“Soldier–Sergeant–Soldier” triblock copolymers: revealing the folded structure of single-chain polymeric nanoparticles†

Nobuhiko Hosono, Anja R. A. Palmans* and E. W. Meijer*

Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
E-mail: a.palmans@tue.nl, e.w.meijer@tue.nl; Fax: +31 402-451-036
† Electronic supplementary information (ESI) available: Synthesis and characterizations of the polymers. See DOI: 10.1039/c4cc02789b

“Soldiers–Sergeant–Soldiers” experiments performed on single-chain polymeric nanoparticles (SCPNs) with an ABA-type triblock architecture carrying chiral and achiral benzene-1,3,5-tricarboxamides (BTAs) in different blocks reveal that the BTAs form segregated, multiple stacks in a single SCPN.

Single-chain polymeric nanoparticles (SCPNs), which are synthetic polymers capable of folding into nanoparticles by covalent/supramolecular interactions, attract considerable interest to mimic biomaterials.1–3 We have recently developed SCPNs consisting of a synthetic polymer chain with complementary hydrogen-bonding side groups that can induce a large chain collapse through intramolecular self-assembly providing dynamic crosslinking.4,5

Our investigations on SCPNs predominantly focused on systems with ureidopyrimidinone (UPy)4 and/or benzene-1,3,5-tricarboxamide (BTA)5 as the supramolecular crosslinking units. BTA is a well-explored discotic molecule that forms a helical aggregate, stabilized by threefold, lateral hydrogen bonding.6 The folding behaviour of BTA-based SCPNs has been investigated extensively by our group for facile construction of nanometer-sized objects (Fig. 1a), with the ultimate aim to create artificial enzymatic systems.5b–d Since a better understanding of the folding process is crucial for tailoring the structure and functions of SCPNs, a quantitative estimation of the extent of folding was attempted by means of model analysis of temperature-dependent circular dichroism (CD) spectra.5d However, gathering direct experimental evidence on the internal folding structure still remains challenging since we are neither able to quantify the length of BTA stacks formed in SCPNs nor to distinguish between single and multi-domains present in the folded core. Using a combination of scattering methods, we recently realized that water-soluble BTA-based SCPNs adopt ellipsoidal shapes with an unexpectedly high aspect ratio.5f Increasing the degree of polymerization of the SCPN resulted in an increase of the aspect ratio while the cross-sectional radius remained constant. As a result, we concluded that the BTA moieties self-assemble into separate, individual stacks providing multiple, folded domains alongside the backbone polymer.5h

In SCPNs designed for organic solvents, where the hydrophobic effect is absent, it remained unclear how BTA aggregation occurs and how it affects the global conformation of the polymers.5a Here we report intramolecular “Soldiers–Sergeant–Soldiers” (S–S–S) experiments using SCPNs with triblock architectures as a novel tool to elucidate the folding behavior of SCPNs in organic media. To investigate the extent of supramolecular self-assembly, the
S–S–S experiment is a powerful tool that has been applied to a variety of self-assembling motifs including BTAs. In “free” BTA systems (not bound on a polymer chain), it is known that only 5 mol% of Sergeant BTA, which possesses chiral side chains at the periphery, induces full chiral amplification of the achiral BTA stacks. This indicates that one chiral BTA imposes its preferred handedness on twenty achiral BTAs on average. Thus, in a SCPN the S–S–S experiment provides experimental evidence for the possibility of the chiral sergeant transferring its helical preference to the achiral soldiers.

The chemical structures of S–S–S folding triblock copolymers are depicted in Fig. 1b. The ABA-type triblock copolymers were designed to be so-called “Soldier–Sergeant–Soldier” architectures. Sergeants of chiral BTA (B*) and Soldiers of achiral BTA (B) are separately incorporated into the middle (B) and both end (A) blocks, respectively. The subscripts B and * denote BTA and the presence of a chiral center in the peripheral side chains, respectively. We synthesized the S–S–S triblock copolymers with three different molecular weights ranging from 32 to 120 kg mol\(^{-1}\), denoted as \(\text{Pn}[\text{BB}*\text{B}]\) (n = 1, 2, and 3). The triblock architectures were first realized by two-step atom-transfer radical polymerization (ATRP) in the presence of the Cu(i)/Br\(^-\)/N-butyly-2-pyridylmethanimine catalyst with isobornyl methacrylate and 10 mol% of post-functionalizable comonomers (propargyl methacrylate for the middle block, and hydroxethyl methacrylate for both end blocks). The backbone triblock copolymers were functionalized through two consecutive Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) for B* and ester conjugation reactions for B. Sergeant fractions, \(f_{\text{B*}}\), are around 37% for all S–S–S copolymers. For comparison, triblock copolymers with all chiral BTAs, denoted as \(\text{Pn}[\text{B*B*B*}]\) (n = 1, 2, and 3), were prepared in an identical manner starting with the identical backbone polymers, but now \(f_{\text{B*}}\) is 100% (Fig. 1a). The characterization data for all triblock copolymers are given in Table 1.

A number of possibilities can be distinguished with respect to how the chiral amplification behavior takes place in the single polymer chain. If full chiral amplification occurs, we expect to observe an identical CD signal intensity between \(\text{Pn}[\text{BB}*\text{B}]\) and \(\text{Pn}[\text{B*B*B*}]\) at a fixed BTA concentration. If not, a smaller CD signal of \(\text{Pn}[\text{BB}*\text{B}]\) compared to that of \(\text{Pn}[\text{B*B*B*}]\) indicates that the formation of only a single, long BTA stack in the SCPN is no longer realistic, neither with segregated nor with intercalated cores (Fig. 2a and b). In the latter case, the most likely option is an internal structure that consists of multiple cores, in which communication between B* and B is restricted in the individual stacks resulting in no or poor chiral amplification (Fig. 2c).

Temperature-dependent CD measurements using 1,2-dichloroethane (DCE) as a solvent were applied to \(\text{Pn}[\text{BB}*\text{B}]\) and \(\text{Pn}[\text{B*B*B*}]\) at a fixed BTA concentration of \(c_{\text{BTA}} = 50 \mu\text{M}\) (Fig. 3). The polymer solutions were heated up to 80 °C, then slowly cooled down to 20 °C at the rate of 1 °C min\(^{-1}\) to ensure that BTA self-assembly is under thermodynamic control. The CD signal intensity was monitored at 225 nm. Above 60 °C, all of the polymers were CD-silent, indicating that the polymers were molecularly dissolved and adopted unfolded conformations (Fig. 3a, c and e). Upon cooling, a negative Cotton effect was observed for all of the polymers, indicative of the preference for left-handed helical structures. The CD amplification behavior for \(\text{Pn}[\text{BB}*\text{B}]\) (red) and \(\text{Pn}[\text{B*B*B*}]\) (green) was monitored at 20 °C (Fig. 3b, d and f) for the same polymer series of polymers.\(^{4}\)

<table>
<thead>
<tr>
<th>Polymer</th>
<th>(n_{\text{BTA}}) in each block(^a)</th>
<th>Total (n_{\text{BTA}}/\text{chain})</th>
<th>(f_{\text{B*}}) (%)</th>
<th>(M_n/\text{kg mol}^{-1}) ((D)) (^{4})</th>
<th>(\Delta_{\text{B*}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1[BB*]</td>
<td>3.2(n)–3.8(n)–3.2(n)</td>
<td>10.2</td>
<td>37</td>
<td>31.0 (1.20)</td>
<td>1</td>
</tr>
<tr>
<td>P2[BB*]</td>
<td>5.7(n)–6.3(n)–5.7(n)</td>
<td>17.7</td>
<td>36</td>
<td>53.0 (1.42)</td>
<td>2</td>
</tr>
<tr>
<td>P3[BB*]</td>
<td>14.0(n)–16.0(n)–14.0(n)</td>
<td>44.6</td>
<td>37</td>
<td>120.8 (1.56)</td>
<td>3</td>
</tr>
<tr>
<td>P1[BBB*]</td>
<td>3.2(n)–3.8(n)–3.2(n)</td>
<td>10.2</td>
<td>100</td>
<td>32.5 (1.19)</td>
<td>1</td>
</tr>
<tr>
<td>P2[BBB*]</td>
<td>5.7(n)–6.3(n)–5.7(n)</td>
<td>17.7</td>
<td>100</td>
<td>54.8 (1.43)</td>
<td>2</td>
</tr>
<tr>
<td>P3[BBB*]</td>
<td>14.0(n)–16.0(n)–14.0(n)</td>
<td>44.6</td>
<td>100</td>
<td>119.8 (1.70)</td>
<td>3</td>
</tr>
</tbody>
</table>

\(^{a}\) Number of chiral (B*) and achiral BTA (B) groups determined by \(^1\)H NMR with reference to the corresponding numbers determined previously (Fig. S1–S3, ESI). For Sergeant fractions, \(f_{\text{B*}}=n_{\text{B*}}/(n_{\text{B*}}+n_{\text{B}})\). \(^{4}\) Determined by SEC using THF as the eluent, calibrated using polystyrene standards (Fig. S4, ESI). \(D = M_n/M_w\).
that the same incorporation density of BTAs (10 mol%), either

In conclusion, we have demonstrated “Sergeant-and-Soldiers” experiments in the BTA-based SCPNs with a “Soldier–Sergeant–Soldier” triblock architecture. The results revealed that BTA units incorporated into the polymer chain tend to form segregated, multiple stacks in the SCPNs with some mixing of the BTA units of the different blocks.

N.H. is thankful to the Japan Society for the Promotion of Science (JSPS) for a Young Scientist Fellowship. This work was financially supported by the European Research Council (ERC), the Dutch Science Foundation (NWO) and the Dutch Ministry of Education, Culture and Science (Gravity program 024.001.035). ICMS animation studio is acknowledged for the artwork.

Notes and references

In order to determine how far the density of the B moieties on the polymer backbone affects the incorporation of B in blocks of B* or inter-block communication, we synthesized a series of P3[BB*B]-based polymers. In this series we varied the incorporation numbers of B, numbered as P3[B*[B*]–] (fB* = 100%), P3[BB*B]a (fB* = 72%), P3[BB*B]b (fB* = 66%), P3[BB*B]c (fB* = 62%), and P3[BB*B]d (fB* = 45%), where * denotes the absence of any B unit in the end blocks.† The incorporation number of B* is 16.6 for all polymers, and of B is 6.4, 8.6, 10.4, and 20.2, respectively. The CD intensity at 225 nm measured at 20 °C after cooling from 80 °C in DCE was plotted for all above polymers as a function of fB* (Fig. 4a). CD spectra and cooling curves of all these polymers are given in Fig. S5.† The plot showed a peculiar non-linear dependence on fB*.

For all the polymers, the insertion of the CD signals into the polymer backbone was found to be strongly dependent on the local concentration of BTA units. The plot showed a peculiar non-linear dependence on fB* for all polymers, and of B is 6.4, 8.6, 10.4, and 20.2, respectively. The CD intensity at 225 nm measured at 20 °C after cooling from 80 °C in DCE (cBTA = 50 μM) was plotted for all above polymers as a function of fB*. (Fig. 4a). CD spectra and cooling curves of all these polymers are given in Fig. S5.† The plot showed a peculiar non-linear dependence on fB*. In particular, P3[BB*B] (orange marker) with the highest incorporation density of B* unit in the polymer backbone affects the incorporation of B* or the incorporation of B in blocks of B*. In order to determine how far the density of the B moieties on the polymer backbone affects the incorporation of B in blocks of B* or inter-block communication, we synthesized a series of P3[BB*B]-based polymers. In this series we varied the incorporation density of BTAs, either the ones of P3[B*B*B*] or the incorporation of B in blocks of B*. In order to determine how far the density of the B moieties on the polymer backbone affects the incorporation of B in blocks of B* or inter-block communication, we synthesized a series of P3[BB*B]-based polymers. In this series we varied the