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Proof-of-principle direct double cyclisation of a
linear C15-precursor to a dibrominated bicyclic
medium-ring ether relevant to Laurencia species†

D. Christopher Braddock* and Dan-Tiberiu Sbircea

Bicyclic dibrominated C15 medium-ring ether hexahydrolaureoxanyne

was produced directly from an acyclic model C15-epoxide when

treated with NBS with water as the solvent.

Since the original isolation of Laurencin (1a) in 1965,1 marine
red algae of Laurencia species have provided a wide variety of
C15-acetogenic halogenated diastereo- and constitutional isomeric
monocyclic (C15H21BrO2) and bicyclic (C15H20Br2O2) medium-ring
ethers that are oxygenated at both C-6 and C-7 (Fig. 1).2 Both the
monocyclic and bicyclic metabolites have received considerable
synthetic attention, with numerous necessarily different strategies
used to forge the 7-, 8-, or 9-membered medium-ring, control
the cis or trans a,a0-ether stereochemistry, install the requisite
halogen(s), and – in the case of the bicyclic ethers – to fashion
the second ring.3–5 Various recent studies have also been directed
at the further understanding of their biogenesis,6 where the
early pioneering work of Murai7 demonstrated enzymatic
bromoetherifications of straight-chain co-isolated unsaturated
C15-diols – laurediols (3E,6R,7R)-7a and (3Z,6S,7S)-7b8 – to mono-
cyclic medium-ring ethers deacetyl laurencin 1b and prelaureatin 2
respectively, albeit in very low yields (Scheme 1, top).9 We have
recently advanced an alternative biogenesis for the monocyclic
(C15H21BrO2) medium-ring ethers from Laurencia species from
(6S,7R)-epoxide 8 via an intramolecular bromonium ion assisted
epoxide ring-opening (IBIAERO) reaction with water functioning as
the external nucleophile (Scheme 1, bottom, 8-B-O/O0-1b/2),
and experimentally corroborated this with a model epoxide for the
concurrent formation of 7-, 8- and 9-ring ethers corresponding to
the halogenated medium-ring ethers of known metabolites from
Laurencia species.10,11 The bicyclic metabolites are generally con-
sidered to originate by further bromoetherification of the residual
unsaturation of the monocyclic compounds – the Z-configured

medium-ring alkene or the pendant enyne – using the free alcohol
of the original monocyclic compound located either at C-6 or C-7
as the nucleophile (Scheme 1, top).7 Several laboratory demonstra-
tions of these later transformations have been successful, either as
enzymatic-mediated bromoetherifications of naturally occurring
monocycles,12 or as part of the synthetic strategy in a total
synthesis of the bicyclic natural products.13 Interestingly, although
bromocyclisation events had been postulated for both monocycle
and bicycle formation, prior to our 2012 report10 and Snyder’s
recent elegant work,6b,c a non-enzymatic bromonium-ion induced
cyclisation process to directly form medium-ring ether cores
relevant to Laurencia species had not been reported. Moreover,
to the best of our knowledge, there has been no report of a
C15-dibrominated bicyclic medium-ring ether relevant to
Laurencia species being formed directly from a linear unsatu-
rated C15-precursor by two successive bromination events in the
same pot. Herein we report on a successful strategy to effect
such a transformation.

To investigate the proof-of-principle demonstration of a
direct double cyclisation of a C15 unsaturated linear precursor
to a bicyclic medium-ring ether relevant to Laurencia species we
targeted hexahydroepoxide (6S*,7R*)-[H6]-8, with the aim that this

Fig. 1 Representative monocyclic and bicyclic halogenated medium-ring
ethers of formulae C15H21BrO2 (1b, 2) and C15H20Br2O2 (3–6) from Laurencia
species that are oxygenated at C-6 and C-7. Laurencin 1a is related as the
acetate of 1b.
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would undergo an initial IBIAERO reaction via [H6]-B where water
functions as both the solvent and the nucleophile (Scheme 2).
The use of water in this manner thus guarantees a free hydroxyl
group for any subsequent bromoetherification reaction (e.g.,
[H6]-1b-[H6]-3, Scheme 2) with a second equivalent of an
electrophilic bromine source. While we had previously demon-
strated successful IBIAERO reactions in water with NBS as the
electrophilic bromine source,11 the attempted IBIAERO reaction
of a model epoxide as a truncated C12 alcohol (inset, Scheme 2)
under the same conditions had failed.10‡ We considered that
hexahydroepoxide [H6]-8 offered distinct benefits compared to
this earlier model and also to epoxide 8 for the proposed
experiment: (i) the hydrophilic hexahydro chain may encourage

folding of the substrate in water thus inherently facilitating the
IBIAREO reaction; (ii) post-IBIAERO reaction, the only region of
unsaturation will be located in the medium ring and – compared
with the hypothetical use of the putative biosynthetic precursor
itself, epoxide 8 – there can be no complicating bromo-
etherifications to form bromoallene adducts by cyclisation onto
any C1–C4 enyne moiety; (iii) hexahydrobicyclic compounds
of formulae C15H26O2Br2 are known in the literature as a con-
sequence of the structural elucidation of the naturally occurring
compounds via hydrogenation,14 providing data for identification
of bicyclic products.

Accordingly, epoxide (6S*,7R*)-[H6]-8 was synthesised from
bromide 12, itself prepared from (E)-2-penten-1-ol (9) via a known
sequence10,15 with minor modifications. Subsequent copper-
mediated coupling16 with hept-1-yne gave novel enediyne 13
(Scheme 3).† Chemoselective and stereoselective hydrogenation17

afforded (E,Z,Z)-doubly skipped triene 14. Epoxidation of triene 14
with DMDO18 was found to be entirely selective for the Z-olefins,19

giving a mixture of mono epoxides (6S*,7R*)-[H6]-8 and 15 which
could be separated by chromatography.§¶8

With epoxide (6S*,7R*)-[H6]-8 in hand, it was treated with
two equivalents of NBS – a water stable reagent – under high
dilution conditions in water (Scheme 4).** Here, various dibromi-
nation adducts, bromohydrin regioisomers, and dibromotetra-
hydrofurans are expected to be formed by competing processes.10

In the event, as expected, a complex mixture was obtained that
was subjected to extensive chromatography, where ‘non-polar’
components could be separated away from ‘polar’ components.††
Much to our delight, by further chromatography of the non-polar
components, hexahydrolaureoxanyne [(�)-[H6]-3]12a was isolated
as a bicyclic medium-ring ether with 1H NMR data identical to
that previously reported,†‡‡ along with dibromoepoxides 16.
Thus the desired proof-of-principle has been achieved. This also
constitutes the first synthetic route to the laureoxanyne bicyclic
medium-ring ether scaffold, and the isolated yield of (�)-[H6]-3
(2.5%) from (6S*,7R*)-[H6]-8 compares well with the reported
enzymatic conversion of deacetyl laurencin 1b (obtained from
natural laurencin 1a) into 3 (3%).12a

Scheme 1 Irie–Murai biogenesis of monocyclic medium-ring ethers from
laurediols 7a and 7b (top); alternative biogenesis of deacetyllaurencin 1b and
prelaureatin 2 via IBIAERO reaction with water functioning as the external
nucleophile (bottom). The other six possible monocyclic ethers of formulae
C15H21BrO2 are not shown.

Scheme 2 Proposed proof-of-principle direct cyclisation of (6S*,7R*)-
[H6]-8 to bicyclic medium ring ethers via IBIAERO reaction and subsequent
bromoetherification of the remaining unsaturation.

Scheme 3 Synthesis of (6S*,7R*)-[H6]-8.
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In conclusion, we have demonstrated the proof-of-principle
direct cyclisation of a linear unsaturated C15-precursor into a
C15-dibrominated bicyclic medium-ring ether relevant to Laurencia
species – where hexahydrolaureoxanyne (�)-[H6]-3 has an identical
bicyclic medium ring ether framework to laureoxanyne 3 – by two
successive bromination events in the same pot. These studies are
also consistent with epoxide (6S,7R)-8 acting as the biogenetic
precursor10 for bromocyclisation to bicyclic medium-ring ethers of
Laurencia species via IBIAERO reactions followed by subsequent
bromoetherification events.

We thank the Dinu Patriciu Foundation for funding (to D.-T. S.).
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Scheme 4 Proof-of-principle direct double cyclisation of (6S*,7R*)-[H6]-8
into (�)-[H6]-3 via IBIAERO reaction and subsequent bromoetherification of
the remaining unsaturation (cf., Scheme 2).
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