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Bicyclic dibrominated C;5 medium-ring ether hexahydrolaureoxanyne
was produced directly from an acyclic model C;s-epoxide when
treated with NBS with water as the solvent.

Since the original isolation of Laurencin (1a) in 1965," marine
red algae of Laurencia species have provided a wide variety of
Cjs-acetogenic halogenated diastereo- and constitutional isomeric
monocyclic (C;5H,,BrO,) and bicyclic (C;5H,(Br,0,) medium-ring
ethers that are oxygenated at both C-6 and C-7 (Fig. 1).” Both the
monocyclic and bicyclic metabolites have received considerable
synthetic attention, with numerous necessarily different strategies
used to forge the 7-, 8-, or 9-membered medium-ring, control
the cis or trans o,0/-ether stereochemistry, install the requisite
halogen(s), and - in the case of the bicyclic ethers - to fashion
the second ring.*>~ Various recent studies have also been directed
at the further understanding of their biogenesis,® where the
early pioneering work of Murai’ demonstrated enzymatic
bromoetherifications of straight-chain co-isolated unsaturated
Cy5-diols - laurediols (3E,6R,7R)-7a and (3Z,6S,75)-7b® - to mono-
cyclic medium-ring ethers deacetyl laurencin 1b and prelaureatin 2
respectively, albeit in very low yields (Scheme 1, top).” We have
recently advanced an alternative biogenesis for the monocyclic
(C45H,1BrO,) medium-ring ethers from Laurencia species from
(6S,7R)-epoxide 8 via an intramolecular bromonium ion assisted
epoxide ring-opening (IBIAERO) reaction with water functioning as
the external nucleophile (Scheme 1, bottom, 8 > B— 0/0’ —1b/2),
and experimentally corroborated this with a model epoxide for the
concurrent formation of 7-, 8- and 9-ring ethers corresponding to
the halogenated medium-ring ethers of known metabolites from
Laurencia species.'®"! The bicyclic metabolites are generally con-
sidered to originate by further bromoetherification of the residual
unsaturation of the monocyclic compounds - the Z-configured
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Fig. 1 Representative monocyclic and bicyclic halogenated medium-ring
ethers of formulae Cy5H»1BrO5 (1b, 2) and Ci5H,0BrO, (3—6) from Laurencia
species that are oxygenated at C-6 and C-7. Laurencin 1a is related as the
acetate of 1b.

medium-ring alkene or the pendant enyne - using the free alcohol
of the original monocyclic compound located either at C-6 or C-7
as the nucleophile (Scheme 1, top).” Several laboratory demonstra-
tions of these later transformations have been successful, either as
enzymatic-mediated bromoetherifications of naturally occurring
monocycles,'” or as part of the synthetic strategy in a total
synthesis of the bicyclic natural products.” Interestingly, although
bromocyclisation events had been postulated for both monocycle
and bicycle formation, prior to our 2012 report'® and Snyder’s
recent elegant work,*” a non-enzymatic bromonium-ion induced
cyclisation process to directly form medium-ring ether cores
relevant to Laurencia species had not been reported. Moreover,
to the best of our knowledge, there has been no report of a
C,s-dibrominated bicyclic medium-ring ether relevant to
Laurencia species being formed directly from a linear unsatu-
rated C,s-precursor by two successive bromination events in the
same pot. Herein we report on a successful strategy to effect
such a transformation.

To investigate the proof-of-principle demonstration of a
direct double cyclisation of a C;5 unsaturated linear precursor
to a bicyclic medium-ring ether relevant to Laurencia species we
targeted hexahydroepoxide (6S*,7R*)-[He]-8, with the aim that this
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Scheme 1 Irie-Murai biogenesis of monocyclic medium-ring ethers from
laurediols 7a and 7b (top); alternative biogenesis of deacetyllaurencin 1b and
prelaureatin 2 via IBIAERO reaction with water functioning as the external
nucleophile (bottom). The other six possible monocyclic ethers of formulae
Cy5H,1BrO, are not shown.

would undergo an initial IBIAERO reaction via [He|-B where water
functions as both the solvent and the nucleophile (Scheme 2).
The use of water in this manner thus guarantees a free hydroxyl
group for any subsequent bromoetherification reaction (e.g.,
[He]-1b—[He]-3, Scheme 2) with a second equivalent of an
electrophilic bromine source. While we had previously demon-
strated successful IBIAERO reactions in water with NBS as the
electrophilic bromine source,'" the attempted IBIAERO reaction
of a model epoxide as a truncated C;, alcohol (inset, Scheme 2)
under the same conditions had failed.'°# We considered that
hexahydroepoxide [He]-8 offered distinct benefits compared to
this earlier model and also to epoxide 8 for the proposed
experiment: (i) the hydrophilic hexahydro chain may encourage
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12 9 Br
15MW\AM """"
1+ HO
(6S*,7R*)-[He]-8
Hs NN o OH !
hydrophobic chain

i IBIAERO reaction in H,O fails. Ref 10.
l )

expected to encourage
folding in water

Structural elucidation of ;
bicyclic metabolites via E
hydrogenation / Y

o Br o

no unsaturation
in C1-C4 chain for
RN competing
<" bromoetherification

H,,Pd/C EtOH. Ref 14a.

(only the highlighted Br

functional groups can
interact) 5

(6R*7R*9S* 10S* 12S* 13R*)-[H¢]-3 as [Hel-1b as representative medium
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with formula C;5H,60,Br,

Scheme 2 Proposed proof-of-principle direct cyclisation of (65*7R*)-
[Hel-8 to bicyclic medium ring ethers via IBIAERO reaction and subsequent
bromoetherification of the remaining unsaturation.
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Scheme 3 Synthesis of (65*7R*)-[He]-8.

folding of the substrate in water thus inherently facilitating the
IBIAREO reaction; (ii) post-IBIAERO reaction, the only region of
unsaturation will be located in the medium ring and - compared
with the hypothetical use of the putative biosynthetic precursor
itself, epoxide 8 - there can be no complicating bromo-
etherifications to form bromoallene adducts by cyclisation onto
any C;-C, enyne moiety; (iii) hexahydrobicyclic compounds
of formulae C;5H,,0,Br, are known in the literature as a con-
sequence of the structural elucidation of the naturally occurring
compounds via hydrogenation,"* providing data for identification
of bicyclic products.

Accordingly, epoxide (6S*,7R*)-[H¢]-8 was synthesised from
bromide 12, itself prepared from (E)-2-penten-1-ol (9) via a known
sequence'”"® with minor modifications. Subsequent copper-
mediated coupling'® with hept-1-yne gave novel enediyne 13
(Scheme 3).1 Chemoselective and stereoselective hydrogenation'’
afforded (E,Z,Z)-doubly skipped triene 14. Epoxidation of triene 14
with DMDO"® was found to be entirely selective for the Z-olefins,"
giving a mixture of mono epoxides (65*,7R*)-[Hq}-8 and 15 which
could be separated by chromatography.§q||

With epoxide (65*,7R*){H¢]-8 in hand, it was treated with
two equivalents of NBS - a water stable reagent — under high
dilution conditions in water (Scheme 4).** Here, various dibromi-
nation adducts, bromohydrin regioisomers, and dibromotetra-
hydrofurans are expected to be formed by competing processes.'®
In the event, as expected, a complex mixture was obtained that
was subjected to extensive chromatography, where ‘non-polar’
components could be separated away from ‘polar’ components.
Much to our delight, by further chromatography of the non-polar
components, hexahydrolaureoxanyne [(£)-[Hg]-3]">* was isolated
as a bicyclic medium-ring ether with 'H NMR data identical to
that previously reported,tif along with dibromoepoxides 16.
Thus the desired proof-of-principle has been achieved. This also
constitutes the first synthetic route to the laureoxanyne bicyclic
medium-ring ether scaffold, and the isolated yield of (+){He]-3
(2.5%) from (6S*,7R*)-[He]-8 compares well with the reported
enzymatic conversion of deacetyl laurencin 1b (obtained from
natural laurencin 1a) into 3 (3%).">*

This journal is © The Royal Society of Chemistry 2014
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Scheme 4 Proof-of-principle direct double cyclisation of (65*,7R*)-[He]-8
into (+)-[Hgl-3 via IBIAERO reaction and subsequent bromoetherification of
the remaining unsaturation (cf., Scheme 2).

In conclusion, we have demonstrated the proof-of-principle
direct cyclisation of a linear unsaturated C;s-precursor into a
C;s-dibrominated bicyclic medium-ring ether relevant to Laurencia
species — where hexahydrolaureoxanyne (+)-[Hg]-3 has an identical
bicyclic medium ring ether framework to laureoxanyne 3 - by two
successive bromination events in the same pot. These studies are
also consistent with epoxide (6S,7R)-8 acting as the biogenetic
precursor'® for bromocyclisation to bicyclic medium-ring ethers of
Laurencia species via IBIAERO reactions followed by subsequent
bromoetherification events.
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