ChemComm

COMMUNICATION

View Article Online

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Open Access Article. Published on 14 May 2014. Downloaded on 7/18/2025 9:43:13 PM.

Cite this: Chem. Commun., 2014, 50, 7014

Received 8th April 2014, Accepted 14th May 2014

DOI: 10.1039/c4cc02601b

www.rsc.org/chemcomm

Selective P₄ activation by an organometallic nickel(I) radical: formation of a dinuclear nickel(II) tetraphosphide and related di- and trichalcogenides[†][‡]

Stefan Pelties,^a Dirk Herrmann,^a Bas de Bruin,^b František Hartl^c and Robert Wolf*^a

The reaction of the 17e nickel(I) radical [CpNi(IDipp)] (1, IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with P₄ results in a nickel tetraphosphide [{CpNi(IDipp)}₂(μ - η^1 : η^1 -P₄)] with a butterfly-P₄²⁻ ligand; related chalcogenides [{CpNi(IDipp)}₂(μ -E₂)] (E = S, Se, Te) and [{CpNi(IDipp)}₂(μ -E₃)] (E = S, Se) are formed with S₈, Se_{∞} and Te_{∞}.

The P_4 molecule is the most reactive allotrope of phosphorus; its activation and transformation by transition metal compounds has attracted substantial interest over the years.¹ While many low-valent metal complexes, *e.g.* transition metal carbonyls or anionic metalates, react with P_4 , it is still challenging to design highly selective transformations.^{2,3}

White phosphorus is able to efficiently trap organic and main group element radicals.⁴ Therefore, one potential solution to the selectivity issue is to use a radical pathway in transition metal-mediated P₄ transformations. While 2nd and 3rd row metalloradicals are well-established,⁵ nickel(I) radicals have attracted significant attention recently.^{6,7} Importantly, Driess *et al.* have shown that reactions of β -diketiminato nickel(I) complexes with P₄ yield dinuclear complexes [(L^RNi)₂(µ-η³:η³-P₄)] (L^R = HC[CMeN(2,6-R₂C₆H₃)]₂ with R = Et, iPr).⁸ The P–P bond activation in the doubly η³-coordinated ligand is reversible and occurs without the reduction of P₄ to formally P₄^{2–}.

We have been interested in designing new reactive nickel(1) radicals for element–element bond activations. We now report the synthesis of complexes 1–3§ featuring an NHC and a

Scheme 1 Synthesis of nickel(I) complexes 1-3

cyclopentadienyl ligand, and an initial reactivity study of complex 1 with P_4 and related small molecules.

Complexes 1–3 are accessible according to Scheme 1 by the reduction of the appropriate nickel(II) halides with KC_8 in THF.¶ ¹H NMR monitoring shows that 1–3 are formed very selectively; they can be isolated as yellow crystalline solids in modest to high yields. Single X-ray structure analyses (ESI‡) revealed that the nickel centre is surrounded by the carbene carbon and one η^5 -coordinated Cp or Cp* moiety. No further significant interactions between nickel and the diisopropylphenyl groups are apparent. Nonetheless, the cyclopentadienyl ligand is tilted with respect to the nickel carbene bond with an angle $C_{carbene}$ -Ni–(C_5R_5)_{centroid} of 154.3(1)° for 1, 151.9(1)° for 2 and 164.6(1)° for 3.§

Cyclic voltammograms show one electrochemically quasireversible wave at $E_{1/2} = -1.02$ and -1.06 V vs. Fc/Fc⁺ for Cp-substituted 1 and 2, respectively, and a reversible wave at -1.18 V vs. Fc/Fc⁺ for the Cp* complex 3 (ESI‡). UV/vis-spectroelectrochemistry (see Fig. 1 for 1) confirms that these processes correspond to chemically reversible oxidations of neutral 1–3 to stable cationic nickel(π) complexes, which probably bind THF in the case of 1 and 2. Indeed, the preparative oxidation of 1 with [Cp₂Fe]PF₆ affords the THF adduct [(C₅H₅)Ni(IDipp)(THF)]PF₆ (1-THF) (ESI‡).§

Complexes 1–3 show identical magnetic moments of 2.3(1), 2.3(1), and 2.2(1) $\mu_{\rm B}$ in [D₈]THF, which indicate the presence of one unpaired electron per molecule. The EPR spectrum of 1 is characteristic for an S = 1/2 system and reveals a rhombic *g*-tensor with significant deviations from $g_{\rm e}$ pointing to metalloradical character. DFT calculated g_{11} and g_{22} values are somewhat smaller than the experimental ones, but show a similar rhombicity (Fig. 1).

^a University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany. E-mail: robert.wolf@ur.de

^b University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH Amsterdam, The Netherlands

^c University of Reading, Department of Chemistry, Whiteknights, Reading, RG6 6AD, UK

[†] Dedicated to the memory of Prof. Michael F. Lappert.

[‡] Electronic supplementary information (ESI) available. Full experimental details, electrochemical, EPR and crystallographic data. CCDC 995931–995941 and 999501. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4cc02601b

Fig. 1 Left: UV/Vis monitoring of the oxidation of **1** performed at -0.83 V vs. Fc/Fc⁺ within an OTTLE cell equipped with a Pt minigrid working electrode, THF/TBAH under Ar, 293 K. Right: experimental and simulated X-band EPR spectrum of **1** in frozen THF. Freq. 9.3646 GHz, 0.063 mW, 20 K, mod. 4 Gauss; *g*-tensor parameters obtained from simulations and DFT calculations (b3-lyp, def2-TZVP) are: $g_{11} = 2.377$ (2.220), $g_{22} = 2.306$ (2.187), $g_{33} = 2.050$ (2.078) (DFT-calculated values in parentheses).

Fig. 2 Reaction of **1** with TEMPO and solid-state molecular structure of $[(C_5H_5)Ni(TEMPO)(IDipp)]$ (5). The hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at 40% level. Selected bond lengths [Å] and angles [°]: Ni1–O1 1.8408(14), Ni1–N1 1.9581(16), N1–O1 1.3989(20), Ni1–C1 1.8824(19), Ni1–C4 2.034(2), C1–Ni1–O1 104.50(7), O1–Ni1–N1 43.07(6), C1–Ni1–C4 97.104(4), N1–Ni1–C4 115.325(2).

Initial reactivity studies of **1** established its behavior as a typical metal-centered radical. The reactions of phenyl disulfide

and TEMPO with 1 in THF afforded the known thiolate $[(C_5H_5)Ni(SPh)(IDipp)]$ (4)⁹ and the new TEMPO adduct 5 in quantitative yield (Fig. 2). The molecular structure of 5 shows a side-on η^2 -coordinated TEMPO ligand and an η^1 -coordinated Cp ligand at the distorted square planar nickel(π) atom. The structural parameters agree with presence of a formally anionic TEMPO⁻ ligand.¹⁰ A sharp ¹H NMR singlet at 5.93 ppm is observed for the Cp moiety even at -90 °C presumably due to rapid haptotropic migration.

We next investigated the reactivity of 1 with the heavier chalcogens. The reaction with S_8 (1/8 equivalents) gave the blue disulfide 6-S and the purple trisulfide 7-S (Fig. 3) in a 7:3 ratio according to ¹H NMR analysis. **6-S** is soluble in *n*-hexane and diethyl ether and can thus be separated from 7-S by extraction and subsequent crystallisation (ESI[‡]). Disulfide-bridged dinuclear complexes with an M-S-S-M motif are well-known,¹¹ while complexes with an unsupported μ -S₃²⁻ bridge are still rather scarce.^{11a,b,12} The structure of 7-S shows a similar S1-S2-S3 angle and S–S bond lengths as the structure of $[{(C_5H_5)Fe(CO)_2}_2(\mu-S_3)]$.^{11a} Diselenide 6-Se (31% isolated) is the major reaction product of 1 with one equivalent of elemental selenium. A ¹H NMR spectrum of the reaction mixture (THF, room temperature) shows that 6-Se is formed in more than 80% yield whereas the triselenide 7-Se is a minor by-product. Ditelluride 6-Te was the only product to be detected after stirring 1 with one equivalent of grey tellurium for seven days. It was isolated as a dark brown crystalline solid in 31% yield. The molecular structures of 6-Se, 6-Te and 7-Se are analogous to the corresponding sulfides 6-S and 7-S (ESI[‡]).

Considering that a mixture of at least two products is formed with sulfur and selenium, it was gratifying to discover that complex 1 reacts with P_4 in a highly selective fashion in THF at room temperature, giving tetraphosphide 8 as the sole product. The reaction is instantaneous, and compound 8 can be isolated as an analytically pure, dark purple powder in quantitative yield simply by removing the solvent. Its molecular structure (Fig. 3)

Fig. 3 Left: reactions of 1 with P_4 , S_8 , $S_{e_{\infty}}$ and Te_{∞} . Right: solid-state molecular structures of the products **6-S**, **7-S** and **8**. The hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at 40% level. Selected bond lengths [Å] and angles [°]: **6-S**: Ni1–S1/Ni2–S2 2.1800(1)/2.1797(1), S1–S2 2.0476(1), Ni1–S1–S2–Ni2 78.601(5), **7-S**: Ni1–S1/Ni2–S3 2.1936(6)/2.1748(5), S1–S2/S2–S3 2.0561(7)/2.0522(7), S1–S2–S3 111.58(3), **8**: Ni1–P1/Ni2–P2 2.2107(6)/2.2103(6), P1–P3/P4 2.2334(7)/2.2111(7), P3–P4 2.1649(7), P1–P2 2.8897(8).

shows an *exo/exo* configuration for the two [(C₅H₅)Ni(IDipp)] units. The P–P bond lengths (2.2111(7)–2.2334(7) Å) are very similar to those in P₄ (P–P 2.21 Å). The ³¹P{¹H} NMR spectrum shows two triplets at $\delta = -307.4$ and -45.8 ppm with ¹*J*_{P–P} = -190.5 Hz. These values are similar to those of [{Cp^RFe(CO)₂}₂-(µ-η¹:η¹-P₄)] (Cp^R = C₅H₃-1,3-*t*Bu₂, C₅H₂-1,2,4-*t*Bu₃, C₅H-iPr₄, C₅Me₅) and [{Cp[×]Cr(CO)₃}₂(µ-η¹:η¹-P₄)], which also display a tetraphospha-[1.1.0]bicyclobutane framework.¹³

In conclusion, we have prepared rare mononuclear cyclopentadienyl nickel(1) complexes **1–3** with significant metalloradical character.^{6,7} This feature was successfully utilized for the high-yield synthesis of the novel tetraphosphido complex [{(C₅H₅)Ni(IDipp)}₂(μ - η^1 : η^1 P₄)] (8), which features an uncommon μ - η^1 : η^1 -bridging P₄^{2–} ligand.¹⁴ Further reactivity studies of **1–3** and **8** are in progress; the results will be reported in due course.

We thank Christian Hoidn, Christian Preischl and Philipp Büschelberger for preparing **1–3** as part of their BSc projects. Financial support by the DFG and NWO (NWO-VICI 016.122.613) is gratefully acknowledged.

Notes and references

§ During the preparation of this manuscript, Hazari *et al.* reported the synthesis and characterization of **1**, **1-THF** and closely related mono- and dinuclear species by a different synthetic route.⁷ Based on DFT calculations, the bending of the $C_{carbene}$ -Ni-(C_5H_5)_{centroid} angle in the structure of **1** was attributed to the asymmetric spin density distribution.

¶ The hydride complex $[(C_5H_5)NiH(IDipp)]$ (1-H) was identified as a minor by-product (<5%) of the synthesis of 1. Compound 1-H was prepared independently and features a distinct molecular structure from 1; see the ESI‡ for details.

- (a) B. M. Cossairt, N. A. Piro and C. C. Cummins, *Chem. Rev.*, 2010, 110, 4164; (b) M. Caporali, L. Gonsalvi, A. Rossin and M. Peruzzini, *Chem. Rev.*, 2010, 110, 4178; (c) M. Scheer, G. Balázs and A. Seitz, *Chem. Rev.*, 2010, 110, 4236.
- 2 (a) G. L. Simon and L. F. Dahl, J. Am. Chem. Soc., 1973, 95, 2175;
 (b) O. J. Scherer, H. Sitzmann and G. Wolmershäuser, Angew. Chem., Int. Ed. Engl., 1985, 24, 351; (c) O. J. Scherer and T. Brück, Angew. Chem., Int. Ed. Engl., 1987, 26, 59; (d) O. J. Scherer, M. Swarowsky, H. Swarowsky and G. Wolmershäuser, Angew. Chem., Int. Ed. Engl., 1988, 27, 694;
 (e) M. Scheer and U. Becker, Chem. Ber., 1996, 129, 1307.
- 3 (a) E. Urnežius, W. W. Brennessel, C. J. Cramer, J. E. Ellis and P. von
 R. Schleyer, *Science*, 2002, 295, 832; (b) E.-M. Schnöckelborg,
 J. J. Weigand and R. Wolf, *Angew. Chem., Int. Ed.*, 2011, 50, 6657.
- 4 (a) D. H. R. Barton and J. Zhu, J. Am. Chem. Soc., 1993, 115, 2071;
 (b) D. H. Barton and R. A. Vonder Embse, Tetrahedron, 1998, 54, 12475;
 (c) S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A. Voigt, A. H. Cowley, M. F. Lappert, G. Gundersen, J. A. C. Clyburne and P. P. Power, J. Am. Chem. Soc., 2001, 123, 9045;
 (d) N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye and J. D. Masuda, Inorg. Chem., 2012, 51, 11837.

- 5 B. de Bruin, D. G. H. Hetterscheid, A. J. J. Koekkoek and H. Grützmacher, *Prog. Inorg. Chem.*, 2007, 247.
- 6 (a) P. L. Holland, T. R. Cundari, L. L. Perez, N. A. Eckert and R. J. Lachicotte, J. Am. Chem. Soc., 2002, 124, 14416; (b) N. A. Eckert, A. Dinescu, T. R. Cundari and P. L. Holland, Inorg. Chem., 2005, 44, 7702; (c) B. R. Dible, M. S. Sigman and A. M. Arif, Inorg. Chem., 2005, 44, 3774; (d) C. A. Laskowski and G. L. Hillhouse, J. Am. Chem. Soc., 2008, 130, 13846-13847; (e) D. Bai, P. Wei and D. W. Stephan, Organometallics, 2005, 24, 5901; (f) C. J. E. Davies, M. J. Page, C. E. Ellul, M. F. Mahon and M. K. Whittlesey, Chem. Commun., 2010, 46, 5151; (g) M. Vogt, B. de Bruin, H. Berke, M. Trincado and H. Grützmacher, Chem. Sci., 2011, 2, 723; (h) K. Zhang, M. Conda-Sheridan, S. R. Cooke and J. Louie, Organometallics, 2011, 30, 2546; (i) S. Nagao, T. Matsumoto, Y. Koga and K. Matsubara, Chem. Lett., 2011, 40, 1036; (j) C. A. Laskowski, D. J. Bungum, S. M. Baldwin, S. A. Del Ciello, V. M. Iluc and G. L. Hillhouse, J. Am. Chem. Soc., 2013, 135, 18272; (k) M. J. Page, W. Y. Lu, R. C. Poulten, E. Carter, A. G. Algarra, B. M. Kariuki, S. A. Macgregor, M. F. Mahon, K. J. Cavell, D. M. Murphy and M. K. Whittlesey, Chem. - Eur. J., 2013, 19, 2158; (1) R. C. Poulten, M. J. Page, A. G. Algarra, J. J. Le Roy, I. López, E. Carter, A. Llobet, S. A. Macgregor, M. F. Mahon, D. M. Murphy, M. Murugesu and M. K. Whittlesey, J. Am. Chem. Soc., 2013, 135, 13640.
- 7 J. Wu, A. Nova, D. Balcells, G. W. Brudvig, W. Dai, M. L. M. Guard, N. Hazari, P.-H. Lin, R. Pokhrel and M. K. Takase, *Chem. – Eur. J.*, 2014, **18**, 5327.
- 8 S. Yao, Y. Xiong, C. Milsmann, E. Bill, S. Pfirrmann, C. Limberg and M. Driess, *Chem. Eur. J.*, 2010, **16**, 436.
- 9 D. A. Malyshev, N. M. Scott, N. Marion, E. D. Stevens, V. P. Ananikov, I. P. Beletskaya and S. P. Nolan, *Organometallics*, 2006, **25**, 446.
- 10 (a) M. H. Dickman and R. J. Doedens, *Inorg. Chem.*, 1982, 21, 682;
 (b) M. K. Mahanthappa, K.-W. Huang, A. P. Cole and R. M. Waymouth, *Chem. Commun.*, 2002, 502; (c) D. Isrow and B. Captain, *Inorg. Chem.*, 2011, 50, 5864; (d) D. G. H. Hetterscheid, J. Kaiser, E. Reijerse, T. P. J. Peters, S. Thewissen, A. N. J. Blok, J. M. M. Smits, R. de Gelder and B. de Bruin, *J. Am. Chem. Soc.*, 2005, 127, 1895.
- Selected examples: (a) M. A. El-Hinnawi, A. A. Aruffo, B. D. Santarsiero, D. R. McAlister and V. Schomaker, *Inorg. Chem.*, 1983, 22, 1585;
 N. Zhu, S. Du, X. Wu and J. Lu, *Angew. Chem., Int. Ed. Engl.*, 1992, 31, 87; (c) M. Emirdag-Eanes and J. A. Ibers, *Inorg. Chem.*, 2001, 40, 6910;
 (d) J. T. York, E. C. Brown and W. B. Tolman, *Angew. Chem.*, 101, 40, 6910;
 (d) J. T. York, E. C. Brown and W. B. Tolman, *Angew. Chem.*, 101, 40, 6910;
 (d) J. T. York, E. C. Brown and W. B. Tolman, *Angew. Chem.*, 101, 40, 6910;
 (d) J. T. York, E. C. Brown and W. B. Tolman, *Angew. Chem.*, 101, 40, 6910;
 (d) J. T. York, E. C. Brown and W. B. Tolman, *Angew. Chem.*, 101, 40, 6910;
 (e) J. Hu, G. Liu, Q. Jiang, R. Zhang, W. Huang and H. Yan, *Inorg. Chem.*, 2010, 49, 11199;
 (f) L.-P. Wei, Z.-G. Ren, L.-W. Zhu, W.-Y. Yan, S. Sun, H.-F. Wang, J.-P. Lang and Z.-R. Sun, *Inorg. Chem.*, 2011, 50, 4493;
 (g) E. M. Matson, M. D. Goshert, J. J. Kiernicki, B. S. Newell, P. E. Fanwick, M. P. Shores, J. R. Walensky and S. C. Bart, *Chem. – Eur. J.*, 2013, 19, 16167;
 (h) J. Wallick, C. G. Riordan and G. P. A. Yap, *J. Am. Chem. Soc.*, 2013, 135, 14972.
- (a) R. Steudel, M. Kustos and A. Prenzel, Z. Naturforsch., B: J. Chem. Sci., 1997, 52, 79; (b) E. Galardon, H. Daguet, P. Deschamps, P. Roussel, A. Tomas and I. Artaud, Dalton Trans., 2013, 42, 2817.
- (a) L. Weber and U. Sonnenberg, *Chem. Ber.*, 1991, 124, 725;
 (b) P. Jutzi and S. Opiela, *J. Organomet. Chem.*, 1992, 431, C29;
 (c) O. J. Scherer, G. Schwarz and G. Wolmershäuser, *Z. Anorg. Allg. Chem.*, 1996, 622, 95; (d) O. J. Scherer, T. Hilt and G. Wolmershäuser, *Organometallics*, 1998, 17, 4110; (e) C. Schwarzmaier, *PhD thesis*, University of Regensburg, 2012.
- 14 For related work on P_4 activation by Ni⁰ complexes, see: B. Zarzycki, T. Zell, D. Schmidt and U. Radius, *Eur. J. Inorg. Chem.*, 2013, 2051, and literature cited therein.