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Monitoring sessile droplet evaporation on a
micromechanical devicet

A. Prasad,® A. T.-H. Lin,® V. R. Rao® and A. A. Seshia*?

A bulk acoustic mode micro-electro-mechanical dual resonator platformis utilised to study the evaporation
of sub-microliter water droplets from the surface of the resonator. An analytical formulation for the
observed frequency shift and the measure dependence of resonant frequency on the modes of
evaporation which is consistent with the optically derived data. The resonators access only a thin layer of
the liquid through shear contact and, hence, the response is not affected by the bulk mass of the droplet
to first order. A relationship between the droplet contact area and the elapsed time was established for
the evaporation process and is used to derive a value of the diffusion coefficient of water in air that is
found to be in reasonable agreement with literature values. This work introduces a new tool for the
electro-mechanical monitoring of droplet evaporation with relevance to applications such as biosensing
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Introduction

Micro-Electro-Mechanical System (MEMS) technology enables
batch fabrication of miniaturized mechanical devices that may
be co-integrated with chip-scale electronics and microfluidic
handling systems to realize miniaturized and portable plat-
forms for bio-chemical sensing and environmental moni-
toring." Such platforms may utilize significantly smaller
quantities of samples and reagents and potentially offer low
cost routes towards volume manufacturing. Micro-/nano-
mechanical sensors based on the modulation of mechanical
properties on the interaction with the measurand have evoked
much academic and translational interest in recent years.>
Particular implementations of such mechanical transducers are
micro/nanomechanical resonators where the interaction
between analyte/surrounding media and the resonator surface
produces a shift in the resonant frequency response. These
‘dynamic’ mode sensors have shown an exquisite degree of
sensitivity in vacuum enabling single molecule detection,®
zeptogram-scale mass sensing,® and sub-attonewton force
detection.” However, when these sensors are operated in air and
liquid environments, they suffer from degradation in perfor-
mance due to high levels of fluidic damping. Viscous drag,
squeeze film damping and acoustic radiation loss limit
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in liquid samples of sub-microliter volumes.

achievable resonator quality factors and, hence, the sensor
resolution. Further, the presence of liquid can potentially
interfere with the electrical transduction of the mechanical
response. There has been much recent research in attempting
to address the problems associated with operation in liquids
and several innovative designs, for example embedding fluidic
channels inside the resonator as in the case of suspended
microchannel resonators,®?® isolating the transduction element
from the liquid as in the case of some piezoelectric devices,® and
electro-thermal actuation and piezoresistive sensing methods*®
have been employed with promising results. However, these
techniques require complex fabrication processes, and may be
limited by transport issues in confined channel geometries and
the lack of a precise chemical definition of the sensor surface.™

An alternative approach to overcome the aforementioned
issues has been previously reported by employing a dual-reso-
nator platform (DRP)." In this approach, two identical micro-
machined square plate resonators are coupled by a thin
mechanical beam; one resonator is referred to as the transducer
resonator (TR) and the other as the sensor resonator (SR). While
the SR is interfaced with the liquid, the TR is electrically
addressed to enable readout of the modulated frequency
response. This scheme also allows relatively easy handling of
liquid samples without significant constraints on electrical
interfacing and device performance.

Apart from applications involving sensing of attached mass
in air or vacuum environments (e.g. thin-film monitoring,
particulate monitoring, etc.), the DRP can also be employed in
situations where monitoring of physical processes in liquid
media in contact with the SR is necessary. One such application
is the monitoring of the evaporation of sessile droplets of
liquids. Studies on the evaporation of droplets on flat surfaces

This journal is © The Royal Society of Chemistry 2014
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have gathered tremendous interest over past decades with
various studies being carried out to model the evaporation
process.”**” Evaporation of droplets is studied for under-
standing the general wetting behaviour of liquids,* in the
industrial context of spray cooling and inkjet printing,**-** in the
context of nanodispensing,> in biology for mapping DNA on flat
substrates,” in microfluidics for optimizing device biochip
designs,*® and dynamics of drying drops on nanostructured
surfaces,”” and for understanding the various day-to-day
phenomena involving the physical process of evaporation e.g.
the coffee stain effect.”® These studies are also of relevance in a
biochemical sensing context in fluid, where the very small
volumes of fluid involved may evaporate rapidly from the sensor
surface in a stop-flow mode.

The Quartz Crystal Microbalance (QCM) has been previously
used to investigate sessile droplet evaporation.***® For instance,
Joyce et al. used the QCM to monitor the extreme modes of
droplet evaporation of a series of alcohols by modelling the
evaporation process and its interaction with the radial sensi-
tivity of the crystal. Previous work has also addressed M/NEMS
based evaporation studies for investigating evaporation of
microdroplets of diameters ranging from a few microns®*' to
tens of microns.*?** These devices, based on the excitation of
out-of-plane flexural resonances, are suitable for cases where
droplet volumes are in the picoliter and femtoliter range. In
contrast due to the in-plane nature of the excited mode shapes
in the resonators used in our work, regardless of the bulk
volume of the droplet, only a small thin layer of the droplet in
shear contact with the resonator is effectively probed. Any
changes in this thin layer (for e.g. due to changes in the contact
area with the resonator and in some cases thickness of the layer
itself) can be effectively sensed. Thus, these resonators find
applications where modes of evaporation (associated with the
shrinking droplet contact area) must be studied. The device
platform reported in this paper can also be applied to study of
the evaporation process of much larger droplet volumes (on the
order of a few microliters or below), relevant to several practical
applications outlined earlier, which are difficult to quantita-
tively analyze using existing optical techniques. Thus, the paper
reports the use of the DRP to investigate evaporation of sessile
droplets of DI water by direct electrical open-loop resonance
frequency monitoring and the process of correlating the
measured response due to the evaporating droplet with an
analytical model of the physical process.

Theory
Liquid mass loading on the dual-resonator platform

The DRP consists of two identical thin silicon square plates,
mechanically coupled by a thin coupling beam. The coupling
beam is connected to the center points of the edges of the plate
directly facing each other. The coupled system is driven in its
coupled square-extensional (SE) modes and for analysis and
experiments, the in-phase mode is monitored (Fig. 1).

Using the Rayleigh-Ritz energy principle, the modal
frequency w of such a vibrating system can be approximately
determined by equating the maximum potential energy (PEyax)
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Fig. 1 (Top) Schematic of the dual resonator platform with a liquid
droplet spotted on the sensor resonator, and (bottom) COMSOL
simulation of in-phase square-extensional (SE) mode.

to the maximum kinetic energy (KEy.,) of the system. For a
single square plate of side length L and thickness #, the SE
mode shape can be approximated by the superposition of the
following displacement functions:**

uc(x,1) = Uy sin (%) sin wt,  — % <x< % (1a)
L L
uy(y, 1) = U sin (%) sin wt, — 5 <r<3z (1b)

where u,(x, t), u,(y, t) are the time dependent in-plane
displacements and U, is the maximum displacement along the
axes. As the mode shape is symmetric about the center (0, 0) of
the plate, PEy,x and KEyy can be evaluated by calculating twice
the maximum energy components along either of the axes. The
strain energy or potential energy stored per unit volume due to
displacements along the X-axis is given by

— 1

PEX = EESie,\‘xz (2)
where Eg; is the Young's modulus of silicon for the SE mode and
&xx is the strain in the X-direction expressed in terms of
displacement as:

du,
xx — - 3
Ex dx )

Hence, from eqn (2) and (3), we get:
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X

™\ .
Es 2 Uy’ cos? (T) sin® wt

PE, = 5 @)

The strain energy stored in a differential element of volume
dV(= dxdydz) at a distance x from the center is dPE,(= PE,dV).
Integrating for the whole plate, we get the component of stored
strain energy in the vibrating plate which is then multiplied by a
factor of 2 to get the time-dependent relationship of the stored
PE for the DRP:

Esztzh U()2 Sin2 wt

PE =2 [[| PE.dV = 5 (5)

Hence,
1
PEmax = EEsiWZh Uy’ (6)
Similarly, to calculate the total kinetic energy of the vibrating

square plate, we again consider the differential element of mass
dm(= ps;dV) and proceed as follows:

— 1 Jdu, S| . 5 [TTX\ .
dKE, = Edm( ) = EpSiwz Uy? sin’ (T) sin® wed V (7a)

KE =2 [[| dKE, = ps;hL? Uozzwzsinz of
14

(7b)

Hence,

1
KEpux = 5pSihL2 Uy’ (8)

By equating the maximum values of PE and KE from eqn (6)
and (8), we get

T |Es
W=—4/— 9a
L \/ Psi ©a)
or,
1 |Eg
Jse = A (9b)

In the case of a dual-resonator platform, the in-phase SE
modal frequency can be approximated as wprp> = 2PEpay/

2KEpax OF simply
fDRP - i ’ [ pisl

here, we have assumed the contribution of the coupling beam to
be negligible compared to the two vibrating plates for the mode
in consideration. When a solid mass Am(<mpgp) is added to
the coupled system, the effective mass and stiffness of the
coupled system changes thereby changing the resonance
frequency of the system. There is little or no shear wave

(10)

5540 | Analyst, 2014, 139, 5538-5546

View Article Online

Paper

formation in the attached solid mass where the whole mass
vibrates in unison with the resonator surface. For such a case,
Sauerbrey's equation holds true, and the frequency shift is given

by
1 /Ak A
df = D) <? - )fDRP

MpRrp

(11)

When a resonator surface comes in contact with a liquid
deposit, an evanescent shear wave is formed at the liquid near
the solid-liquid boundary. This shear wave dies off exponen-
tially normal to the surface. Hence, to obtain the mass loading
by the liquid and the resulting frequency shift, the modified PE
and KE of the system must be re-calculated by applying Ray-
leigh's principle again as before. An effective thickness 4, also
known as the penetration depth, of the liquid layer is defined*

as:
_ L
L= .
\/ oL

where f1, is the resonance frequency when in contact with liquid,
11, is the dynamic viscosity and py, is the density of the liquid.
The penetration depth represents the distance travelled by the
evanescent wave normal to the solid surface and in the liquid
medium before the amplitude attenuates by a factor of e. For the
resonators we have used in this paper, the estimated penetra-
tion depth is approximately 320 nm. There is a negligible
change in the penetration depth for the frequency shifts
observed in the experiments, hence, for calculation purposes
the value stated above is used (please refer to the ESIf). It is
assumed that irrespective of the total volume/mass of the
droplet, the resonator only “sees” a thin disc of liquid of
thickness ¢;, and contact radius r.. Hence, in the case where the
droplet diameter exactly matches with the resonator edge
length L, the theoretical mass of the liquid in shear contact is
around 492 ng corresponding to a volume of 492 pL while the
total mass and volume of the droplet is 448 ng and 448 nL,
respectively (please refer to the ESIT). Assuming that there is an
insignificant change in the PE of the DRP due to the liquid
deposit, only the KE of the resonator is perturbed. The velocity
distribution in the fluid layer due to shear contact with the
resonator is found by solving the Navier-Stokes equation which
results in:

(12)

dvi(z, 1) _ M azvx(z> 7)
at  p. 922

(13)

This is a one dimensional heat conduction equation whose
solution is given by:
z(1+))

vi(z, 1) = Vo exp (7 T) coSs wi.t

(14a)

or,

v(z, 1) = Vo exp (f i) exp (7 é—ZL) cos wrt (14b)

This journal is © The Royal Society of Chemistry 2014
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At the point of contact (z = 0), assuming no-slip, the relative
velocity between the liquid and the vibrating resonator surface
should be zero. Hence, from eqn (1) and (14b) we get:

ou,
vx(0, 1) =5~
Vo = wUp sin (?) (15)

For a circular deposit of radius .. spotted at the center of one
of the square plates of the DRP, the KE of a differential element
within the liquid layer of thickness d;, along the X-axis is given
by:

dKE,, = ld;»nL(Re{vx})2

2
= %p]_d Ve 2Uy? sin® (?) exp <f ;—f) cos’ (é) cos® wt
(16)
Hence,
KE,, = [[[dKE,, = p o >UsI(r,)J. cos w1 (17)
where,

I(ro) = JC Vr2 — x2 sin’ (%)dx

z 2z z
J.= | exp === )cos? [ — |dz
. L p( 5L) ((h)

I(r.) is evaluated numerically and is plotted against droplet
radii in Fig. 2. For droplets with a height much larger than 6y,
J: = Js,- The maximum KE of the liquid deposit is

x 10

(o]

(@]

N

Integration factor [m?] —
=N

1
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Fig. 2 Integration factor /(r.) vs. droplet radius. Note with larger drops
the value of /(r.) increases non-linearly which is due to the fact that
mass loading becomes more prominent towards the edges of the
resonator (anti-nodal region).
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@MaxL = 2prL2 Uozl(rc)‘lél_ (18)
Hence, from eqn (6), (8) and (18), we have
2'ﬁMa\x = ZﬁMax + ﬁMa)(L
Wy, 1
=)= 19
/i L( 2n> 2L (19)

20 1(re) s,
T

Therefore, for a measured “unloaded” frequency fy, the
frequency shift due to liquid loading is approximately given by

Af = =S(re, 2)fy (20)

where the differential sensitivity factor S(r., z) is defined as
pLI(rC)](;L/psihLZ. This analysis clearly indicates that the
frequency is independent of the total mass of the droplet
spotted on the surface, but depends on the thin interfacial layer
of liquid where the shear waves propagate. However, for larger
droplets, gravity may impact the pure “in-plane” nature of the
mode by inducing additional stresses in the resonator resulting
in out-of-plane bending or variations in stiffness. Due to the
high stiffness of the silicon and the small volumes of the
droplets involved, these effects are considered to be negligible
in the present analysis.

Modes of evaporation of the liquid droplet

Evaporation of a liquid droplet is a diffusion driven process,
where the concentration of the molecules (c;) reaches saturation
just above the droplet surface while far away the concentration
(cw) depends on ambient conditions. This concentration
gradient drives molecules away from the surface of the liquid
droplet. The established evaporation rate is governed by Fick's
law of diffusion where the diffusion flux ¢ is related to the
concentration gradient and diffusion coefficient D by ¢ = —DVc.
Depending on the substrate surface and the liquid properties,
there are two pure modes of evaporation for a slowly evapo-
rating sessile droplet: pinned contact line mode and constant
contact angle mode. The droplet can follow either of the two
modes: a mixed mode in which both the modes occur in
succession or a hybrid mode in which both occur at the same
time. When the droplet contact line is fixed, the height and the
contact angle of the droplet reduce with time whereas in the
second constant contact angle mode, the contact area and
height reduce with time while preserving the contact angle of
the droplet. When the mixed mode of evaporation is observed,
the droplet reaches a critical contact angle during the first
mode, at which point, the second mode is triggered. For a
sessile droplet of small volume, the shape at any instance can be
approximated using a spherical cap geometry (bond number,
Bo = p;gr’/y = 0.067, is less than 1 indicating the dominance
of surface tension forces over gravitational). In our case, as
indicated in the Experimental section later, it is observed that
the contact line somewhat remains unchanged (pinned contact

Analyst, 2014, 139, 5538-5546 | 5541
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line mode) in the first phase of the experiment and then the
evaporation seemingly transitions to a receding contact line
mode for the remaining phase. As the initial height of the
droplet is much larger than the penetration depth, we hypoth-
esize the small corresponding change in the resonant frequency
of the coupled system. Assuming that the second phase is the
constant contact angle mode of evaporation, for a droplet of
contact angle ¢, spherical cap radius Rs, and droplet volume V,,
following relationships can be established:

. 1
re=Rssinf, V.= gwﬂRs3,

(21)
where 8 = (1 — cos #)*(2 + cos 6)
Now, the volume evolution of the drop is given by
21
2 2 333 —
v =y - Bm¥Dle — ) (0), (22)

T

3pLB3

where f(#) = —cos 6/2 In(1 — cos 6) is a function of contact angle
derived by Bourges-Monnier et al.*® to compensate for the

horizontal contact surface. Simplifying the above equation in
terms of the contact area A.(= mr.”), we get

87D(c; — ¢ )sin’df (6)

A=A, —
LB

Co

t=A, —kt (23)
where k = 87D(cs — ¢..)sin” §f(8)/p.8. Hence, the contact area is
proportional to the evaporation and wetting parameters (diffu-
sivity, temperature, humidity and contact angle). Unlike the
first phase, where there is no change in the interfacial layer, the
coupled system should “see” a change in mass with the
shrinking droplet radius during this second phase of evapora-
tion (Fig. 3).

Experimental method
Device description

As explained earlier, the DRP consists of two identical micro-
machined square plate resonators that are coupled to a thin

H(t)

Liquid droplet
I Shear layer

Resonator

surface

ik 4
/00 4 s

[

Fig. 3 Schematic showing two modes of evaporation of the droplet
from the resonator surface (top) pinned contact line mode, (bottom)
constant angle mode, and (right) shear evanescent wave formation in
the liquid.
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mechanical beam; one resonator is termed the transducer
resonator (TR) and the other is termed the sensor resonator
(SR). The device is fabricated by MEMSCAP Inc., USA using a
standard silicon-on-insulator (SOIMUMPS) process. The reso-
nators are suspended through T-shaped anchors at the corners
while gold pads are patterned on the anchors and as well as on
the electrodes for electrical interfacing. The geometrical
parameters of the device are specified in Table 1. The device
surface is not otherwise specifically treated and is used as it is
received from the foundry.

Actuation and sensing

Coupled resonators are excited in their in-plane square exten-
sional modes which inherently provide better quality factors
compared to their out-of-plane flexural counterparts. The TR is
electrically interfaced through the actuation electrodes,
surrounding the resonator body, and the anchor pads. While
the coupled device is capacitively excited, in an open loop, the
motional current from the resonator body, through one of the
anchor pads, is fed to the network analyzer (Agilent 4396B, RF
Network Analyzer) following pre-amplification by a trans-
impedance amplifier circuit (Fig. 4). The network analyzer is
configured for obtaining S21 (electrical transmission) parame-
ters of the device and is connected to a PC where the data are
recorded for off-line analysis. As the signal is highly attenuated
and damped, it is difficult to extract the resonance peak and
other information from the output motional signal using
conventional capacitive sensing techniques. Hence, to boost the
signal, a piezoresistive sensing scheme is employed. When the
resonators are excited in the square-extensional mode, anti-
nodes result at the corners which are also the points of
suspension of the resonator body. These suspension tethers
connecting to the anchors are so designed so that the strain in
these regions is maximized when the displacement of the
square plate is maximized. By scaling the contribution of the
piezoresistive signal from the T-shaped anchor relative to the
resonator body, the piezoresistive response can be decoupled
from the geometry of the resonator.

Droplet dispensing and optical measurements

Distilled water droplets of volume 0.5-1 pL are dispensed on the
SR by a micropipette. As the resonator surface area (1400 X
1400 pm?) and the droplet volumes are relatively large, the
manual placement of the sessile drop on the resonator surface
is relatively straightforward through this process may be

Table 1 Device design parameters for the dual resonator platform

Device design parameters Values
Resonator edge length (L) 1400 pm
Resonator thickness (%) 25 pm
Coupling beam length 1400 pm
Coupling beam width 22 pm

SE in-phase resonance frequency (air, unloaded) 3 142 969 Hz
Quality factor (air, unloaded) 10 200

This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Circuit schematic of the dual-resonator platform.

automated for smaller dimensions and droplet volumes using
microfluidics or robotic spotting techniques. A digital micro-
scope (Keyence VHX-500F, Digital Microscope) is used to
observe the evaporation of droplets from the top without
interfering with the electronics setup. Images are taken peri-
odically at an interval of 30 seconds and are later processed
using Image] to obtain the radius of the droplet at various time
intervals.

Results and discussion

The DRP is first tested in air to obtain its unloaded frequency
response. The resonance frequency fi; and quality factor of the
device are then extracted from the S21 (transmission) response
in the unloaded state. The device is then extracted and spotted
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with a sessile droplet of DI water. Following this, the electrical
transmission response and the optical images are recorded as a
function of time as the droplet evaporates. The procedure is
repeated several times to ascertain repeatability.

Frequency response plots at various time instances for one of
the evaporation experiments are shown in Fig. 5(a and b). As the
motional current is swamped by the feedthrough current
(parasitic and direct overlap capacitance), the original
frequency and phase data are processed by subtracting the
feedthrough component, obtained by supplying only the AC
voltage to the device, from it. The corresponding feedthrough

t=480 sec t=540 sec

t=510 sec

Fig. 6 Time-lapse images of the evaporating sessile water droplet on
the DRP. In the 1st row, the contact line remains pinned; in the 2nd
row, the droplet evaporates with the retreating contact line; in the 3rd
row, the droplet completely evaporates.
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Fig. 5 Transmission (S21) amplitude and phase plots at various time instances during evaporation of the droplet. (a and b) Raw data plots and (c

and d) feedthrough cancelled data plots.
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cancelled amplitude and phase frequency response curves are
shown in Fig. 5(c and d).

Optical micrographs showing droplet evaporation from the
DRP at different time instances is shown in Fig. 6. For the first
200 seconds (approximately), the size of the drop appears
unchanged. Following this the drop rapidly starts to shrink and
it eventually evaporates from the surface.

A scatter plot for the obtained frequency shifts, Af, is plotted
against time as shown in Fig. 7(a). The plot can be divided into
three distinct zones, in the first zone, the resonant frequency is
seen to fluctuate around a nominally value, in the second zone
the frequency shift varies with time, and finally the frequency
shift response flattens reaching a value close to zero indicating
near-complete evaporation. The nature of frequency shifts
throughout the experiments clearly indicates that the change in
mass loading on the surface of the SR is different during
different phases of the experiment. Further elaboration on this
observation is discussed below when the optical images of
droplet evaporation are compared with the observed frequency
shifts. Anomalous frequency values and outliers were removed
from these scatter plots.
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Fig. 7 (a) Frequency scatter plot vs. time for various experiments, (b)

the contact area obtained from the frequency data (black, dashed line)
and the optical images (along with the stand. dev. error bars) plotted vs.
time, and (b-inset) the scatter plot of the contact area from the
frequency data ((1, ©, O, +, and * — from different experiments; A —
from optical images).
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The contact area is calculated using the optically measured
droplet radii values (from Image]) and is plotted as a function of
time as shown in Fig. 7(b) (inset). From the frequency shift data,
using eqn (20), S(r., z) and, hence, I(r.) is calculated. Values of
the integration factor are then used to obtain the expected
contact area (7r.>). Linear least-square fits for the optical and
the modelled or frequency shift data for different regions are
obtained. In both cases, the corner points are excluded from the
fitting schemes (please refer to the ESIt). Sets of slopes for each
individual experiment are extracted and average values desig-
nated ki,opt, k2,0pt aNd Kq,moas k2ymoa TeSpectively are used for
comparison. For the first phase kj,voq = —8.942 x 10 '°
compared to ki,ope = —7.561 x 10 '' demonstrating a good
match between the two techniques. The mode of evaporation
during this stage can be said to be pinned contact line mode
though contact line deformations can be seen occurring
throughout this process. A reason for this could be because of
slight non-uniformity of the surface energy distribution for the
sensor as a result of contamination and exposure to air. Hence,
as the height of the droplet reduces in the pinned contact line
mode, the drop readjusts to maintain the smallest possible
contact area. For the second stage, kznoq = —5.4983 x 107°
compared to ky,opt = —5.156 X 10~° which is within 6.64% of
the obtained value from optical observations of droplet evapo-
ration. Under the given ambient conditions, T = 295.5 K and
humidity = 31%, and the observed receding contact angle value
of (48.85 + 1.45)° (please refer to the ESIT), we can estimate the
value of the diffusion coefficient from the obtained slope k»,noq-
The experimentally obtained values for the diffusion coefficient
of water are (2.8341 & 0.105) x 10> [m” s™'] compared to the
reported value of 2.492 x 10> [m? s~ "] in the literature.*” While
the match between the measured and theoretical values is
relatively good (9-17% of the theoretical value), it should be
emphasized here that the evaporation model itself is non-linear
for smaller contact angles (please see the ESIf). Also, the
diffusion constant is very responsive to local conditions and not
one experiment is precisely equivalent to the other. However, it
should be noted that by controlling the environmental condi-
tions, the accuracy of the estimate could be further improved.

This analysis illustrates the usefulness of the technique in
obtaining evaporation parameters. Alternatively, if the sample
liquid is known (and, hence, its diffusion coefficient), one can
easily find receding contact angle by analysing the slope
obtained from the plot of the contact area against time. For
example, in our case, if we assume the theoretical value of the
diffusion coefficient of water vapour in air for the measure-
ments, then the receding contact angle can be inferred to be
approximately 44.17° compared to the observed value of 48.85°.
This could be especially helpful in cases where sub-microliter/
nanoliter droplet volumes need to be analysed where general
imaging instruments and other techniques cannot be used.
Also, as the surface properties of silicon can be readily modified,
one possible application of the proposed device could be to
study wetting properties of different liquids for different
surfaces.

An interesting observation, revealed by comparing the time
histories of the optical images and frequency response data, is
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that a change in the resonance frequency is observed even after
the optical images appear to indicate that the droplet has
completely evaporated. This can be attributed to the fact that
since the thickness of the water layer seen by the sensor is only a
few hundred nanometers, hence, a thin layer of water which is
not captured by using the microscope is still present and
contributes to the measured DRP frequency response until it
evaporates completely. After evaporation of the droplet a visible
residue is seen on the surface which contributes to “dry” mass
loading.

Another observation from the data is that the expected
contact area is always higher than what is measured optically.
This implies that the coupled sensor is actually seeing more
“mass” which could potentially be explained by the assump-
tions underlying the model described here. First, it is assumed
that the liquid droplet is modelled by a symmetrically centred
spherical cap geometry which, in reality, is not the case. The
resulting difference in the spatial distribution of the droplet
volume might result in a difference in the frequency shift
observed experimentally. Also, the surface roughness could
result in trapping of water molecules and, hence, higher mass
loading. It has also been observed that inorganic residue can be
deposited on the surface of the resonator resulting in additional
mass loading due to miniscule amounts of contaminant
residue.®® Also, fluctuations in temperature as the droplet
evaporates have been neglected though such effects are expec-
ted to be small. A thorough analysis of such effects is left for
future work.

The minimum optically observable radius of the droplet for
the experiments where a change in frequency was recorded was
around 250 pm. Below this radius, the droplet evaporated
quickly thereby making it difficult to obtain a consistent value
for the droplet radius. Assuming this to be the minimum
contact radius that can be detected by the DRP, the corre-
sponding mass and volume of the water in the shear layer is
approximately 63 ng and 63 pL respectively and the total mass
and volume of the droplet is approximately 20.4 ng and 20.4 nL
respectively (please refer to the ESIt). In practice, the lowest
detectable mass is related to the minimum detectable value of
Afas limited by the noise floor of the device and is smaller than
the values reported above.*?

One of the challenges associated with this technique is to
control the positioning of the droplet on the resonator. Theo-
retically, if the droplet evaporates with the contact line pinned,
the positioning of the droplet does not affect the response as the
contact area, and hence, the mass sensed does not change
throughout the evaporation process. In the case where the
contact line recedes, if the recession is symmetric and the
centre of the droplet remains fixed, then it is possible to account
for the asymmetric positioning in the model if the initial posi-
tion of the droplet is known (e.g. through a calibration process
aided by surface structuring or a microfluidic interface to
specify the initial position of the droplet) as the gradient of the
frequency shift with respect to mass decrement is always posi-
tive. However, if the droplet moves over the surface of the
resonator during evaporation or contracts asymmetrically
during evaporation, then the interpretation of the response
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must account for this motion. In the current setup, these effects
could be averaged out to a certain extent by using data across
repeated experiments. Another drawback of this technique is
the limited bandwidth of the open-loop frequency monitoring
scheme. This can be addressed by embedding the DRP in the
feedback loop of an electronic amplifier to construct an oscil-
lator*® whose output tracks the resonance frequency enabling
larger bandwidth applications. This approach would eliminate
errors resulting from numerical extraction of parameters from
the measured open-loop response. Finally, the device dimen-
sions can be scaled to investigate evaporation of even smaller
volumes of liquid and related physical processes, not accessible
by standard optical techniques.

Conclusions

The dual-resonator platform, with its inherent advantages of
relative ease of liquid handling without significant deteriora-
tion in response, offers a unique opportunity to investigate
liquid-mediated surface processes as miniaturised micro-
fabrication-compatible analogues of the QCM. The DRP is
shown to be capable of detecting two modes of evaporation —
viz. the pinned contact line mode and the receding contact line
mode successfully and an analytical formulation of the
frequency shift in the DRP is derived to understand the
underlying correlation between the evaporating sessile droplet
and the observed frequency shift. It was also shown that the
device is very sensitive to small changes in the shape of the
droplet as well as very small volumes of liquid. A good agree-
ment was found between the experimentally derived value of
diffusion coefficient of water derived from the measured data
with literature values establishing the initial basis for this
technique.
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