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The C,4—C40 fragment of (—)-pulvomycin was prepared in enantio-
merically pure form using a concise synthesis method (15 linear
steps from p-fucose, 6.8% overall yield) featuring a diastereoselective
addition to an aldehyde, a p-selective glycosylation and a Stille cross-
coupling as the key steps.

The antibiotic pulvomycin was first isolated in 1957 from a
Streptomyces species but due to the limited analytical data no
structure was assigned to the compound." In 1963, Akita et al.
isolated a natural product from Streptomyces albosporeus var.
labilomyceticus,” which they called labilomycin and which was
later shown to be identical to pulvomycin.® Extensive analytical
work by Smith et al. revealed the constitution of the natural
product (Fig. 1) as well as the absolute and relative configu-
ration at most stereogenic centers except for Cz, and Cs;.* The
assignment was confirmed and the complete configuration was
eventually proven by a crystal structure (1.4 A resolution) of
pulvomycin with the bacterial elongation factor Tu (EF-Tu).?
It is well established that pulvomycin is a potent inhibitor of
EF-Tu and it therefore represents a promising lead compound
for the development of new antibiotics.®

While synthetic reports on pulvomycin are scarce, the bio-
synthesis of the pulvomycin aglycone has been elucidated by
labeling experiments.” Our own interest in pulvomycin was
triggered by our previous studies on the synthesis® and anti-
biotic activity’ of thiazole peptides, such as the GE factors and
the amythiamicins. It has been shown that the EF-Tu binding
site of pulvomycin is in close proximity to the binding site of
thiazole peptides.'® The synthesis of pulvomycin and pulvomycin
analogues might consequently help to further investigate the
many facets of EF-Tu activity."" Apart from its biological activity,
pulvomycin presents itself as a formidable synthetic challenge
due to its complex and labile structure. In this communication
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Fig. 1 Structure and compound numbering of (—)-pulvomycin.
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Scheme 1 Retrosynthetic disconnection of the title compound 1 leading
to p-fucose (2) as an appropriate carbohydrate substrate.
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we disclose the enantioselective synthesis of a suitably protected
Cy4—Cyp fragment 1 (Scheme 1) of pulvomycin.

Retrosynthetically, it was envisioned that ketone 1 (TBDPS =
tert-butyldiphenylsilyl) could be derived from commercially
available p-fucose (2), which shows the correct configuration
at the stereogenic centers (Czs—Cjo) of the pyranose ring. In
order to establish the desired B-configuration at the glycosidic
center an appropriate neighbouring group, e.g. an acetate, was
required (at carbon atom Cg)'® and the methyl ether linkage
was to be introduced after glycosylation. There was precedence
for the differentiation of the two equatorial hydroxy groups at
Cs6 and Cs, of p-fucose.”

Regarding the C,,-C3,4 fragment, it seemed best to assemble
the triene' after the glycosylation step by an appropriate cross-
coupling reaction, e.g. between C,9 and Cjo. The stereogenic
center at C3; appeared to be accessible from the chiral pool, e.g.
from lactic acid, while the adjacent stereogenic center was to be
introduced by a diastereoselective reaction.

The acetylation of p-fucose (2) (Scheme 2) proceeded quanti-
tatively delivering the tetraacetate as an o/f-mixture («/ff = 95/5)
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Scheme 2 Synthesis of the protected glycosyl donor 5 from p-fucose (2).
DMAP = 4-(N,N-dimethylamino)pyridine, py = pyridine, im = imidazole.

of anomers."? Conversion to the required thioacetal 3 pro-
ceeded best in our hands with ethanethiol and BF;-OEt, in
CH,Cl,,"® which delivered depending on the reaction condi-
tions and on the reaction scale variable amounts of separable
a/f-isomers (see the ESIt for further details).

Since the relative configuration at the anomeric center was
irrelevant for the desired glycosylation reaction, the o/f-mixture
of 3 was taken into the four-step procedure previously described
for the selective preparation of alcohol B-4'* and it furnished
the desired product 4 as an o/f-mixture («/f =~ 50/50) in a total
yield of 60% over six steps from p-fucose (2). Conversion of the
equatorial alcohol 4 to silyl ether 5 required elevated tempera-
ture (60 °C) and a prolonged reaction time (3 d).

As mentioned above, it was planned to introduce the stereo-
genic center at C;, by a diastereoselective reaction induced by
the adjacent stereogenic center at the carbon atom Cs;. Surpris-
ingly, the reduction of a (S)-lactate-derived, para-methoxybenzyl
(PMB) protected alkynyl ketone'® produced the desired alcohol
7 either in low yields or with insufficient diastereoselectivity
(see the ESIt for further details). As an alternative approach,
(S)-lactate-derived aldehyde 6'7 was alkynylated with TMS-
acetylene under chelation control*® yielding alcohol 7 and its
epimer epi-7 in 81% yield and in a diastereomeric ratio (d.r.) of
87/13 (Scheme 3). The diastereomerically pure product 7 was
isolated in 65% yield.

Protection of the secondary alcohol proceeded smoothly at
ambient temperature and the PMB group was cleaved oxida-
tively with 2,3-dicloro-5,6-dicyanobenzoquinone (DDQ)" to
deliver alcohol 8. The enantiomeric excess (ee) of alcohol 8 was
established by chiral HPLC analysis and comparison with a racemic
sample (see the ESIf for further details). Gratifyingly, the glyco-
sylation reaction, when performed with N-iodosuccinimide (NIS)
and trifluoromethanesulfonic acid (HOTf) as activating agents,*
delivered a single diastereomerically pure product 9, which was
shown to have the desired B-configuration.”* Reductive removal of
the acetyl groups with diisobutylaluminium hydride (DIBAL-H)**
produced 1,3-diol 10, which was converted into the respective
dimethylether 11 upon treatment with an excess (10 equiv.) of
Meerwein salt and proton sponge [1,8-bis(dimethylamino)-
naphthalene].”* Less electrophilic methylating reagents (MeOT,
Mel) in combination with appropriate bases failed to react or led
to substrate decomposition. Selective desilylation of the alkyne
was achieved with 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU).>*

With alkyne 12 in hand, various approaches to potential
cross-coupling substrates were pursued. It was found that the
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Scheme 3 Assembly of the C,g—Cy4o fragment via glycosylation of
enantiomerially pure (>98% ee) alcohol 8 with glycosyl donor 5.

Pd-catalyzed hydrostannylation with Bu;SnH>* can be success-
fully performed with alkyne 12 delivering stannane 13 in 44%
yield (Scheme 4). Iodide 14 was obtained from stannane 13
upon treatment with iodine in dichloromethane (85% yield).>®
The alkyne hept-3-en-1-yne-5-0l>” seemed to be the most suit-
able precursor for iodide 15 and stannane 16. The compound
was available from bis-1,4-(trimethylsilyl)buta-1,3-diyne in four
steps and an overall yield of 53% (see the ESIt for further
details). Stannylation of hept-3-en-1-yne-5-ol with Bu;SnH was
readily achieved employing the Cu-based protocol of Betzer
et al.”® to deliver stannane 16 in 79% yield. As for 14, iodide 15
was generated by iodo-de-stannylation employing iodine in
dichloromethane (79% yield).

While attempted Stille cross-coupling reactions® of stannane
13 and iodide 15 failed, the desired C-C bond formation
proceeded smoothly, when performed with the carbohydrate
building block as the electrophile. Iodide 14 and stannane 16
underwent a clean cross-coupling employing Pd(MeCN),Cl,

OTBDPS
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s
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Scheme 4 Stille cross-coupling of building blocks 13 and 15 as key step
for the assembly of the title compound.
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(10 mol%) as the catalyst.*® Alcohol 17 was obtained in 87%
yield and was immediately further oxidized to the desired
ketone by treatment with an excess (30 equiv.) of MnO,. Despite
a pronounced long wavelength absorption (An.x = 308 nm,

£=28035M ' cm ™' in MeCN), trienone 1 appears to be more

stable than alcohol 17 (Amax = 271 nm, ¢ = 39350 M~ ' ecm ™' in

MeCN; shoulder at Apa, = 282 nm, ¢ = 31180 M~ " cm™ ') and
could be stored for one week at —25 °C in the dark.

In summary, the enantiomerically pure western fragment 1
of (—)-pulvomycin was synthesized in 15 linear steps. The
fragment comprises the carbohydrate part (labilose, C35—Cyo)
of the natural product and one of its three triene components
(C34—C34)- Should an aldol-type reaction of fragment 1 with a
suitable Eastern fragment not be successful, stannane 13 and
iodide 14 offer suitable options to connect the protected glyco-
side fragment to the rest of the molecule.
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