathrm{mg}, 46 \%$; analysis found: C 32.95 , H 1.89 and N 6.29 ; calculated for the formula $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{SF}_{3} \mathrm{Ag}$: C $32.67, \mathrm{H} 1.83$ and N 6.35; selected IR/ cm^{-1} : 3124-3053 (w, br), 1682 (m, sh), 1611 (w, sh), 1555 (w, sh), 1423 (m, sh), 1330-1271 (s, br), 1236 (s, br), 1216 (s, br), 1150 (s, br), 1105 (s, br), 1018 (s, sh), 940
(m, sh), 878-844 (w, br), 759 (m, sh), 660 (m, sh), 630 (s, sh), 572 (m, sh), 515 (s, sh).

Reaction of L with $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in a 1:2 ratio

Solid $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(22.5 \mathrm{mg}, 0.108 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(1.5 \mathrm{~mL})$ was added dropwise to a methanolic solution of \mathbf{L} $(10 \mathrm{mg}, 0.054 \mathrm{mmol})$. The resultant solution was sonicated and allowed to stand for a week to yield X-ray quality colourless crystals of $\left\{[\mathrm{Ag}(\mathrm{L})]\left(\mathrm{ClO}_{4}\right) \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (complex 2) which on drying in vacuo converted into a tan powder. Yield (based on L): $10 \mathrm{mg}, 47 \%$; analysis found: C 33.51, H 2.25 and N 7.61; calculated for the formula $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{ClAg}: \mathrm{C} 33.75$, H 2.06 and N 7.16; selected IR/cm ${ }^{-1}$: 3095 (w, br), 1680 (m, sh), 1612 (w, sh), 1555 (w, sh), 1285 (m, br), 1055 (s, br), 952 (m, sh), 759 (m, sh), $691(\mathrm{~m}, \mathrm{sh}), 657(\mathrm{~s}, \mathrm{sh})$ and 619 (s, sh).

Reaction of L with $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in a $2: 1$ ratio

Solid $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(11.2 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(1 \mathrm{~mL})$ was added dropwise to a methanolic solution of \mathbf{L} $(20 \mathrm{mg}, 0.108 \mathrm{mmol})$. The resultant solution was sonicated and allowed to evaporate slowly for a week to yield X-ray quality colourless crystals of $\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2} \mathrm{CH}_{3} \mathrm{CN}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (complex 3) which on drying in vacuo converted into a tan powder. Yield (based on $\mathrm{Ag}(\mathrm{I})$): $11 \mathrm{mg}, 50 \%$; analysis found: $\mathrm{C} 34.26, \mathrm{H} 2.51$ and N 7.06; calculated for the formula $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{ClAg} \cdot 1 / 2 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C}$ 33.89, H 2.47 and N 6.87 ; selected IR/cm ${ }^{-1}: 3101$ (w, br), 1665 (m, sh), 1609 (w, sh), 1556 (w, sh), 1286 (m, br), 1056 (s, br), 950 (m, sh), 758 (m, sh), 688 (m, sh), 659 (s, sh) and $620(\mathrm{~s}, \mathrm{sh})$.

Reaction of L with AgBF_{4} in a $1: 1$ ratio

Solid $\mathrm{AgBF}_{4}(21.2 \mathrm{mg}, 0.108 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(1.5 \mathrm{~mL})$ was added dropwise to a methanolic solution of \mathbf{L} $(20 \mathrm{mg}, 0.108 \mathrm{mmol})$. The resultant solution was sonicated and allowed to stand for a week to yield colourless crystals of $\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (complex 3a) which on drying in vacuo converted into a tan powder. The crystals were twinned and of poor quality. However, these crystals were found to be isomorphous to complex 3 [$a=7.5055(8) \AA$, $b=19.063(3) \AA$ and $c=23.000(3) \AA ; \alpha=90^{\circ}, \beta=91.312(4)^{\circ}$ and $\left.\gamma=90^{\circ} ; V=3290(1) \AA^{3}\right]$. Yield: $21 \mathrm{mg}, 51 \%$; analysis found: C 35.04, H 2.03 and N 7.42; calculated for the formula $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ON}_{2} \mathrm{BF}_{4} \mathrm{Ag}:$ C 34.87, H 2.13 and N 7.39; selected IR/ cm^{-1} : 3108 (w, br), 1682 (m, sh), 1609 (w, sh), 1554 (w, sh), 1417 (m, sh), 1282 (m, br), 1162 (w, sh), 1034 (s, br), 879 (m, sh), 760 $(\mathrm{m}, \mathrm{sh}), 658(\mathrm{~s}, \mathrm{sh})$ and $520(\mathrm{~s}, \mathrm{sh})$.

Reaction of L with $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in a $1: 1$ ratio

Solid $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(11.3 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ $(1.5 \mathrm{~mL})$ was added dropwise to a methanolic solution of L ($10 \mathrm{mg}, 0.054 \mathrm{mmol}$). The resultant solution was sonicated and allowed to stand for a week to yield X -ray quality colourless crystals of $\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}\right\}_{\infty}$ (complex 4) which on drying in vacuo converted into a tan
powder. Yield: 15 mg , 71\%; analysis found: C 33.51, H 2.25 and N 7.61; calculated for the formula $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{ClAg}$: C 33.75, H 2.06 and N 7.16; selected IR/cm ${ }^{-1}$: 3102 (w, br), 1675 (m, sh), 1609 (w, sh), 1554 (w, sh), 1281 (m, br), 1061 (s, br), 951 (m, sh), $758(\mathrm{~m}, \mathrm{sh}), 688(\mathrm{~m}, \mathrm{sh}), 656(\mathrm{~s}, \mathrm{sh})$ and $620(\mathrm{~s}, \mathrm{sh})$.

Reactions of L with AgPF_{6} in a $2: 1$ ratio

Reaction 1: solid $\mathrm{AgPF}_{6}(13.2 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ was added dropwise to a 4 mL methanolic solution of $\mathbf{L}(20 \mathrm{mg}, 0.108 \mathrm{mmol})$. The resultant clear solution was stirred overnight and concentrated in volume to 2 mL . Addition of 0.5 mL of diethyl ether yielded a brown crystalline precipitate which was filtered, washed with diethyl ether and dried in vacuo. Yield (based on $\mathrm{Ag}(\mathrm{I})$): $13 \mathrm{mg}, 55 \%$. X-Ray quality colourless crystals of $\left\{\left[\mathrm{Ag}_{2}(\mathrm{~L})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}\right\}_{\infty}$ (complex 5) were grown by slow evaporation of solvents (1:1 v/v $\left.\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{3} \mathrm{OH}\right)$ from the solution of $\mathrm{AgPF}_{6}(6.9 \mathrm{mg}, 0.027 \mathrm{mmol})$ and $\mathbf{L}(10 \mathrm{mg}, 0.054 \mathrm{mmol})$. Analysis found: C 33.43, H 2.34 and N 7.81; calculated for the formula $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ON}_{2} \mathrm{PF}_{6} \mathrm{Ag} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{CH}_{3} \mathrm{CN}$: C 32.96, H 2.96 and N 8.24; selected IR/cm ${ }^{-1}: 3629$ (w, br), 1675 (m, sh), 1612 (w, sh), 1555 (w, sh), 1418 (m, sh), 1284 (m, sh), 1160 (w, sh), 1134 (w, sh), 881 (m, sh), 821 (vs, sh), 757 (m, sh), $690(\mathrm{~m}, \mathrm{sh}), 651(\mathrm{~s}, \mathrm{sh})$ and $555(\mathrm{~s}, \mathrm{sh})$.

Reaction 2: solid AgPF_{6} ($13.2 \mathrm{mg}, 0.054 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added dropwise to a methanolic solution of $\mathbf{L}(20 \mathrm{mg}, 0.108 \mathrm{mmol})$. The resultant solution was sonicated and allowed to evaporate slowly for a week to yield X-ray quality colourless crystals of $\left\{\left[\mathrm{Ag}(\mathbf{L})_{2}\right]\left(\mathrm{PF}_{6}\right)\right\}_{\infty}$ (complex $\mathbf{8}$) and $\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{PF}_{6}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right\}_{\infty}$ (complex 9) which on drying in vacuo converted into a tan powder. Yield (based on $\mathrm{Ag}(\mathrm{I})$): $20 \mathrm{mg}, 60 \%$. Analysis found: C $42.65, \mathrm{H} 2.69$ and N 9.11; calculated for the formula $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{PF}_{6} \mathrm{Ag}: \mathrm{C} 42.54, \mathrm{H} 2.60$ and N 9.02; selected IR/ $\mathrm{cm}^{-1}: 1686(\mathrm{~m}, \mathrm{sh}), 1674(\mathrm{~m}, \mathrm{sh}), 1604(\mathrm{w}, \mathrm{sh})$, 1556 (w, sh), 1494 (w, sh), 1413 (m, sh), 1281 (m, sh), 1158 (w, sh), 949 (w, sh), 818 (vs, sh), 690 (m, sh), 647 (s, sh) and 556 (s, sh).

Reaction of L with $\mathrm{AgCF}_{3} \mathrm{SO}_{3}$ in a $2: 1$ ratio

Solid $\mathrm{AgCF}_{3} \mathrm{SO}_{3}(13.94 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (1 mL) was added dropwise to a methanolic solution of L $(20 \mathrm{mg}, 0.108 \mathrm{mmol})$. The resultant solution was sonicated and allowed to evaporate slowly for a week to yield X-ray quality colourless crystals of $\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot \mathbf{1 / 2} \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (complex 6) which on drying in vacuo converted into a tan powder. Yield (based on $\mathrm{Ag}(\mathrm{I})$): $22 \mathrm{mg}, 65 \%$; analysis found: C 44.47, H 2.84, $\mathrm{N} \mathrm{9.00}$,and S 4.91 ; calculated for the formula $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{4} \mathrm{SF}_{3} \mathrm{Ag}: \mathrm{C} 44.18, \mathrm{H} 2.58, \mathrm{~N} 8.96$, and S 5.13 ; selected IR/cm ${ }^{-1}$: 3200-3000 (w, br), 1675 (m, sh), 1640 (w, sh), 1604 (w, sh), 1554 (w, sh), 1410 (m, sh), 1328 (m, sh), 1284 (m, sh), 1263 (s, sh), 1222 (m, sh), 1145 (m, sh), 1058 (s, sh), 1029 (s, sh), 949 (m, sh), 879 (m, sh), 830 (m, sh), 756 (m, sh), 660-634 (s, br).

Reaction of L with AgBF_{4} in a $2: 1$ ratio

Under a blanket of Ar gas, methanolic solution (4 mL) of L ($40 \mathrm{mg}, 0.216 \mathrm{mmol}$) was added to 4 mL of a $\mathrm{CH}_{3} \mathrm{CN}$ solution
of AgBF_{4} ($21.2 \mathrm{mg}, 0.108 \mathrm{mmol}$). The resultant solution was allowed to react overnight. Addition of 0.5 mL of diethyl ether to this solution resulted in colourless crystalline solid which was filtered and dried in vacuo. Yield (based on $\mathrm{Ag}(\mathrm{I})$): 28 mg , 43%; analysis found: C 48.17 , H 3.07 and N 10.18 ; calculated for the formula $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{~F}_{4} \mathrm{BAg} \cdot \mathrm{CH}_{3} \mathrm{CN}$: C 47.72 , H 3.17 and N 11.59; selected IR/cm ${ }^{-1}$: 3106-3054 (w, br), 1677 (m, sh), 1608 (w, sh), 1555 (w, sh), 1409 (m, sh), 1282 (m, sh), 1160 (w, sh), 1032 (s, br), 756 (m, sh), 660 (s, sh), 520 (m, sh).

Solid $\mathrm{AgBF}_{4}(10.6 \mathrm{mg}, 0.054 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (1 mL) was added dropwise to a methanolic solution of \mathbf{L} $(20 \mathrm{mg}, 0.108 \mathrm{mmol})$. The resultant solution was sonicated and allowed to evaporate slowly for a week to yield X-ray quality colourless crystals of $\left\{\left[\mathrm{Ag}(\mathrm{L})_{2}\right]\left(\mathrm{BF}_{4}\right)\right\}_{\infty}$ (complex 7).

X-Ray data collection and structure solution

Crystallographic data are summarised in Table 3. Selected bond lengths and angles of complexes 1-9 are available in the ESI along with a description of how the disordered components of the complexes were treated. X-Ray diffraction data were collected at the University of Otago on a Bruker APEX II CCD diffractometer with graphite monochromated Mo-K α $(\lambda=0.71073 \AA$) radiation. Intensities were corrected for Lorentz and polarisation effects and multiscan absorption corrections were applied to all structures. The structures were solved by direct methods such as SHELXS ${ }^{43,44}$ or SIR- 97^{45} and refined on F^{2} using all data by full-matrix least-squares procedures such as SHELXL 97. ${ }^{43}$ Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed in ideal positions except for the hydrogen atoms of the $\mathrm{H}_{2} \mathrm{O}$ molecules in 1, 2, 3, 4 and 6 which were located from the Fourier synthesis maps. In 1, the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$ anion was disordered over two sites with site occupancy of 0.36 and 0.64. This $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anion and $\mathrm{H}_{2} \mathrm{O}$ molecule were modelled using DFIX constraints. In 4, both $\mathrm{ClO}_{4}{ }^{-}$anions were disordered (50\%). A very disordered $\mathrm{CH}_{3} \mathrm{CN}$ of solvent was removed from the structure using the SQUEEZE procedure of PLATON ${ }^{46}$ as it could not be modelled. Analysis of the X-ray data indicated that crystals might carry a welldefined twin. However, a twin law that superimposed all or half of the reflections could not be found. The twinning was evident in both data collections for 4 . As a result, the precision of the data for 4 was not high. The crystals of 5 were of poor quality. Two different data sets for 5 were collected and solved, both of which were of poor quality because of weakly diffracting crystals. The solution reported herein represents the best quality solution. $\mathrm{A} \mathrm{CH}_{3} \mathrm{CN}$ molecule in 5 was disordered and the C and N atoms of this molecule were refined isotropically and the hydrogen atoms of this molecule were not placed. The disordered $\mathrm{CH}_{3} \mathrm{CN}$ molecule was modelled with site occupancy of 0.6 and 0.4 and additional restraints were used to maintain the linearity. $\mathrm{ACF}_{3} \mathrm{SO}_{3}{ }^{-}$anion was disordered with site occupancy of 0.51 and 0.49 . The F and O atoms of this molecule were refined isotropically. In 8, the $\mathrm{PF}_{6}{ }^{-}$anion was disordered on a four-fold axis over two sites with site
Table 3 Crystal and structure refinement data for complexes -

Structure	1	2	3	4	5	6	7	8	9
Formula	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{9} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{~F}_{6} \mathrm{Ag}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Ag}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{11}$	$\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{Ag}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{11}$	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Ag}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{7} \mathrm{O}_{10}$	$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{Ag}_{2} \mathrm{~F}_{12} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{O}_{11} \mathrm{~N}_{8} \mathrm{~S}_{2} \mathrm{~F}_{6} \mathrm{Ag}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{AgBF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{AgF}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{AgF}_{6} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}$
Formula weight	900.28	801.04	924.21	906.19	1038.26	1268.67	563.07	621.23	703.34
Crystal system	Monoclinic	Triclinic							
Space group	C2/c	C2/c	$P 2 . / c$	$P 2 . / c$	$P 2 . / c$	C2/c	$P 2_{1} / c$	$P 2_{1} / n$	$P \overline{1}$
a / A	13.7574(9)	12.4586(5)	7.5345(3)	7.8231(5)	7.9890(5)	27.5782(15)	11.020(11)	11.0709(7)	10.950(7)
b / A	11.2371(8)	9.8846(4)	19.1191(10)	18.8411(11)	22.9536(15)	10.6328(5)	18.3216(17)	18.5174(12)	11.1081(7)
$c / A ̊$	19.0368(12)	21.2874(9)	23.0434(11)	22.8612(13)	20.1547(15)	18.6286(9)	10.7558(10)	11.6388(8)	12.1273(9)
$\alpha /{ }^{\circ}$	90	90	90	90	90	90	90	90	85.248(2)
$\beta /{ }^{\circ}$	95.529(2)	102.7935(18)	92.045(1)	90.874(3)	91.046(3)	117.5172(17)	93.782(4)	96.473(3)	86.205(3)
$\gamma /{ }^{\circ}$	90	90	90	90	90	90	90	90	83.680(3)
V / \AA^{3}	2929.3(5)	2556.6(18)	3317.4(3)	3369.3(5)	3695.3(6)	4844.8(6)	2167.4(5)	2370.8(3)	1458.7(2)
Z	4	4	4	4	4	4	4	4	2
T/K	90(2)	90(2)	90(2)	90(2)	90(2)	90(2)	90(2)	90(2)	90(2)
μ / mm^{-1}	1.577	1.811	1.412	1.387	1.249	0.987	0.994	0.993	0.819
Total reflections	22092	39118	39984	38976	58540	26131	26132	21026	17617
Unique reflections $\left(R_{\mathrm{int}}\right)$	8857 (0.0312)	9878 (0.0325)	9643 (0.0411)	9961 (0.0394)	9915 (0)	9998 (0.0538)	9900 (0.0347)	9898 (0.0210)	9112 (0.0289)
R_{1} indices $[I>2 \sigma(I)]$	0.0199	0.0285	0.0495	0.0687	0.0694	0.0596	0.0221	0.0340	0.0446
$\mathrm{w} R_{2}$ (all data)	0.0522	0.1269	0.1158	0.1792	0.2414	0.1368	0.0559	0.0846	0.1247
Goodness-of-fit	1.088	1.209	1.069	1.066	1.149	1.150	1.083	1.145	1.082

occupancy of 0.35 and 0.65 . This $\mathrm{PF}_{6}{ }^{-}$anion was modelled using DFIX constraints. All calculations were performed using the WinGX ${ }^{47}$ interface. Detailed analyses of the extended structure were carried out using PLATON ${ }^{46}$ and MERCURY (version 3.0) ${ }^{26,48}$ crystallographic data are listed in the appendix.

Acknowledgements

We acknowledge the Department of Chemistry for the award of Master's Scholarship and thank the University of Otago for publication bursary (to KMP). We thank Professor Geoff Jameson for assistance with the twinning in 4. Lisa Bucke is thanked for her assistance in preparing Fig. 2.

Notes and references

1 W. L. Leong and J. J. Vittal, Chem. Rev., 2011, 111, 688-764.
2 C.-L. Chen, B.-S. Kang and C.-Y. Su, Aust. J. Chem., 2006, 59, 3-18.
3 D. Visinescu, M. Andruh, A. Müller, M. Schmidtmann and Y. Journaux, Inorg. Chem. Commun., 2002, 5, 42-45.

4 M.-L. Tong, X.-M. Chen, B.-H. Ye and S. W. Ng, Inorg. Chem., 1998, 37, 5278-5281.
5 L. Hou, W.-J. Shi, Y.-Y. Wang, B. Liu, W.-H. Huang and Q.-Z. Shi, CrystEngComm, 2010, 12, 4365-4371.

6 Y. Xia, S. Li, B. Wu, Y. Liu and X.-J. Yang, CrystEngComm, 2011, 13, 5763-5772.
7 F. Ma, D.-B. Wei and Z.-M. Cao, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, 68, m611-m612.
8 C.-Q. Wan, S. A. Al-Thabaiti, X.-D. Chen and T. C. W. Mak, Eur. J. Inorg. Chem., 2013, 30, 5265-5273.
9 C.-Q. Wan, Z.-W. Wang, G. Wang, A.-M. Li, Q.-H. Jin, Y.-H. Deng and T. C. W. Mak, Eur. J. Inorg. Chem., 2013, 14, 2591-2600.
10 K. J. Wei, Y. S. Xie, J. Ni, M. Zhang and Q. L. Liu, Inorg. Chem. Соттип., 2006, 9, 926-930.
11 R. Benedix, Z. Anorg. Allg. Chem., 1984, 24, 303.
12 M. A. Braverman, J. H. Nettleman, R. M. Supkowski and R. L. LaDuca, Inorg. Chem., 2009, 48, 4918-4926.

13 G. A. Farnum, W. R. Knapp and R. L. LaDuca, Polyhedron, 2009, 28, 291-299.
14 E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochem. Organomet. Inorg. Compd., 1994, 1156.
15 D. B. Cordes, L. R. Hanton and M. D. Spicer, Inorg. Chem., 2006, 45, 7651-7664.
16 A. D. Clark, Z. Kristallogr. - New Cryst. Struct., 1998, 213, 382.
17 X. Z. Sun, H. J. Yan and C. Q. Wan, Z. Kristallogr. - New Cryst. Struct., 2013, 228, 375-376.
18 B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629-1658.
19 D. A. McMorran, Inorg. Chem., 2007, 47, 592-601.
20 L. Han and M. Hong, Inorg. Chem. Commun., 2005, 8, 406-419.
21 R. Horikoshi, T. Mochida, N. Maki, S. Yamada and H. Moriyama, J. Chem. Soc., Dalton Trans., 2002, 28-33.

22 R. Carballo, B. Covelo, E. García-Martínez, A. B. Lago and E. M. Vázquez-López, Polyhedron, 2009, 28, 923-932.

23 D. H. Johnston and D. F. Shriver, Inorg. Chem., 1993, 32, 1045-1047.
24 M. A. M. Abu-Youssef, V. Langer and L. Ohrstrom, Dalton Trans., 2006, 2542-2550.
25 I. R. Thomas, I. J. Bruno, J. C. Cole, C. F. Macrae, E. Pidcock and P. A. Wood, J. Appl. Crystallogr., 2010, 43, 362-366.
26 I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 389-397.
27 L. Yang, D. R. Powell and R. P. Houser, Dalton Trans., 2007, 955-964.
28 R. G. Serres, C. A. Grapperhaus, E. Bothe, E. Bill, T. Weyhermüller, F. Neese and K. Wieghardt, J. Am. Chem. Soc., 2004, 126, 5138-5153.
29 E. C. Constable, C. E. Housecroft, M. Neuburger, S. Reymann and S. Schaffner, Eur. J. Inorg. Chem., 2008, 22, 3540-3548.
30 E. C. Constable, C. E. Housecroft, B. M. Kariuki, M. Neuburger and C. B. Smith, Aust. J. Chem., 2003, 56, 653-655.
31 P. L. Caradoc-Davies, L. R. Hanton and W. Henderson, J. Chem. Soc., Dalton Trans., 2001, 2749-2755.

32 M. Nishio, Phys. Chem. Chem. Phys., 2011, 13, 13873-13900.
33 C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885-3896.
34 C. A. Black, L. R. Hanton and M. D. Spicer, Chem. Commun., 2007, 3171-3173.
35 C.-Q. Wan, X.-D. Chen and T. C. W. Mak, CrystEngComm, 2008, 10, 475-478.
36 T. Bark and R. P. Thummel, Inorg. Chem., 2005, 44, 8733-8739.
37 G. Yang, S. L. Zheng, X. M. Chen, H. K. Lee, Z. Y. Zhou and T. C. W. Mak, Inorg. Chim. Acta, 2000, 303, 86-93.

38 X. Hou, M. Schober and Q. Chu, Cryst. Growth Des., 2012, 12, 5159-5163.
39 R. Singh, X. Hou, O. Molly, M. Schober and Q. Chu, CrystEngComm, 2012, 14, 6132-6135.
40 A. Bellusci, M. Ghedini, L. Giorgini, F. Gozzo, E. I. Szerb, A. Crispini and D. Pucci, Dalton Trans., 2009, 7381-7389.

41 A. Bellusci, A. Crispini, D. Pucci, E. I. Szerb and M. Ghedini, Cryst. Growth Des., 2008, 8, 3114-3122.
42 R. P. Feazell, C. E. Carson and K. K. Klausmeyer, Inorg. Chem., 2005, 45, 935-944.
43 G. M. Sheldrick, SHELX97. Programs for Crystal Structure Analysis, Release 97-2, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400, Göttingen, Germany, 1997.

44 Siemens, SHELXTL. Structure Determination Software, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1995.
45 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115-119.
46 A. L. Spek, PLATON. A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1999.
47 L. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.
48 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr., 2006, 39, 453-457.

[^0]: Department of Chemistry (Te Tari Hua-Ruanuku), University of Otago, P. O. Box 56, Dunedin 9054, New Zealand. E-mail: lhanton@chemistry.otago.ac.nz;
 Fax: +64 3479 7906; Tel: +6434797918
 \dagger Electronic supplementary information (ESI) available: Selected bond lengths and angles for complexes 1-9. CCDC 982462-982470. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c4ce00155a

