Here we show a step-wise approach for the formation of continuous shell-structures on surface-confined gold nanoparticles. The nanoparticle-cores induce order in the shell-structure, which consists of metal–organic networks. Communication between the organic and inorganic parts is reflected in their optical properties.

The formation of molecular thin films has been the focus of extensive research efforts directed towards the design of organic-based devices.1 The combination of organic films and inorganic materials such as metallic nanoparticles (NPs) can result in synergistic effects and new materials that possess functions that are not attainable with single-component systems.2–4 The a priori design of organic–inorganic materials with control over their composition, structure, and function is challenging because many factors are involved, for example, weak intermolecular forces, substrate morphology, and dielectric media.5 Combining metallic NPs with organics has led to hybrid materials with interesting and useful properties.6,7 For example, surface plasmonic effects of metallic nanoparticles on the performance of polymer-based solar cells have been reported.8 Moreover, the localized surface plasmon resonance (LSPR) of metallic nanostructures is known to be highly sensitive to its environment and has been used for detecting various analytes including explosives.7 Rubinstein et al. showed that the LSPR of Au-nanostructures provides structural information about its molecular-based coating.8

We demonstrate here that the combination of an AuNP submonolayer with a metal–organic network (MON)9 results in surface-confined core–shell nanostructures (AuNP-MONs) with enhanced optical absorption of both components (Scheme 1). Our MON assembly strategy is compatible with the different surfaces in a single setup. The metallic nanoparticles’ and the organic monolayer surface were simultaneously functionalized with the MON. The use of the AuNPs resulted in an ordered MON, which is essentially a continuous shell embedding numerous cores.

Citrate-capped AuNPs (11.8 ± 1.3 nm, measured by transmission electron microscopy; TEM) were attached to glass and silicon substrates functionalized with a pyridyl-terminated monolayer (Scheme 1 and Scheme S1, ESI†). These surface-confined AuNPs were characterized using UV/vis spectroscopy, ellipsometry, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A LSPR band at $\lambda_{\text{max}} = 516$ nm was observed by UV/vis spectroscopy, indicating that the citrate-capped AuNPs have a diameter of ~12 nm (Fig. S1 and S2, ESI†). Ellipsometry measurements showed significantly different ψ and Δ parameters for the pyridyl-terminated monolayer before and after decoration with AuNPs (Fig. S3, ESI†). These changes are expected for a large increase in the film thickness.12,13 Both SEM and AFM analyses indicated a surface coverage with mainly individual and spherical AuNPs having an average interparticle distance of ~27 nm (Fig. 1). The SEM-derived AuNP surface coverage is ~16%. The UV/vis spectroscopy, AFM, and SEM measurements indicate that there is no evident change in the AuNPs’ dimensions, shape, and singularity when going from a solution to surface-bound AuNPs. The AuNPs bind to the pyridyl-terminated surface and do not aggregate due to the interparticle electrostatic repulsion of the negatively charged citrate capping layer.14

Scheme 1 Schematic illustration of the stepwise formation of the surface-confined core–shell nanostructures (AuNP-MON) on a pyridyl-terminated monolayer (Scheme S1, ESI†) covalently bound to glass or silicon substrates.
the pyridyl-terminated monolayer and the surface of the AuNPs are available for forming the MON. Ligands such as 15 can bind to citrate-capped AuNPs in solution, resulting in the formation of aggregates.16

The AuNP-MONs were obtained by an iterative deposition process of PdCl2 and 1 on the AuNP platform (Scheme 1). No stabilization treatments were needed and the AuNP-functionalized substrates were used as is for the MON formation. The substrates were immersed in a THF solution of 1 (1.0 mM) for 15 min. Next, the samples were sonicated repeatedly in common organic solvents and dried under a stream of N2. Subsequently, the samples were immersed in a THF solution of PdCl2(PhCN)2 (1.0 mM; 15 min), and then sonicated in the same manner as was the 1-terminated layer. These two depositions were repeated 8 times to create the shell structure. Previously we formed MONs directly on pyridyl-terminated monolayers in the absence of AuNPs (Fig. 2 inset, Fig. S1, ESI†).9

The UV/vis spectra of the AuNP-MONs were recorded after each chromophore (1) deposition step (Fig. 2). Each step resulted in increased absorption intensities for both the LSPR band (\(\lambda_{\text{max}} = 516-554\) nm) and the chromophore band (\(\lambda_{\text{max}} \approx 335\) nm). This latter absorption band is \(\approx 3 \times\) higher (after subtracting the AuNP absorption) than the band of the MON grown directly on the pyridyl-terminated monolayer.9 This significant difference most likely results from the large surface area generated by the AuNPs. Taking into consideration the surface area of the AuNPs (450 nm² per AuNP) and their coverage (16%), the total surface area is enhanced by \(\sim 1.5 \times\). Part of the AuNP surface is bound to the pyridyl-terminated monolayer and is not available for MON binding. Another factor contributing to the absorption intensity increase might involve energy transfer between the AuNP plasmon and molecular excitons.18 Intermolecular interactions are not apparent but cannot be excluded for this type of chromophores.9 The maximum position of the chromophore band is red shifted by only 9 nm for AuNP-MON having 9 layers of 1. The deposition of the PdCl2 salt has less effect on the optical signature of the AuNP-MON (Fig. S2, ESI†).

The MON formation on the AuNPs platform changes its effective dielectric media.13 This change is shown by a red shift of the AuNP absorption band (\(\Delta \lambda_{\text{max}} = 38\) nm) and an intensity increase \(\times 3.3\) of the characteristic LSPR band after the deposition of 8 chromophore layers. However, the changes in these optical properties level-off after 6 chromophore depositions (Fig. 3A and B), demonstrating that the influence of the MON thickness on the AuNP optical properties is significant up to \(\sim 4\) nm. A linear correlation was observed between the absorbance of the LSPR band and its wavelength (\(\lambda_{\text{max}}\)) (Fig. 3C).

X-ray photoelectron spectroscopy (XPS) is an established method to derive detailed information of metal-organic assemblies.9,15,19,24 Our angle-resolved XPS measurements revealed an elemental Pd/N ratio...
These observations may imply that the trans configuration of the N 1s signal showed a main peak at 400.1 eV (N–Pd, N) indicating an efficient capping layer exchange process. Deconvolution does not show the presence of the citrate ligand. These data correlate well with the AFM and SEM results. The reflectance of the AuNPs to the overall surface area.

The ellipsometry-derived AuNP-MON thickness increased linearly with the number of deposition steps of 1 [Fig. S6, ESI†]. The final thickness (16 nm) is in agreement with the XRR data [Fig. S7, ESI†]. SEM and AFM analyses indicated that the AuNPs are structurally not affected by the MON (Fig. 1, Fig. S8 and S9, ESI†).

To conclude, we have demonstrated the formation of a surface-confined core–shell nanostructure based on AuNPs and a MON. The AuNP cores have two major effects on the continuous shell: (i) the optical absorption intensity of the chromophores is positively affected by the larger surface area. The enhancement is higher than what one can expect based on only surface roughness considerations. Effects such as core–shell energy transfer might also play a role. The AuNP plasmon band is affected by the thickness of the MON since it is sensitive to changes in the surrounding media. (ii) The use of the AuNP platform results in an ordered MON. Our findings demonstrate the long-range structural effects induced by nanostructures. The large number of known coordination-based films and the availability of surface-confined nanoparticles may make our approach a new entry for developing a wide range of composite interfaces.

This research was supported by the Helen and Martin Kimmel Center for Molecular Design and Minerva. GE and PD were supported by a booster award from the Initiative for Sustainability and Energy at Northwestern and by the NSF (DMR-1309589). MB is the incumbent of the Bruce A. Pearlman Professorial Chair in Synthetic Organic Chemistry.

Notes and references

