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The oxidative addition of C,,2—Br or C,2—I bonds to gold(i) does not
take place even under very favorable intramolecular conditions that
could form five- or six-membered gold(i1) metallacycles. DFT cal-
culations reveal that although this process could be feasible ther-
modynamically, it is kinetically very sluggish.

Gold(1) complexes activate unsaturated substrates in catalytic
processes that are characterized by the invariance of the oxida-
tion state of the metal." Although it was proposed that the
Sonogashira®® and Suzuki coupling could be catalysed by
gold,*’ it seems now clear that at least in some cases the
catalytic role is played by either small amounts of palladium
contaminants®® or by gold nanoparticles,'*™* which probably
mediate these couplings by mechanisms very different from
those occurring under homogeneous conditions.">"°
Organogold(i) complexes transmetallate with Pd(u), which has
been used in their coupling with aryl iodides with palladium
catalysts.'”*° However, the oxidative addition of aryl halide ArX
to a gold(1) complex [AuXL], a necessary step for a cross-coupling
catalysed by this type of d'° complexes is unprecedented. Indeed,
an alkenyl gold(1) complex with a pending aryl iodide has been
structurally characterized as a stable complex, although it could
have undergone intramolecular oxidative addition through a six-
membered transition state.”® Complexes [AuMePR;] behave as
ordinary Snx2 nucleophiles upon adding slowly with alkyl iodides,
following the expected order of reactivity: CH,I > EtI > i-Pr1.>'~>
Disulphides undergo oxidative addition reactions with gold(r)
dithiolate complexes.>* Interestingly, the oxidative addition of
a relatively weak Si-Si bond to gold(i) is a very favourable
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process.>® DFT calculations show that the oxidative addition
of iodobenzene to complex [Aul(PMe;)] has a high activation
barrier (31.6 kcal mol ™" in potential energy, likely higher in free
energy)."** However, bisphosphine gold clusters [Au;Ls]" and
[AuzLe]" react in the gas phase by C-I bond activation.>®

We decided to study the oxidative addition of Ar-X bonds to
[AuXL] by examining systems of type I in which the metal
coordinates the phosphorous ligand of a phosphine or phosphite
bearing an ortho-halogenated aryl group (Scheme 1). Under these
very favourable conditions, the oxidative addition could occur
intramolecularly to form gold(m) metallacycles of type II
We have performed DFT calculations to clarify the origin of
the sluggishness, thermodynamic or kinetic, of the oxidative
addition of aryl halides to gold(i) complexes.

Reaction of phosphites (0-ICsH,0);P (1a) and (0-ICsH,CH,O);P
(1b) with [AuCI(THT)] (THT = tetrahydrothiophene) in CH,Cl, led to
complexes 2a (17%) and 2b (10%) as white solids. Their structures
were determined using single crystal X-ray diffraction (Fig. 1
and 2).>” These complexes show non-Cz-symmetrical structures
in the solid state with the phosphite ligands adopting a syn-
conformation.?® The Au-P (2.19-2.20 A) and Au-Cl (2.28 A) bond
distances are similar in both complexes. In the case of complex 1a,
two of the o-iodophenyl rings have the C-I bonds pointing towards
the Au(y) centre, with a closest Cq»—Au distance of 3.795 A (Fig. 1a).
In contrast, in complex 2b the C-1 bonds of the three aryl rings are
anti-oriented with respect to the P-Au-Cl bond (Fig. 1b).

The related phosphine complex 4a was obtained in 60%
yield by reacting (0-BrCeHj3)sP (3) with [AuCl(THT)] in a 1:1

X /X
X > Aull
Z. Au /Sy
P Z—p_
P | "R
R R R

| X =Br, I; Z=0, OCH,, CH, [

Scheme 1 Hypothetical intramolecular oxidative addition of Cg,2—X
bonds to Au() to form Au(i) metallacycles Il.
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Fig.1 ORTEP plot (50% thermal ellipsoids) of the crystal structure of
complex 2a (a) and 2b (b).

(@

(®)

Fig. 2 ORTEP plot (50% thermal ellipsoids) of the crystal structure of
complexes 4a (a) and 5 (b).

ratio. When the reaction was carried out in a 2: 1 ligand to Au()
ratio, bisphosphine gold(i) complex 5 was isolated in 70% yield.
The structures of 4a and 5 were confirmed by X-ray diffraction
(Fig. 2).*” The Au-P distance in 4a (2.22 A) is much shorter than
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those in more crowded complex 5 (2.30 A). Complex 4a displays an
almost Cj-symmetrical structure with Cgpe(Br)-Au distances
between 3.61 and 3.86 A. We also prepared an analogous complex
4b from (2-bromobenzyl)diphenylphosphine.?* Complex 5 shows a
Dsg-symmmetrical structure with Cg2(Br)-Au distances of 4.1 A and
the six Br atoms in a non-octahedral arrangement around the metal
centre (Br-Au distances of 3.7-3.8 A).

Complexes 2a and 2b did not undergo oxidative addition to form
the corresponding metallacycles of type II in CD,Cl, solution.
Similarly, more robust complex 4 was recovered unchanged after
being heated in toluene solution at 60 °C for several days. Further-
more, bisphosphine gold(r) complex 5 failed to form any gold(ur)
metallacycle after being heated in DMSO at 100 °C for more than
5 days and was fully recovered without any sign of decomposition.

In order to better understand the reasons for the sluggish
reactivity towards oxidative addition of this set of Au(i) complexes,
we carried out computational studies (DFT calculations at the M06
level including solvation effects, values reported in text are free
energies).*® The relative energies of all transition states and products
are collected in Table 1. A representative transition state, 2tits,
is shown in Fig. 3. There is simultaneous formation of the Au-C
and Au-Br bonds, with distances of 2.273 and 2.587 A, respectively.
It is thus a concerted transition state that leads to complex
[PhAuCIBr(PMe;)] with the phosphine cis to Ph, in contrast to that
reported from the oxidative addition of PhI to [Au(PMe;)I], which
leads to trans{PhAul,(PMe;)]."> The alternative Sy2-like transition
states®® with the initial departure of a bromide anion were also
located in a number of cases but had always higher energies than
the concerted ones. The endergonic character of the oxidative
addition processes computed in Table 1 is consistent with the facile
reductive elimination of R-R from trialkyl [R;Aul]] complexes.*>

The X-ray structure of 4 was used a starting point in the geometry
optimization of 1tr to avoid time-consuming conformational
searches,*® and the same conformation was used in the calculations
for 1tts and 1tp. The associated transition state 1tts (Fig. 3) has

Table 1 Computed MO6 relative energies (kcal mol™) of transition states
and products for oxidative addition

Transition state Product
PMe; PPh; Other PMe; PPh;, Other
1t — — 41.5 — — 17.4
2t 42.6 43.0 — 17.5 23.3 —
3t 47.3 46.8 — 4.1 6.5 —
at 48.5 45.3 — 5.1 7.5 —
5t — — 11.7 — — 4.5
6t 23.3 21.6 — 12.1 12.7 —
3P —Au—Cl RsP —Au—Cl PhsP —Au—Me
B 2t1r (R = Me) 3tir (R = Me)
r 2t2r (R =Ph) 3t2r (R = Ph)
1r=4 + +
Ph —Br Ph —Br
RgP —Au—H Au—Cl ReP —AU
4t1r (R = Me) 5tr 6t1r (R=Me)
4t2r (R = Ph) 6t2r (R=Ph)
+ + +
Ph —Br Ph—Br Ph—Br

This journal is © The Royal Society of Chemistry 2014
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2t1ts

Fig. 3 MO6 optimized structure of transition states 2tlts and 1tts colour
codes: red = Br, purple = P, yellow = Au, green = CL.

a relative free energy of 41.5 kecal mol~* above the reactant. This is
in full agreement with the lack of reactivity under the experimental
conditions. The relative free energy of intermediate 1tp, which is
only 17.4 keal mol™ ' higher than the starting Au(i) complex 1tr,
could be accommodated into a catalytic cycle, but not that of the
transition state. This hints at a kinetic rather than thermodynamic
origin for the lack of reactivity of Au(i) complexes in oxidative
addition processes.

Further calculations showed that the more electron depleted
the aryl halide was rendered, the lower the barrier for the oxidative
addition became.*® However, even in the most favourable case,
2,4,6-trinitro-bromobenzene, the activation energy is still relatively
high (28.0 keal mol™").*

We also analysed the origin of this high barrier. One possible
reason could be the strain associated with the fact that the
intramolecular oxidative addition process leads to the trans
arrangement of phenyl and bromide in the product. The geome-
trical arrangement in 1tts with the C-Br bond “above” gold, instead
of the more usual in-plane arrangement must have some energy
penalty. To clarify its importance we carried out additional calcula-
tions for the intermolecular reaction on systems 2t1, 2t2, 3t1, 3t2,
4t1, 4t2, (Table 1) where the oxidatively added C-Br bond is in a
bromobenzene unit not previously connected to the metal. A variety
of systems were considered that differed in the nature of the
phosphine (PMe; or PPh;) and of the spectator ligand (chloride,
methyl or hydride). The free energy barriers for these intermole-
cular processes, leading to a cis arrangement of phenyl and
bromide, were in a narrow span between 42.6 kcal mol" (for
2t1ts) and 48.5 kecal mol ', (for 4tits). These barriers are also close
to the 41.5 kcal mol ™" computed for 1tts. This means that the cost
associated with the trans nature of 1tits is nearly identical to the
entropic penalty for bringing two separate molecules together. In
any case, these results mean that the high barrier for the oxidative
addition to Au(i) reflects an intrinsic reluctance to undergo oxida-
tive reaction in these systems. It must be mentioned that there is a
much wider dispersion in the relative energies of oxidative addition
products, from 4.1 kcal mol " for 3t1p to 23.3 kcal mol ™" for 2t2p.
This seems to be related to different combinations of trans
influences in the computed systems. It is however important to
remark that although in some cases the reaction is too endergonic
to take place, this is not the general behaviour. The high kinetic
barrier is on the other hand present in all tested systems.

A possible origin for the high barrier in systems 1t to 4t is
the well-known strong preference of Au(r) complexes for a linear
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2-coordination,®® which is challenged by the simultaneous
formation of two new bonds at the transition state. We tested
this hypothesis through additional calculations on systems 5t,
6t1, and 6t2 (Table 1). The resulting barriers were 11.7, 23.3 and
21.6 keal mol ', respectively. It is clear that the reaction becomes
much easier when starting from a mono-coordinated Au(i)
complex, thus providing evidence in favour of our hypothesis
that coordination number is the key.

Our joint experimental and computational study demon-
strates that linear 2-coordinate d'® Au(i) complexes are much less
reactive towards oxidative addition than the related Pd(0) complexes.
The Au(m) species that would result from the reaction have in most
cases reasonable energies, but the barriers to access them are
prohibitively high for moderate temperatures. Oxidative addition is
a key step in cross-coupling, and Au(x) will be thus unable to replace
Pd(0) in most of these reactions. The sluggishness of the reaction in
the Au(r) system seems to be related to its strong preference for
coordination 2. This is a specific characteristic of Au(r) that is not
shared by Pd(0), and explains why, despite having the same number
of valence d electrons, these two metals have significantly different
reactivity. Our results hint to a possible solution, since the oxidative
addition would be much easier when starting from a [LAu(1)]"
complex. Although this type of mono-coordinated complexes are
unknown, complexes [LAu(1)L']’A™ with a very weakly coordinated
ligand L' might undergo the required oxidative addition reaction
under sufficiently mild conditions acting genuine catalysts for
cross-coupling reactions of aryl halides. Work towards achieving
this goal is in progress.

We thank the MINECO (CTQ2010-16088/BQU, CTQ2011-27033),
the AGAUR (2009SGR47, 2009SGR0259), the European Research
Council (Advanced Grant No. 321066), and the ICIQ Foundation for
the support of this work. We also thank the ICIQ X-Ray Diffraction
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