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Germane vs. digermane formation†‡

P. Steiniger, G. Bendt, D. Bläser, C. Wölper and S. Schulz*

Oxidative addition reactions of dialkylchalcogenanes R2E2 and

[Me2Si(Nt-Bu)2]Ge 1 yielded bis(alkylchalcogeno)germanes Me2Si(Nt-Bu)2-

Ge(ER)2 (R = Et, E = S 2, Se 3; R = Me, E = Se 4) and digermanes [Me2Si(Nt-

Bu)2Ge(EEt)]2 (E = S 5, Se 6). The reaction of 1 with Et2Te2 proceeds with

formation of Me2Si(Nt-Bu)2Ge(TeEt)2 7, which slowly converts into

the Te-bridged complex [Me2Si(Nt-Bu)2GeTe]2 8. 1–6 and 8 were

characterized by single crystal X-ray diffraction.

Germylenes R2Ge, which have singlet ground states with a low-lying
s lone-pair orbital and a higher-lying p orbital,1 have evolved from
exotic reaction intermediates to important reagents in organic
chemistry.2 They were shown to activate a large variety of bonds
including P–Cl,3 O–H,4 Ge–C5 and C–H bonds6 and to react in
[2+1]- and [4+1]-cycloaddition reactions with alkenes and alkynes.2,7

Germylenes tend to dimerize to digermenes Ge2R4 or oligomerize
into polygermanes, but monomeric R2Ge were kinetically stabilized
by bulky organic ligands.8 Lappert’s [(Me3Si)2CH]2Ge is monomeric
in the gas phase and in solution9,10 and dimeric in the solid state,11

while [(Me3Si)3C]2Ge12 and [(Me3Si)2N]2Ge13 are monomeric in
solution and in the solid state. [Me2Si(Nt-Bu)2]Ge 1 is monomeric
in solution, while its solid state structure was not reported.14

Germylenes react with elemental chalcogenes with the formation
of complexes containing chalcogen-bridges15 or terminal GeQE
bonds16 as well as polychalcogenides.17 In addition, insertion
reactions in E–C bonds18 and E–E bonds (E = S, Se)19 as well as
reactions with R3PQE20 were reported. Our general interest in the
reactivity of complexes with low-valent main group elements21

prompted us to investigate reactions of [Me2Si(Nt-Bu)2]Ge 1 with
dialkyldichalcogenanes R2E2, which were recently shown to

react with monovalent tin (RSnSnR), antimony (RSb), bismuth
(RBi) and zinc complexes (R2Zn2) in oxidative addition reac-
tions.22,23 In addition, we report on the solid state structure of
[Me2Si(Nt-Bu)2]Ge 1 (Fig. 1).

Crystals of 1 were grown in closed quartz glass capillaries
under an Ar atmosphere at 100 K (1lt) and 230 K (1ht) using an
IR-laser-assisted technique.30 1 crystallizes in the monoclinic
space group P21/n with four molecules in the unit cell. The
shortest Ge–Ge distance is 4.158 Å, so 1 is monomeric in the
solid state.

Reactions of equimolar amounts of [Me2Si(Nt-Bu)2]Ge 1 and
Et2E2 (E = S, Se) at 25 1C yielded two products in 2 : 1 (E = S) and
4 : 1 (E = Se) molar ratios as was shown using 1H and 77Se NMR
spectroscopy (Scheme 1). The relative intensities of the signals due to
the Me2Si(Nt-Bu)2 and the Et groups within each set of resonances in

Fig. 1 Solid state structure of 1 as determined at 100(1) K. Non-H-atoms
shown as thermal ellipsoids at 50% probability levels, H atoms omitted for
clarity.

Scheme 1 Synthesis of 2–7.
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the 1H NMR spectra were 1 : 2 and 1 : 1, respectively. In contrast,
reactions of 1 with Me2Se2 and Et2Te2 at 25 1C only yielded [Me2Si(Nt-
Bu)2]Ge(SeMe)2 4 and [Me2Si(Nt-Bu)2]Ge(TeEt)2 7. Fractional crystal-
lisation of the reaction mixtures gave [Me2Si(Nt-Bu)2]Ge(EEt)2 (E =
S 2, Se 3), which are the expected products from the insertion
reaction of 1 into the E–E bond, and the digermanes [Me2Si(Nt-
Bu)2]GeEEt2 (E = S 5, Se 6). Attempts to grow single crystals of 7,
which slowly decomposes in solution into [Me2Si(Nt-Bu)2]Ge(m-Te) 8
and TeEt2 (ESI‡), failed.24

Single-crystals of 2–6 were obtained from solutions in hexane
upon storage at �30 1C, whereas 8 was obtained from a solution
of 7 in C6D6 after 72 h (Fig. 2 and 3). The bond lengths and
angles within the SiN2Ge ring in 2–6 are almost identical to those
of 1 (Table 1). The Ge–E bond lengths agree with the calculated
(S 2.24 Å; Se 2.37 Å)25 and experimental values for Ge–E single

bonds26 but are longer than those of GeQE double bonds (calc:
S 2.05 Å; Se 2.18 Å27).2d,15b The Ge–Se bond lengths in [MeC-
(NCy)2]Ge(SePh)2 (2.3522(5), 2.4009(5) Å) are slightly elongated.19

The Ge–Ge bond lengths (2.4727(6) 5, 2.4921(5) Å 6) are comparable
to those observed in digermanes (Table 2).28

The ratio of the Ge(III) and Ge(IV) species formed in the
reactions with Et2E2 (E = S, Se) depends on the reaction
temperature and the molar ratio of the starting reagents. 2
and 3 were formed in equimolar ratios at 70 1C. 5 was formed in
36% yield together with 2 in the reaction of 1 and Et2S2 in a 2 : 1
molar ratio at �30 1C, while 6 was obtained in less than 25%
yield together with 3. Equimolar amounts of 1 and Et2S2 reacted
at�30 1C to 2 and 5, while the reaction of 1 with 0.5 equivalents
of Et2S2 at 70 1C gave 2 and unreacted 1. The reaction of 5 with
Et2S2 failed to give 2 even after heating to 70 1C for 1 h, hence
proving that 5 is no reaction intermediate in the formation of 2
(Fig. S22, ESI‡) In contrast, 5 was quantitatively converted at
100 1C in solution into 1 and 2 by disproportionation reaction
(Fig. S11, ESI‡).

The formation of digermanes 5 and 6 is without precedence
in germylene chemistry. 1H NMR spectroscopy studies on the
reactions of 1 with isolated 2 and 3 did not show the formation
of 5 and 6, hence excluding the formation of 5 and 6 by
insertion of the germylene [Me2Si(Nt-Bu)2]Ge 1 into the Ge–E
bond of initially formed 2 and 3. Since digermenes R2GeQGeR2

are known to react with water, alcohols, carboxylic acids, CCl4,
CHCl3 or HN3 in a 1,2 fashion with the formation of the
corresponding digermanes,29 1H NMR spectra were recorded at
�60 1C and +60 1C to investigate whether 1 formed a temperature-
dependent germylene–digermene equilibrium in solution.
However, only a single set of resonances was observed. In
addition, reactions of 1 with 2-methylbutadiene, a trapping
agent for transient and stable germylenes and digermenes,31 at
25 1C and �60 1C only yielded the germylene products (germa-
cyclopentene) as was reported previously,32 whereas no sign of
the digermane reaction products was observed. A possible
explanation for the formation of 5 and 6 is the presence of a
loosely bound dimer in solution, held together by weak dispersion
forces. Computational studies are currently being performed in
order to address this hypothesis.

Oxidative addition reactions of dichalcogenanes to germylene
1 at elevated temperature yielded the expected Ge(IV) species,
whereas the reactions at low temperatures proceeded with
the predominant formation of digermanes 5 and 6, in which
the Ge atoms adopted the formal oxidation state of +III. These
findings indicate that 1 forms a loosely bound dimer in
solution.

Fig. 2 Solid state structure of 3. Non-H-atoms shown as thermal ellipsoids
at 50% probability levels, H atoms omitted for clarity.

Fig. 3 Solid state structure of 6 (2 independent molecules). Non-
H-atoms shown as thermal ellipsoids at 50% probability levels, H atoms
omitted for clarity.

Table 1 Selected bond lengths [Å] and angles [1] of 1–4

1ltb 2 3 4a

Ge(1)–N(1) 1.8574(13) 1.8400(7) 1.8444(19) 1.8451(9)
Ge(1)–N(2) 1.8584(13) 1.8410(7) 1.8411(18) 1.8451(9)
Ge(1)–E(1) — 2.2072(2) 2.3355(4) 2.3439(2)
Ge(1)–E(2) — 2.2070(2) 2.3371(4) 2.3439(2)
N(1)–Ge(1)–N(2) 81.33(6) 82.93(3) 82.74(8) 82.89(6)
E(1)–Ge(1)–E(2) — 101.15(1) 102.05(2) 102.53(1)
N(1)–Si(1)–N(2) 88.82(6) 88.70(3) 88.80(9) 89.00(6)

a Special position. Equal values are symmetry equivalent and labeling
may differ. b Structural parameters of the ‘‘ht’’ version of 1 are almost
identical (ESI).

Table 2 Selected bond lengths [Å] and angles [1] of 5 and 6

5 6

Ge(1)–N(1) 1.855(3) 1.846(3)
Ge(1)–N(2) 1.845(4) 1.851(3)
Ge(1)–E(1) 2.2271(13) 2.3700(5)
Ge(1)–Ge(2) 2.4727(6) 2.4921(5)
N(1)–Ge(1)–N(2) 82.05(16) 81.75(13)
N(1)–Si(1)–N(2) 88.69(17) 88.40(14)
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