An enantioselective synthesis of the $\mathrm{C}_{24}-\mathrm{C}_{40}$ fragment of (-)-pulvomycin \dagger

Sandra Börding and Thorsten Bach*

Cite this: Chem. Commun., 2014, 50, 4901

Received 20th February 2014,
Accepted 21st March 2014
DOI: $10.1039 / \mathrm{c} 4 \mathrm{cc} 01338 \mathrm{~g}$
www.rsc.org/chemcomm

The $\mathrm{C}_{24}-\mathrm{C}_{40}$ fragment of (-)-pulvomycin was prepared in enantiomerically pure form using a concise synthesis method (15 linear steps from D-fucose, 6.8% overall yield) featuring a diastereoselective addition to an aldehyde, a β-selective glycosylation and a Stille crosscoupling as the key steps.

The antibiotic pulvomycin was first isolated in 1957 from a Streptomyces species but due to the limited analytical data no structure was assigned to the compound. ${ }^{1}$ In 1963, Akita et al. isolated a natural product from Streptomyces albosporeus var. labilomyceticus, ${ }^{2}$ which they called labilomycin and which was later shown to be identical to pulvomycin. ${ }^{3}$ Extensive analytical work by Smith et al. revealed the constitution of the natural product (Fig. 1) as well as the absolute and relative configuration at most stereogenic centers except for C_{32} and $\mathrm{C}_{33} .{ }^{4}$ The assignment was confirmed and the complete configuration was eventually proven by a crystal structure ($1.4 \AA$ resolution) of pulvomycin with the bacterial elongation factor Tu (EF-Tu). ${ }^{5}$ It is well established that pulvomycin is a potent inhibitor of EF-Tu and it therefore represents a promising lead compound for the development of new antibiotics. ${ }^{6}$

While synthetic reports on pulvomycin are scarce, the biosynthesis of the pulvomycin aglycone has been elucidated by labeling experiments. ${ }^{7}$ Our own interest in pulvomycin was triggered by our previous studies on the synthesis ${ }^{8}$ and antibiotic activity ${ }^{9}$ of thiazole peptides, such as the GE factors and the amythiamicins. It has been shown that the EF-Tu binding site of pulvomycin is in close proximity to the binding site of thiazole peptides. ${ }^{10}$ The synthesis of pulvomycin and pulvomycin analogues might consequently help to further investigate the many facets of EF-Tu activity. ${ }^{11}$ Apart from its biological activity, pulvomycin presents itself as a formidable synthetic challenge due to its complex and labile structure. In this communication

[^0]

Fig. 1 Structure and compound numbering of (-)-pulvomycin.

Scheme 1 Retrosynthetic disconnection of the title compound 1 leading to D -fucose (2) as an appropriate carbohydrate substrate.
we disclose the enantioselective synthesis of a suitably protected $\mathrm{C}_{24}-\mathrm{C}_{40}$ fragment 1 (Scheme 1) of pulvomycin.

Retrosynthetically, it was envisioned that ketone 1 (TBDPS = tert-butyldiphenylsilyl) could be derived from commercially available d-fucose (2), which shows the correct configuration at the stereogenic centers $\left(\mathrm{C}_{36}-\mathrm{C}_{39}\right)$ of the pyranose ring. In order to establish the desired β-configuration at the glycosidic center an appropriate neighbouring group, e.g. an acetate, was required (at carbon atom $\left.\mathrm{C}_{36}\right)^{12}$ and the methyl ether linkage was to be introduced after glycosylation. There was precedence for the differentiation of the two equatorial hydroxy groups at C_{36} and C_{37} of d-fucose. ${ }^{13}$

Regarding the $\mathrm{C}_{24}-\mathrm{C}_{34}$ fragment, it seemed best to assemble the triene ${ }^{14}$ after the glycosylation step by an appropriate crosscoupling reaction, e.g. between C_{29} and C_{30}. The stereogenic center at C_{33} appeared to be accessible from the chiral pool, e.g. from lactic acid, while the adjacent stereogenic center was to be introduced by a diastereoselective reaction.

The acetylation of d -fucose (2) (Scheme 2) proceeded quantitatively delivering the tetraacetate as an α / β-mixture $(\alpha / \beta=95 / 5)$

Scheme 2 Synthesis of the protected glycosyl donor 5 from D-fucose (2). DMAP $=4$-(N, N-dimethylamino)pyridine, py = pyridine, im = imidazole.
of anomers. ${ }^{13}$ Conversion to the required thioacetal 3 proceeded best in our hands with ethanethiol and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{15}$ which delivered depending on the reaction conditions and on the reaction scale variable amounts of separable α / β-isomers (see the ESI \dagger for further details).

Since the relative configuration at the anomeric center was irrelevant for the desired glycosylation reaction, the α / β-mixture of 3 was taken into the four-step procedure previously described for the selective preparation of alcohol $\beta-\mathbf{4}^{13}$ and it furnished the desired product 4 as an α / β-mixture $(\alpha / \beta \cong 50 / 50)$ in a total yield of 60% over six steps from o-fucose (2). Conversion of the equatorial alcohol 4 to silyl ether 5 required elevated temperature ($60{ }^{\circ} \mathrm{C}$) and a prolonged reaction time (3 d).

As mentioned above, it was planned to introduce the stereogenic center at C_{32} by a diastereoselective reaction induced by the adjacent stereogenic center at the carbon atom C_{33}. Surprisingly, the reduction of a (S)-lactate-derived, para-methoxybenzyl (PMB) protected alkynyl ketone ${ }^{16}$ produced the desired alcohol 7 either in low yields or with insufficient diastereoselectivity (see the ESI \dagger for further details). As an alternative approach, (S)-lactate-derived aldehyde $\mathbf{6}^{17}$ was alkynylated with TMSacetylene under chelation control ${ }^{18}$ yielding alcohol 7 and its epimer epi-7 in 81% yield and in a diastereomeric ratio (d.r.) of 87/13 (Scheme 3). The diastereomerically pure product 7 was isolated in 65% yield.

Protection of the secondary alcohol proceeded smoothly at ambient temperature and the PMB group was cleaved oxidatively with 2,3-dicloro-5,6-dicyanobenzoquinone (DDQ) ${ }^{19}$ to deliver alcohol 8. The enantiomeric excess (ee) of alcohol 8 was established by chiral HPLC analysis and comparison with a racemic sample (see the ESI \dagger for further details). Gratifyingly, the glycosylation reaction, when performed with N-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (HOTf) as activating agents, ${ }^{20}$ delivered a single diastereomerically pure product 9 , which was shown to have the desired β-configuration. ${ }^{21}$ Reductive removal of the acetyl groups with diisobutylaluminium hydride (DIBAL-H) ${ }^{22}$ produced 1,3-diol 10, which was converted into the respective dimethylether 11 upon treatment with an excess (10 equiv.) of Meerwein salt and proton sponge [1,8-bis(dimethylamino)naphthalene]. ${ }^{23}$ Less electrophilic methylating reagents (MeOTf, MeI) in combination with appropriate bases failed to react or led to substrate decomposition. Selective desilylation of the alkyne was achieved with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). ${ }^{24}$

With alkyne 12 in hand, various approaches to potential cross-coupling substrates were pursued. It was found that the

Scheme 3 Assembly of the $\mathrm{C}_{28}-\mathrm{C}_{40}$ fragment via glycosylation of enantiomerially pure ($\geq 98 \%$ ee) alcohol 8 with glycosyl donor 5 .

Pd-catalyzed hydrostannylation with $\mathrm{Bu}_{3} \mathrm{SnH}^{25}$ can be successfully performed with alkyne 12 delivering stannane 13 in 44% yield (Scheme 4). Iodide 14 was obtained from stannane 13 upon treatment with iodine in dichloromethane (85% yield). ${ }^{26}$ The alkyne hept-3-en-1-yne-5-ol ${ }^{27}$ seemed to be the most suitable precursor for iodide 15 and stannane 16. The compound was available from bis-1,4-(trimethylsilyl)buta-1,3-diyne in four steps and an overall yield of 53% (see the ESI \dagger for further details). Stannylation of hept-3-en-1-yne-5-ol with $\mathrm{Bu}_{3} \mathrm{SnH}$ was readily achieved employing the Cu-based protocol of Betzer et al. ${ }^{28}$ to deliver stannane 16 in $\mathbf{7 9 \%}$ yield. As for $\mathbf{1 4}$, iodide 15 was generated by iodo-de-stannylation employing iodine in dichloromethane (79% yield).

While attempted Stille cross-coupling reactions ${ }^{29}$ of stannane 13 and iodide 15 failed, the desired C-C bond formation proceeded smoothly, when performed with the carbohydrate building block as the electrophile. Iodide 14 and stannane 16 underwent a clean cross-coupling employing $\operatorname{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$

Scheme 4 Stille cross-coupling of building blocks 13 and 15 as key step for the assembly of the title compound.
($10 \mathrm{~mol} \%$) as the catalyst. ${ }^{30}$ Alcohol 17 was obtained in 87% yield and was immediately further oxidized to the desired ketone by treatment with an excess (30 equiv.) of MnO_{2}. Despite a pronounced long wavelength absorption $\left(\lambda_{\max }=308 \mathrm{~nm}\right.$, $\varepsilon=28035 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ in MeCN), trienone 1 appears to be more stable than alcohol $17\left(\lambda_{\text {max }}=271 \mathrm{~nm}, \varepsilon=39350 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$ in MeCN; shoulder at $\lambda_{\text {max }}=282 \mathrm{~nm}, \varepsilon=31180 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) and could be stored for one week at $-25{ }^{\circ} \mathrm{C}$ in the dark.

In summary, the enantiomerically pure western fragment 1 of (-)-pulvomycin was synthesized in 15 linear steps. The fragment comprises the carbohydrate part (labilose, $\mathrm{C}_{35}-\mathrm{C}_{40}$) of the natural product and one of its three triene components $\left(\mathrm{C}_{24}-\mathrm{C}_{34}\right)$. Should an aldol-type reaction of fragment 1 with a suitable Eastern fragment not be successful, stannane 13 and iodide $\mathbf{1 4}$ offer suitable options to connect the protected glycoside fragment to the rest of the molecule.

This project was supported by the Deutsche Forschungsgemeinschaft (Ba 1372-18/1), by the TUM Graduate School, and by the Fonds der Chemischen Industrie. Olaf Ackermann and Florian Mayr are acknowledged for help with the HPLC analyses.

Notes and references

1 M. Zief, R. Woodside and H. Schmitz, Antibiot. Chemother., 1957, 7, 384-386.
2 (a) E. Akita, K. Maeda and H. Umezawa, J. Antibiot., Ser. A, 1963, 16, 147-151; (b) E. Akita, K. Maeda and H. Umezawa, J. Antibiot., Ser. A, 1964, 17, 200-217.
3 J. L. Schwartz, M. Tishler, B. H. Arison, H. M. Shafer and S. Omura, J. Antibiot., 1976, 29, 236-241.

4 R. J. Smith, D. H. Williams, J. C. J. Barna, I. R. McDermott, K. Haegele, F. Piriou, J. Wagner and W. Higgins, J. Am. Chem. Soc., 1985, 107, 2849-2857.
5 A. Parmeggiani, I. M. Krab, S. Okamura, R. C. Nielsen, J. Nyborg and P. Nissen, Biochemistry, 2006, 45, 6846-6857.

6 For a recent review, see: K. M. G. O'Connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. C. Salmond and D. R. Spring, Angew. Chem., Int. Ed., 2013, 52, 10706-10733.
7 N. D. Priestley and S. Gröger, J. Org. Chem., 1995, 60, 4951-4953.
8 (a) O. Delgado, H. M. Müller and T. Bach, Chem. - Eur. J., 2008, 14, 2322-2339; (b) C. Ammer and T. Bach, Chem. - Eur. J., 2010, 16, 14083-14093.
9 S. Gross, F. Nguyen, M. Bierschenk, D. Sohmen, T. Menzel, I. Antes, D. N. Wilson and T. Bach, ChemMedChem, 2013, 8, 1954-1962.

10 A. Parmeggiani, I. M. Krab, S. Okamura, R. C. Nielsen, J. Nyborg and P. Nissen, Biochemistry, 2006, 45, 6846-6857.

11 Reviews: (a) R. Berisio, A. Ruggiero and L. Vitagliano, Isr. J. Chem., 2010, 50, 71-79; (b) A. Parmeggiani and P. Nissen, FEBS Lett., 2006, 580, 4576-4581.
12 (a) R. U. Lemieux and J.-I. Hayami, Can. J. Chem., 1965, 43, 2162-2173; (b) G.-J. Boons, Contemp. Org. Synth., 1996, 3, 173-200; (c) T. K. Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Wiley-VCH, Weinheim, 3rd edn, 2007, pp. 157-208.

13 D. Comegna, E. Bedini and M. Parrilli, Tetrahedron, 2008, 64, 3381-3391.
14 For selected recent total syntheses of naturally occurring conjugated (E, E, E)-trienes, see: (a) D. J. Del Valle and M. J. Krische, J. Am. Chem. Soc., 2013, 135, 10986-10989; (b) C. Jahns, T. Hoffmann, S. Müller, K. Gerth, P. Washausen, G. Höfle, H. Reichenbach, M. Kalesse and R. Müller, Angew. Chem., Int. Ed., 2012, 51, 5239-5243; (c) M. Yoshino, K. Eto, K. Takahashi, J. Ishihara and S. Hatakeyama, Org. Biomol. Chem., 2012, 10, 8164-8174; (d) P. G. E. Craven and R. J. K. Taylor, Tetrahedron Lett., 2012, 53, 5422-5425; (e) H. J. Jessen, A. Schumacher, F. Schmid, A. Pfaltz and K. Gademann, Org. Lett., 2011, 13, 4368-4370; (f) D. Amans, V. Bellosta and J. Cossy, Chem. - Eur. J., 2009, 15, 3457-3473; (g) M. T. Crimmins, H. S. Christie, A. Long and K. Chaudhary, Org. Lett., 2009, 11, 831-834; (h) I. S. Mitchell, G. Pattenden and J. Stonehouse, Org. Biomol. Chem., 2005, 3, 4412-4431.

15 P. Sjölin, S. K. George, K.-E. Bergquist, S. Roy, A. Svensson and J. Kihlberg, J. Chem. Soc., Perkin Trans. 1, 1999, 1731-1742.

16 The ketone was prepared from literature known Weinreb amide (V. Convertino, P. Manini, W. B. Schweizer and F. Diederich, Org. Biomol. Chem., 2006, 4, 1206-1208) by substitution with the respective magnesium acetylide (see the ESI \dagger for further details).
17 W. Yu, Y. Zhang and Z. Jin, Org. Lett., 2001, 3, 1447-1450.
18 K. T. Mead, Tetrahedron Lett., 1987, 28, 1019-1022.
19 Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett., 1982, 23, 885-888.
20 (a) G. H. Veeneman, S. H. van Leeuwen and J. H. van Boom, Tetrahedron Lett., 1990, 31, 1331-1334; (b) P. Konradsson, U. E. Udodong and B. Fraser-Reid, Tetrahedron Lett., 1990, 31, 4313-4316.
$21{ }^{1} \mathrm{H}-\mathrm{NMR}$ data of glycoside $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.09[\mathrm{~s}, 9 \mathrm{H} ;$ $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.97\left[\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.96-0.99\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{H}_{3}-40\right), 1.05[\mathrm{~s}, 9 \mathrm{H} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H}_{3}-34\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}-36\right)$, $2.12\left[\mathrm{~s}, 3 \mathrm{H} ; \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}-38\right], 3.05\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-39\right), 3.41$ (qd, $\left.{ }^{3} J=6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-33\right), 3.44\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}^{\beta}-35\right)$, 3.60 (dd, ${ }^{3} J=9.8,3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-37$), 4.19 (d, ${ }^{3} J=3.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-32$), $4.79\left(\mathrm{~d},{ }^{3} J=3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-38\right), 5.06\left(\mathrm{dd},{ }^{3} J=9.8,8.1 \mathrm{~Hz}, 1 \mathrm{H} ;\right.$ $\mathrm{H}-36)$, $7.23-7.27\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\text {arom }}\right), 7.30-7.48\left(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{H}_{\text {arom }}\right)$, $7.55-7.58\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}_{\text {arom }}\right), 7.60-7.65\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\text {arom }}\right), 7.69-7.73$ (m, 2H; $\mathrm{H}_{\text {arom }}$).
22 F. E. McDonald and M. Wu, Org. Lett., 2002, 4, 3979-3981.
23 B. Wang, T. M. Hansen, T. Wang, D. Wu, L. Weyer, L. Ying, M. M. Engler, M. Sanville, C. Leitheiser, M. Christmann, Y. Lu, J. Chen, N. Zunker, R. D. Cink, F. Ahmed, C.-S. Lee and C. J. Forsyth, J. Am. Chem. Soc., 2010, 133, 1484-1505.
24 C.-E. Yeom, M. J. Kim, W. Choi and B. M. Kim, Synlett, 2008, 565-568.
25 (a) H. X. Zhang, F. Guibe and G. Balavoine, J. Org. Chem., 1990, 55, 1857-1867; (b) J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth and S. V. Ley, Angew. Chem., Int. Ed., 2012, 51, 9366-9371.
26 R. Alvarez, M. Herrero, S. López and A. R. de Lera, Tetrahedron, 1998, 54, 6793-6810.
27 K. Green, J. W. Keeping and V. Thaller, J. Chem. Res., Synop., 1985, 103; K. Green, J. W. Keeping and V. Thaller, J. Chem. Res., Miniprint, 1985, 1260-1267.
28 J.-F. Betzer, F. Delaloge, B. Muller, A. Pancrazi and J. Prunet, J. Org. Chem., 1997, 62, 7768-7780.
29 Reviews: (a) J. K. Stille, Angew. Chem., Int. Ed., 1986, 25, 508-524; (b) T. N. Mitchell, Synthesis, 1992, 803-815; (c) V. Farina, V. Krishnamurthy and W. J. Scott, Org. React., 1997, 50, 1-652.

30 J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813-817.

[^0]: Lehrstuhl für Organische Chemie I, Technische Universität München,
 85747 Garching, Germany. E-mail: thorsten.bach@ch.tum.de;
 Fax: +49 89 28913315; Tel: +49 8928913330
 \dagger Electronic supplementary information (ESI) available. See DOI: $10.1039 / \mathrm{c} 4 \mathrm{cc} 01338 \mathrm{~g}$

