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Rh-catalysed conjugate additions of 2-aminophenyl boronic acid
derivatives were exploited in diastereoselective and asymmetric
syntheses of tetrahydroquinolines. In both cases, combinatorial
variation of the substitution of the tetrahydroquinoline ring system
was possible.

The tetrahydroquinoline ring system is an important synthetic
target" that is found in many bioactive compounds including natural
products (e.g. dynemicin A%) and drugs (e.g. the thrombin inhibitor
argatroban®® 1 and the antiarrhythmic agent nicainoprol® 2).
Established catalytic asymmetric synthetic approaches to tetrahydro-
quinolines include transition metal-catalysed hydrogenation and
transfer-hydrogenation of quinolines, organocatalytic reduction of
quinolines® and dihydroquinolines,® hetero-Diels-Alder reactions
of aniline-derived imines with electron-rich dienophiles
(Povarov reactions)” and catalysed intramolecular hydride transfer/
Mannich condensations.®
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As part of a programme focused on the synthesis of diverse
small molecule scaffolds,” we have exploited Rh-catalysed con-
jugate additions'® in convergent heterocycle syntheses.”*” For
example, Rh-catalysed conjugate addition of 2-aminophenyl
boronic acids 3 to enones 4 was followed by cyclisationt (—5)
and oxidation to give quinolines 6 in good yield (Scheme 1).°
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Scheme 1 Stereoselective synthesis of tetrahydroquinolines. Diastereomeric
ratios (dr) are reported for the purified products. Ar = p-methoxyphenyl;
Ar’ = p-nitrophenyl.

The reaction presumably proceeds by intramolecular condensation
of the initial conjugate addition adduct to yield a 3,4-dihydro-
quinoline 5 and, hence, the corresponding quinoline 6.
Although the general approach might, in principle, be exploited
in asymmetric heterocycle synthesis, it had only been demonstrated
in the synthesis of achiral®®” or racemic® heterocycles. We recog-
nized that Rh-catalysed conjugate addition chemistry might enable a
new convergent, and potentially asymmetric,"* synthesis of substi-
tuted tetrahydroquinolines 7 (Scheme 1). Initial studies focused on
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the convergent synthesis of the racemic tetrahydroquinoline 7a.
Thus, after completion of the Rh-catalysed conjugate addition reac-
tion, the reaction mixture was diluted with toluene and treated with
an excess of sodium triacetoxyborohydride: the tetrahydroquinoline
7a was obtained in 94% yield with 88:12 diastereoselectivity.

Our initial studies into the scope of the convergent synthesis of
racemic tetrahydroquinolines 7 are summarised in Scheme 1. The
synthesis of the 2-substituted tetrahydroquinoline 7b was lower
yielding that that of the 2,4-disubstituted analogue 7a. However,
with all of the o,p-disubstituted enones 4 studied, the reaction
yielded the corresponding 2,4-disubstituted tetrahydroquinolines
7c—f in reasonable to excellent yield with both aliphatic and aromatic
R' and R* substituents. In each case, the products were obtained
with good to excellent diastereoselectivity in favour of the cis isomer.

To enable substitution of the benzenoid ring, we investigated the
use of 2-aminophenylpinacolboronates 8, which may be prepared
easily from the corresponding 2-bromoanilines (Scheme 2)."> The
reaction between the parent pinacolboronate 8 (R* = H) with chalcone
was slower than that of the corresponding boronic acid 3. However,
by increasing the catalyst loading (to 6 mol%), and the amount
of base (to 2.5 eq.), the reaction was complete in a similar time,
and a comparable yield of the tetrahydroquinoline 7¢ was obtained
(compare Scheme 1 with Scheme 2). Remarkably, the synthesis of the
2-substituted tetrahydroquinoline 7b was much more effective with
the pinacolboronate 8 (R* = H) as the reactant, and a much improved
77% yield was observed (compare Scheme 1 with Scheme 2). In
a similar vein, the 2,4-disubstituted tetrahydroquinolines 7g-i
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Scheme 2 Stereoselective synthesis of tetrahydroquinolines. Diastereo-
meric ratios (dr) for purified products. @ Performed at 50 °C. ? Performed at
40 °C with 2-methyl-1-phenylprop-2-en-one; reduction conditions:
LiAlH4, toluene, r.t. Ar" = p-chlorophenyl.
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were obtained in good yield and with high diastereoselectivity.
The accessibility of substituted 2-aminophenyl pinacolboro-
nates enabled the synthesis of tetrahydroquinolines 7j-m in
which the benzenoid ring had been substituted.

The syntheses of the 2,4-disubstituted tetrahydroquinolines
7 were all highly diastereoselective in favour of the cis diastereo-
isomer. The 1,3-diaxial orientations of H-2 and H-4 were determined
by careful analysis of vicinal coupling constants™® and, for 3h and 3,
observation of strong mutual nOe interactions; in addition, the cis
diastereoisomer of 3d is a known compound.™ The stereoselectivity
may be explained in terms of axial attack™ of the reducing agent on
the 3,4-dihydroquinoline intermediate.

Extension to the synthesis of a 2,3-disubstituted tetrahydro-
quinoline was also possible (Scheme 2). Thus, with 2-methyl-1-
phenyl prop-2-en-one, the known'® tetrahydroquinoline 9
(3]H2‘H3 = 3.5 Hz) was obtained in 67% yield as a >95: <5 mixture
of diastereoisomers. As previously observed with the -unsubstituted
enone (—7b; compare Scheme 1 with Scheme 2), the yield was
higher with the pinacolboronate 8 (R* = H) as the reactant (67%)
than with the corresponding boronic acid 3 (58%).

We next focused on the development of an asymmetric
tetrahydroquinoline synthesis. In studies directed towards an
asymmetric synthesis of tetrahydroquinolones, we had found that
addition of the pinacolboronate 8 (R* = H) to methyl cinnamate gave
racemic products with a wide range of chiral ligands; however, the
corresponding Boc-protected substrate 10 (R® = H) gave, with (R,R,S,S)-
Duanphos as ligand,"”® a low yield of the corresponding tetrahydro-
quinolone in >98% ee (ESIT). These initial results prompted us to
investigate the addition of the Boc-protected pinacolboronates 10
to unsaturated ketones. In each case, the intermediate conjugate
addition products were treated with triethylsilane in TFA to effect
deprotection, cyclisation and reduction, and the enantiomeric
excess of the corresponding tetrahydroquinolines 8 was deter-
mined by chiral HPLC (Table 1).

The reactions of the Boc-protected pinacolboronate 10
(R® = H) with a range of o,f-unsaturated ketones, catalysed by
6 mol% (R,R,S,S)-Duanphos[Rh(nbd)][BF,], were successful with both
aromatic and aliphatic R" and R* groups (entries 1-4, Table 1). The
use of the Boc-protected pinacolboronate 10 (R* = CF;) was also
successful, and allowed variation of the substitution of the benzenoid
ring (entries 5-7). The stereoselectivity of the reactions was remark-
able: the products 7 were obtained with very high cis diastereoselec-
tivity and with good to excellent enantiomeric excess. The absolute
configuration of the tetrahydroquinolines 7c and 71 was determined
by comparison of their experimental and simulated vibrational
circular dichroism spectra.'® This outcome is consistent with the
observed sense of induction in reported asymmetric conjugate
addition reactions using this catalyst system.'®

We also investigated the effect of generating the chiral
catalyst in situ. Thus, the enantiomerically-enriched tetra-
hydroquinolines ent-7¢ and 7g could be prepared using the
combination of 3 mol% [Rh(nbd)Cl], and 6 mol% of either
(S,S,R,R) or (R,R,S,S)-Duanphos (entries 8 and 9, Table 1). The
yield of the tetrahydroquinoline 7¢ was higher under these
conditions than with 6 mol% (R,R,S,S)-Duanphos[Rh(nbd)]|[BF,]
(compare entries 2 and 8).
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Table 1 Asymmetric synthesis of tetrahydroquinolines

R _— o]
\/Y 1.6 mol% [(R,R, S, S)Duanphos R2

4 K Rh(nbd)](BF ), KOH (2 eq.),
dioxane, r.t., 16 hr
o) >
y 2. EtsSiH (10 eq.), TFA, g3 N R
B<g DCM, r.t. H
X :
R3 NHBoc
10 Q
(R,R,S,S)-Duanphos
Entry Product Yield/% dr ee’/%
1 7a 76 94:6 >9g?
2 7c 60 >95:5 >98
3 7h 45 >95:5 >9g?
4 7i 65 >095:5 >98
5 7k 72 >95:5 >98
6 71 65 92:8 92
7 7m 72 >95:5 >98
8¢ ent-7¢ 78 >95:5 98
o? 7g 62 >95:5 87

“ Determined by chiral analytical HPLC. ” The ee of the corresponding
3,5-dinitrobenzamide derivative was determined. ¢ 3 mol% [Rh(nbd)CI],
and 6 mol% (S,S,R,R)-Duanphos were used. ¢ 3 mol% [Rh(nbd)CI], and
6 mol% (R,R,S,S)-Duanphos were used.

A novel convergent and stereoselective synthesis of tetra-
hydroquinolines exploited the Rh-catalysed addition of 2-amino-
phenyl boronate derivatives to o,B-unsaturated ketones as the
key step. Remarkably, it was possible to develop a highly
enantioselective variant of the reaction that exploited the
specific combination of Duanphos as the chiral ligand and
Boc-protected pinacolboronates as the reactants. The synthetic
approach was modular, and will likely be adapted to synthesis
of a range of other benzo-fused heterocyclic ring systems. We
thank EPSRC and GlaxoSmithKline for funding, Douglas Minick
for conducting VCD experiments, and Amgen and ChiralQuest
for generous gifts of metal complexes.
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