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Abstract

As a strongly isotropic net that fills three-dimensional space, a chiral net known as (10,3)-a was recently 

rediscovered as a diamond twin (pollux) composed of sp2-hybridized carbon atoms. Although the trigonal 

planar structure of phenine has allowed for the synthesis of the primal cage molecule phenine polluxene, 

the expansion of polluxene provides further synthetic challenges as has been the case with polymantanes, 

including congressane. This work exploited three-component covalent assembly as a cage-forming reaction 

and succeeded in constructing a two-story structure of phenine dipolluxene with the homohelical sextuple 

helix of (10,3)-a net. Unexpectedly, the dipolluxene structure tolerated dimeric entanglements, resulting in 

an interpenetrated (10,3)-a net with a homohelical duodecuple helix.
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Introduction

The geometry of three-dimensional nets is crucial in understanding space-filling structures in 

nature and intersects with various disciplines such as chemistry, crystallography, materials science and 

mathematics.1,2 Carbonaceous nets of sp3-hybridized carbon atoms, for instance, reveal the geometrical 

features that support the hardness of diamond3 and unravel the conundrum of cyclohexane structures (Fig. 

1).4 Studies of diamond segments, polymantanes, further led to advancements in the fundamental and 

synthetic chemistry of diamondoids.5,6,7 The structure of diamond with a 66-(a) net was found to be strongly 

isotropic by Sunada, which led him to rediscover the (10,3)-a net as a diamond twin that commonly 

possesses a strongly isotropic character. The (10,3)-a net was originally discovered by Laves in 1932,8,9 

and it attracted the interest of researchers from various fields, resulting in various different names such as 

srs, gyroid and K4 lattice being given to this unique net.1,10 Interestingly, the geometry of the (10,3)-a net 

is chiral, which also gives rise to unique physical properties of interest.11 Although the chiral (10,3)-a net 

of sp2-hybridized carbon atoms (pollux) has also attracted theoretical interest,10,12,13 its presence has been 

questioned because of the severe lack of stability.14 By replacing the sp2-hybridized carbon atoms of pollux 

with phenine (1,3,5-trisubstituted benzene),15,16 we recently introduced the first primal cage unit of pollux 

and named it phenine polluxene (Fig. 1).13 As was the case with polymantane,17 however, expansion of the 

(10,3)-a net of monopolluxene was challenging, which urged us to develop further synthetic strategies for 

expanded cages with unique symmetry. In this study, the next homologue of polluxene, i.e., phenine 

dipolluxene, was synthesized by developing a three-component cross-coupling route for the cage-forming 

reaction. The chiral cage structure with sextuple helix was unequivocally revealed by crystallography. 

Unexpectedly, when we analyzed a synthetic precursor of dipolluxene, an interpenetrated dipolluxene 

dimer was found. Electron crystallographic analyses of the dimer revealed a unique interpenetrated 

structure with an entangled duodecuple helix with homohelicity. 
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Fig. 1. Strongly isotropic nets of carbon atoms. (a) Diamond and its molecular segments (adamantane and 

diamantane). (b) Phenine pollux and its molecular segments (monopolluxene and dipolluxene).

Results and discussion

Molecular structures and design

Structures and synthetic routes are first described. As shown in Fig. 2, the cage structure of 

phenine monopolluxene is expanded along the C3 axis to establish the two-story structure of phenine 

dipolluxene (1) as the next target in the present study. Although these two congeners share a common point 

symmetry of D3 with the C3 and C2 axes penetrating the cage structures, the difference in the location of 

the symmetry axes in the cages forced us to revise the synthetic route for the expanded congener. For the 

previous synthesis of phenine monopolluxene, one of the C2 axes was first generated by constructing a 10-

membered ring of phenine units, and the other symmetry axes were generated at the final step. The final 

step for the cage-forming reaction adopted the Ni-mediated Yamamoto coupling to close a transannular 

bridge via an intramolecular cyclization (Fig. 2a). When applied to the two-story congener in this study, 

this transannular strategy required a precursor with fused 10-membered rings, and this precursor was 

synthetically demanding. We then noted that a triaryl benzene unit with a preformed C3 axis at the center 

was synthetically accessible and could serve as a synthetic precursor (see also 2 in Fig. 3). Although this 
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revised route was also challenging, with six-fold Suzuki-Miyaura coupling of three components at the final 

step, we decided to adopt this route for the synthesis of phenine dipolluxene. For further details of the 

retrosynthetic analyses, see the Electronic Supplementary Information (ESI; Fig. S1). 

Fig. 2. Structures, symmetry and bond-forming reactions. (a) Phenine monopolluxene. (b) Phenine 

dipolluxene. 

Synthesis

The synthesis of phenine dipolluxene 1 is next described (Fig. 3). The triaryl benzene precursor 

(2) was prepared by methods reported in the literature, and the terphenyl precursor (3) was prepared by a 

3-step process consisting of two sets of Suzuki-Miyaura coupling and one set of C-H borylation (see ESI 
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for details). The terphenyl precursor (3) was furnished with two different boryl groups (Bpin and Bdan), 

which allowed us to perform Suzuki-Miyaura coupling on each end of this precursor separately at two 

different stages. Six-fold Suzuki-Miyaura coupling of 2 with 3 on the Bpin-terminus was thus performed 

to obtain 4 with six Bdan-termini. After the hydrolysis of Bdan moieties, arylboronic acid 5 was subjected 

to Suzuki-Miyaura coupling with 1,3,5-tribromobenzene. Although the three-component coupling process 

involved complicated regioselectivity (Fig. S1), we were pleased to obtain phenine dipolluxene (1) via six-

fold Suzuki-Miyaura coupling of 5 with tribromobenzene. However, the yield was not sufficiently high to 

isolate and identify the compound in full. We then installed pinacol moieties on the boryl groups and 

performed three-component six-fold Suzuki-Miyaura coupling between 6 and tribromobenzene. The yield 

improved, and the target, phenine dipolluxene (1), was obtained in 10% yield. As six biaryl linkages were 

formed during this cage-forming step, the average efficiency of bond formation was ~70% per linkage. We 

believe that the sterically congested cores, such as those of 5 and 6, possessed a preorganized conformation 

suitable for three-component covalent assembly (cf. Fig. S1). The combination of this three-component 

coupling strategy with the preceding intramolecular cyclization strategy to form decagonal phenine cycles13 

should allow for the rational synthesis of expanded cages of polluxenes. As is often the case with phenine 

nanocarbons, phenine dipolluxene was transparent in the visible-light region (Fig. S3), which could be 

beneficial for exploration of chiral, electronic materials.18
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Fig. 3. Synthesis of phenine dipolluxene 1

Molecular structures

The structure of phenine dipolluxene was unequivocally revealed by X-ray crystallography. As 

shown in Fig. 4a, the two-story structure of 1 was revealed with six arms forming a homohelical sextuple 

helix.19 Adopting systematic names to describe the helicity,13,20 one helical arm comprising (S,R,S)-

configurations is described as a (P)-isomeric structure. The overall sextuple helical structure of 1 can thus 
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be described as (P,P,P,P,P,P) to designate the right-handed helicity of the homohelical arms. The crystal 

of 1 was a racemate, and the enantiomeric pair of (P,P,P,P,P,P)- and (M,M,M,M,M,M)-isomers was 

included in the crystal (Fig. S4). Studies on the host-guest chemistry of the multiply arrayed cages should 

be interesting for explorations of unique properties and functions.13,21 As shown in Fig. 4b, an energy barrier 

of ~11 kcal mol–1 was found for the conformational conversion of the (P,P,P,P,P,P)-isomer to the 

(M,M,M,M,M,M)-isomer by rotating the biaryl axes of x, y and z attached to the central phenine unit (see 

also Fig. S5). Thus, when we rotated the biaryl linkage in a stepwise manner from the relaxed state at (x,y,z) 

= (33,33,33), the energy gradually increased together with the disappearance of the helicity of the rotating 

arm. When the second arm was rotated from (x,y,z) = (150,30,30), the helicity of the three arms disappeared, 

and the highest energy of +11 kcal mol–1 was recorded. When the third arm was rotated from (x,y,z) = 

(150,150,30), the helicity of the arms gradually emerged to generate the (M,M,M,M,M,M)-isomer. The low 

barrier for this conversion indicated that the enantiomers were rapidly interconverted in solution. 
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Fig. 4. Structure of phenine dipolluxene (1). (a) Crystal structure. A representative structure of the 

(P,P,P,P,P,P)-isomer is shown. The mirror-image enantiomer, (M,M,M,M,M,M), was also found in the 

crystal of the racemate (Fig. S4). (b) Energetics of the conformers, showing an energy barrier of ~11 kcal 
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mol–1 between the two enantiomers. Calculations were performed by using a methyl substituted molecule 

as a model. The helicity of the arms was assigned by adopting a system with (S,R,S) = (P) and (R,S,R) = 

(M), and conformations with other relationships were judged as non-helical and were described as "–". See 

also Fig. S5.

Interpenetrated net

During our investigations to improve the yield of 1, we unexpectedly found that homohelical 

interpenetrated nets could be realized by adopting phenine design.15 As noted in the pioneering works of 

Wells,1 three-dimensional space can also be filled by interpenetrated nets, which are currently being 

exploited by adopting weak bonding such as coordination and/or hydrogen bonds for the assembly.22 

Experimentally, the strongly isotropic, chiral net of (10,3)-a was first found to form "racemic" 

interpenetrated nets with heterohelical combinations from coordination polymers and hydrogen bonding 

networks of lipids.23,24 Albeit rare in examples, when the edge unit of coordination polymers was elongated, 

homohelical combinations of interpenetrated (10,3)-a nets was also found from large metal-organic 

frameworks.25 In this study, we accidentally discovered that the homohelically interpenetrated net of (10,3)-

a could be formed as a dimeric combination of phenine dipolluxene. While investigating the cage-forming 

reaction of arylboronic acid 5 in detail, we noted the presence of small crystalline precipitates after the 

reaction.26 Although we could not obtain a large single crystal suitable for X-ray diffraction experiments, 

the precipitate was subjected to electron crystallographic analyses with three-dimensional electron 

diffraction (3D ED) experiments (Fig. S6 and Movie S1).27 For the 3D ED analysis, machine learning-

based real-time object locator/evaluator, yoneoLocr, was adopted to locate small crystals and screen their 

diffractibility for the structural elucidation.28 The crystal structure was unexpectedly complicated and was 

carefully analyzed. First, the crystal structure from the 3D ED investigation revealed that the dehydration 

of boronic acid 5 resulted in the formation of BO-hexagonal structures of boroxine (Fig. 5).29 Surprisingly, 

Page 9 of 17 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
10

/2
02

5 
7:

33
:0

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5SC06999H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06999h


10

two dipolluxene molecules were entangled to form an interpenetrated dimer consisting of a homohelical 

pair such as "(P,P,P,P,P,P)+(P,P,P,P,P,P)" with a duodecuple helix structure (see also Fig. S7). The 

interpenetrated net resulted from multiple stacks of planar hexagons. At the center, six hexagons consisting 

of two hydrocarbon units and four BO-doped, boroxine units were stacked in a twisted manner to serve as 

a stem for twelve helical arms. The twelve helical arms were located in three different locations around the 

C3 axis, and each location contained stacks of "6+4+4" hexagons. As a result, the interpenetrated (10,3)-a 

net was formed as an entangled dimer of phenine dipolluxene with the 48 hexagons stacked to form a 

homohelical assembly of the duodecuple helix. Because the interpenetrated nets were tightly assembled in 

stacks, the heterohelical racemate would not be readily accessible via conformational changes of a single 

component. We speculate that the stereochemical rigidity may also be acquired in the interpenetrated 

dimeric entanglement, and properties and functions of chiral phenine nanocarbon should provide interesting 

subjects to be explored in the future.30 Because of reversible interconversion between boronic acid and 

boroxine as well as the low solubility of compounds, we could not obtain interpenetrated dipolluxene on a 

large scale. By designing helical stacks of hexagons, for instance, through donor-acceptor (D-A) pairs, we 

may design and synthesize chiral interpenetrated polypolluxene in the future. Stacked D-A arrays 

embedded in a chiral environment of wrapping helical arms would be an interesting structural motif to be 

exploited in materials science. Additionally, this study demonstrated that the 3D ED analysis with an 

automated sample screening process could transform synthetic chemistry by enabling the structural 

elucidation of minor byproducts.28 
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Fig. 5. Interpenetrated BO-doped dipolluxene dimer. Crystal structures were obtained by 3D ED analyses 

of microcrystalline precipitates obtained from arylboronic acid 5. As a representative structure, an 

interpenetrated dimeric structure of (P,P,P,P,P,P)+(P,P,P,P,P,P) is shown. See Fig. S7 for further details. 

In total, 48 stacks of hexagons were found in the structure. Four BO-doped, boroxine hexagons at the center: 

B = pink, O = red.

Conclusion

In summary, we have expanded the cage structure of polluxene with the (10,3)-a net by devising 

a synthetic route exploiting three-component covalent assembly with six-fold Suzuki-Miyaura coupling. 

The two-story molecular structure was determined by X-ray crystallography to show the presence of a 

sextuple helix. We found the formation of interpenetrated nets with dipolluxene molecules unexpectedly 
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by examining insoluble precipitates of a synthetic intermediate with the 3D ED analysis. The crystal 

structure containing BO-doped hexagons was found to possess a homohelical, duodecuple helix, consisting 

of stacks of 48 hexagons. Although the interpenetrated dimer was accidentally formed, the entangled 

structure provided an interesting target for the asymmetric synthesis of chiral nanocarbon molecules to be 

explored in the future. Transformation of phenine stacks, for instance, through high-pressure processes 

could also be an interesting subject to be investigated.31 Notably, a hexagonal structure that is usually 

conceived as a primal structure of a flatland of graphitic nets can serve as a primal trigonal planar unit to 

construct an expanded net of the diamond twin with chirality.10,15,16 As suggested by mathematics,10 chiral, 

strongly isotropic (10,3)-a nets can be constructed rationally by trigonal planar structures, with a tolerance 

of large dihedral angles, even in an expanded and/or entangled manner.

Data availability

The data that support the findings of this study are available in the ESI. CCDC 2486579 and 2486580 

contain the supplementary crystallographic data for this paper.
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Data availability

The data that support the findings of this study are available in the ESI. CCDC 2486579 and 2486580 

contain the supplementary crystallographic data for this paper.
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