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typic profiling of a Saccharomyces
cerevisiae strain at the single-cell level†

A. Mareike Schmidt,‡a Stephan R. Fagerer,b Konstantins Jefimovs,c Florian Buettner,d

Christian Marro,b Erdem C. Siringil,e Karl L. Boehlen,e Martin Pabstb

and Alfredo J. Ibáñez‡*b

Studying cell-to-cell heterogeneity requires techniques which robustly deliver reproducible results with

single-cell sensitivity. Through a new fabrication method for the microarrays for mass spectrometry

(MAMS) platform, we now have attained robustness and reproducibility in our single-cell level mass

spectrometry measurements that allowed us to combine single-cell MAMS-based measurements from

different days and samples. By combining multiple measurements, we were able to identify three co-

existing phenotypes in an isogenic population of Saccharomyces cerevisiae characterized by distinctively

different levels of glycolytic intermediates.
Introduction

Analytical methods capable of studying individual cells play an
important role in identifying and characterizing cell-to-cell
heterogeneity.1–3 Cell-to-cell (phenotypic) heterogeneity is a
naturally occurring characteristic that manifests itself in all
organisms – including individual cells from an isogenic pop-
ulation – because it ensures an enhanced adaptability to fast
changes and/or perturbations in the growth environment.4–7

Several causes can induce cell-to-cell heterogeneity – even
stochastic reasons – which may lead to different phenotypes of
otherwise genetically identical cells. Such cell-to-cell variation
has medical relevance, as for example in the case of persis-
tence. Persistence happens when non-genetic cell-to-cell
heterogeneity – in an isogenic population – allows a small
group of cells to endure the addition of a drug to its growth
medium (i.e., because they show a better phenotypic adapta-
tion toward the drug).6,7 Once the drug is removed, the selec-
tion pressure disappears and these surviving cells would
give rise to a new (heterogeneous) – but still isogenic –
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population.6,7 It is for this reason that new analytical methods
for identifying such cell-to-cell phenotypic variations are
greatly required,1–3 in particular when developing a mathe-
matical model of the adaptation and survival mechanisms of a
cell population toward a drug.4–7

A novel method for matrix-assisted laser desorption/ioniza-
tion (MALDI) mass spectrometry (MS), called microarrays for
mass spectrometry (MAMS), has been proven to achieve sensi-
tivity for single-cell metabolite detection.8–11 However, the
original method used for the MAMS fabrication (i.e., laser scan
ablation) was inefficient in generating microarrays of consis-
tently high quality. Thus, microarray-to-microarray comparison
was difficult, since it required numerous normalization steps to
compensate the technical noise originating from the micro-
arrays.8 Furthermore; such normalization was only possible for
certain metabolites. This hampered the ability to pool multiple
samples to clearly identify co-existing phenotypes in an isogenic
cell population.

Here, we implemented an improved MAMS fabrication
process, which should be capable of reducing technical vari-
ability. To test the novel MAMS substrates, we analyzed
metabolite levels in single cells of the baker's yeast Saccharo-
myces cerevisiae, and for the rst time single-cell level
measurements from multiple microarrays were combined to
generate a total population of 1280 measurements (i.e., an
eight-fold increase compared to previously published data).8–11

As a result of the statistical analysis of the data, three subpop-
ulations with distinctively different levels of glycolytic inter-
mediates were found to co-exist in the isogenic population.
Thus, due to the improved MAMS fabrication process, pooling
of data from multiple samples is now feasible and therefore
allows using MAMS to condently identify and characterize co-
existing metabolic phenotypes.
Analyst, 2014, 139, 5709–5717 | 5709
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Experimental section

MAMS are fabricated on commercial transparent indium–tin
oxide coated cover glass chips (20 mm � 20 mm � 0.16 mm)
with a resistivity of 8–12 U cm�1 (SPI Supplies, Unterfoehring,
Germany). The slides were spin-coated (SuSos, Duebendorf,
Switzerland) with a 1 mm thick polysilazane coating (CAG 37,
marketed by Clariant, Frankfurt am Main, Germany). This
polysilazane layer was structured (EMPA, Thun, Switzerland)
using a projection laser ablation system equipped with an
excimer laser (Exitech Ltd, Oxford, UK), with the following
characteristics: 20 ns pulse, 248 nm wavelength, 50 Hz repeti-
tion rate, and an average uence at the substrate level was 500
mJ cm�2 per pulse. The laser was collimated to illuminate an
area of 16� 16 mm2 on a mask and then focused on the sample
with the de-magnication factor of 5 (Fig. 1A). By scanning the
mask under the beam and the sample, a quadratic array of 13 �
13 circular recipient sites (100 mm diameter) with a site-to-site
distance of 400 mm in both dimensions was created. Recipient
sites of larger (1.5 mm in diameter) size were machined outside
the 13� 13 array for depositing metabolite standards to be used
as mass calibrants.

The Saccharomyces cerevisiae mutant strain (i.e., CEN.-
PK.KOY.TM6*P) was used.12,13 This strain exhibits a stochastic
cell growth rate, when grown in liquid culture. This observed
Fig. 1 Graphical summary of the workflow used to prepare the samples
adding a cold (�20 �C) solution of 3 : 2 methanol : water with 0.85% (v/v)
and discarding the supernatant), the pellet is reconstituted in a salt free co
spread onto a cold MAMS chip. Applying the cell suspension onto the MA
into the hydrophilic reservoirs, without the need for a microspotter. Depe
hydrophilic reservoir can be between zero and hundreds (random Pois
microscopic analysis to determine the number of cells in each reservoir
cold in a cryo-chamber using liquid nitrogen. After counting the cells un
airbrush, and each reservoir on the plate is analyzed by MALDI MS.

5710 | Analyst, 2014, 139, 5709–5717
variability between cultures is present even if the cultures
originated from the same colony and were grown under exactly
the same growth conditions (similar growth medium, temper-
ature, pH, etc.).

The cell handling process is as follows, cells were taken from
a liquid culture , quenched using a cold (�20 �C) methanol : -
water mixture (3 : 2 ratio) with ammonium bicarbonate (0.85%
w/v, pH 7.4) to stop metabolic activity, aer which the super-
natant was removed and cells were washed with a methanol : -
water (3 : 2 ratio) solution (�20 �C) to remove salts. The cell
suspension was then aliquoted onto the MAMS substrate
(Fig. 1B). The number of cells was determined by microscopic
inspection, while the entire MAMS chip was kept cold (�40 �C)
in a cryo-chamber ushed with liquid nitrogen. Subsequently,
9-aminoacridine (MALDI matrix) – also cold (�20 �C) and in
methanol : water (3 : 2) – was sprayed and the MAMS target was
introduced into the MALDI-MS instrument for measurement.
Data treatment and analysis were accomplished by trans-
forming the raw data les from the AB5800 instrument to a
universal data format (i.e., mzXML) using the freeware
program Peak List Conversion Tool, available from http://
www.proteomecommons.org. Aerwards, the spectral data
(i.e., accurate mass, signal intensity, etc.) were calculated using
MATLAB (MathWorks, Natick, MA, USA) peak recognition so-
ware that was kindly made available by Uwe Sauer and Nicola
for single-cell MALDI MS analysis. Cellular metabolism is quenched by
ammonium bicarbonate (pH 7.4). After cell handling (i.e. centrifugation
ld (�20 �C) solution of 3 : 2methanol : water, and the cell suspension is
MS surface will result in an automated aliquoting of the cell suspension
nding on the cell concentration employed, the number of cells on each
son distribution). The transparency of the MAMS substrate allows for
while the cells remain quenched because the entire MAMS chip is kept
der the microscope, 9-aminoacridine (MALDI matrix) is applied with an

This journal is © The Royal Society of Chemistry 2014
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Fig. 2 (A) TheMAMS-based analytical protocol is capable of avoiding biological and technical artifacts due to averaging of a large number of cells
by performing a single-cell level analysis on the liquid medium grown cells. Therefore, we observed that within a “theoretical” homogeneous
clonal population of cells, there is enough cell-to-cell heterogeneity to form different phenotypes which may contribute to the observed
differences in the growth rate. (B) By pooling all the cell samples together, we can observe that there is a correlation between increasing levels of
F16BP and the growth rate of the cell population (C). The identification of fructose-1,6-bisphosphate (F16BP) is based on precise mass and
tandem MS experiment (ESI, Fig. 4†), which was performed on a standard stainless steel target with a higher density of yeast cells (�1000 cells).
The fragmentation spectrum of hexose-bisphosphate was then compared to a commercially available sample of F16BP. Furthermore, LC-MS
measurements were performed. In the LC-MS measurements, the levels of F16BP in different mutants of the CEN.PK.KOY yeast strain (each of
them presenting a different growth rate) had a positive correlation; a trend that was also obtained from the different liquid cultures of the
CEN.PK.KOY.TM6 strain using our MAMS platform (ESI, Fig. 5†). With this experiment, we have not only confirmed that the hexose-biphosphate
signal is F16BP, but also that the level of the F16BP signal in the sample correlates with the observed cell growth.
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Zamboni (Institute of Molecular Systems Biology, ETH
Zürich).14 All spectral data were normalized by a linear combi-
nation of unsaturated signals that did not correlate with signals
of biological origin. A more detailed description of the cell
cultivation, as well as the analysis and data processing can be
found in the ESI.†

Safety considerations

9-Aminoacridine (9-AA) is a mutagenic substance and it must be
handled with care. The selection of 9-AA as a matrix is due to its
preferential ionization mechanism,15–17 which when coupled
with the trapping of the cells in picoliter-volume reservoirs8–11

and the homogenous co-crystallization of matrix and analytes18

what allow us to reach the “single-cell” level sensitivity.

Results and discussion

One key step for studying cell-to-cell heterogeneity is to identify
the co-existing phenotypes in an isogenic population. Each of
these co-existing phenotypes is characterized by a unique
metabolic pattern. Unfortunately, when we pool phenotypes,
their unique metabolic pattern is diluted due to averaging
This journal is © The Royal Society of Chemistry 2014
artifacts (ESI, Fig. 1†). In a previous study, we have observed
naturally co-existing subpopulations in an isogenic yeast
culture.8 However, due to technical limitations (i.e., mostly
associated with the limited number of single-cell events), it was
not possible to characterize the co-existing populations with
enough statistical signicance. Here, by using an improved
MAMS microarray, this limitation has been overcome.
Single-cell level monitoring of an S. cerevisiae isogenic
population

Variations in the monitored metabolite signal intensity – at the
single-cell level – do not necessarily reect the naturally occur-
ring differences in metabolite concentrations, since they can
also result from variations in the cell size (or other trivial bio-
logical artifacts) or instrumental and sample handling variation
(analytical artifacts). To illustrate the robustness of our method,
as well as its ability tomonitor the naturally occurring biological
variability between themultiple cells within and between the set
of measurements, we performed a set of control measurements
(ESI, Fig. 2–5†) described in-detail in the ESI.† In summary,
these control experiments gave us condence that the metab-
olite signal variations were of biological origin and not artifacts
Analyst, 2014, 139, 5709–5717 | 5711
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Fig. 3 The ratios of ATP/ADP, GTP/GDP, and F16BP/PEP were plotted
to compare the different levels of biological noise associated with the
cell-to-cell heterogeneity. For example, difference in viability is a
source of cell-to-cell heterogeneity. The energy charge was not used
because for our MS measurements the adenosine monophosphate
(AMP) signal did not fulfill our signal selection criteria (explained in the
ESI†). Instead the ratio between ATP/ADPwas used to estimate the cell
viability (see text for details). Here, we can observe that viability is not a
strong source of cell-to-cell heterogeneity. Because, the ability of the
cells to sense their carbon source (i.e., glucose) in the different cultures
is heterogeneous, the GTP/GDP ratio is expected to have a higher CV
value (the ratio of GTP/GDP is the triggering signal for cell growth and
in combination with cytosolic pH is directly linked to the sensing of
glucose in the cell environment). The high coefficient of variability for
the GTP/GDP ratio shows that this can be one of the major sources of
cell-to-cell heterogeneity. However, even in a quite noisy system (as
illustrated by the GTP/GDP ratio), the distribution of the F16BP:PEP
ratio falls between two conserved values. Thus, we hypothesized that
the different co-existing phenotypes could be characterized in terms
of their associated glucose degradation. CV is the abbreviation for
coefficient of variation.
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inuenced by trivial biological variability (cell size), or by the
analysis.

Aer having ensured that we actually monitor biological
information, we used our MAMS-based technology to identify
the co-existing phenotypes within an isogenic yeast strain
population. The Saccharomyces cerevisiae (CEN.PK.KOY.TM6*P)
strain is an excellent model, because it presents a strong
stochastic behavior.12 This stochasticity is reected in its ability
to grow at different growth rates in liquid culture, even if all
cultures were generated from a single colony and were grown
under similar conditions. In total, four liquid cultures – each of
them with a different growth rate (0.14, 0.16, 0.18, and 0.21 1/h)
– were used for this study. Furthermore, the mass spectrometry
single-cell data of these 4 liquid cultures were pooled together
during a post-data processing step to generate an in silico
5712 | Analyst, 2014, 139, 5709–5717
“master” mixed growth-rate cell population (a total of 1280
wells) to obtain a better understanding of the CEN.-
PK.KOY.TM6*P strain metabolic behavior.

The total distribution of the number of cells per reservoir for
the whole dataset can be seen in ESI, Table 1.† From the 159
wells containing 1 cell per reservoir, only 75 were proved suit-
able for further studies (n ¼ 32, 17, 13, and 13 single-cell level
measurements for the 0.21, 0.18, 0.16, and 0.14 1/h – cell growth
rate samples, respectively). The selection criteria for deter-
mining if a single-cell level measurement is good or not were
based on the precise mass recognition of 30 central metabolites
(ESI, Table 2†) with a maximum mass deviation of 0.02 Da, and
an average total mass deviation error of 25 ppm per mass
spectra (see ESI† for additional details).

Interestingly, in Fig. 2A, we observed that many cells, inde-
pendent of the liquid culture they originated from, had similar
relative signal intensities of hexose-bisphosphate (very possibly
fructose-1,6-bisphophate – F16BP).8 Therefore, to better study
the distribution of abundances of hexose-bisphosphate in the
CEN.PK.KOY.TM6*P yeast strain, the histogram for relative
signal intensity of hexose-bisphosphate was also plotted, in
Fig. 2B, for the in silico “master” cell population (i.e., the pop-
ulation obtained by pooling all different liquid cultures).
Remarkably, the observed distribution of hexose-bisphosphate
in Fig. 2B is not a symmetric uni-modal Gaussian
distribution.8,19

Previously, we have observed that the relative intensity of
hexose-bisphosphate can correlate with the cellular levels of
F16BP, which presents a bimodal distribution.8,19 The validation
of the correlation between the cellular levels of F16BP and
hexose-bisphosphate was done by performing a tandem MS
experiment, as well as liquid chromatography coupled with
mass spectrometry (LC-MS), ESI, Fig. 4 and 5† respectively.
Interestingly, by classifying for example all cells in two hypo-
thetical co-existing groups with (i) high and (ii) low levels of
F16BP (Fig. 2C), a link between higher growth rates and higher
levels of F16BP could be made. This was our rst hint that the
different growth rates could be associated with different ratios
of co-existing phenotypes in each liquid culture. In the
following section, we aim to describe the differences between
these co-existing phenotypes based on their metabolic proles
and not only based on the relative levels of F16BP as done in a
previous report.8
Identication and characterization at the metabolic level of
naturally occurring molecular phenotypes in an S. cerevisiae
isogenic population

Our rst goal in this section is the identication of a signicant
source of cell-to-cell heterogeneity based on the measured mass
spectrometry signals. Sources of cell-to-cell heterogeneity can
be external and/or internal to the organism. An example of an
external factor that contributes to cell-to-cell heterogeneity is
that cells can be found in slightly different growth environ-
ments (i.e., microenvironments) even if grown under the same
conditions. These microenvironments originate due to slight
differences in oxygen and nutrient availability, which can
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 (A) The log(F16BP/PEP) is plotted in the decreasing order. A binomial distribution can be observed, where two groups, Group 1 and Group
3, are clearly differentiated by the levels of glycolytic activity (Group 1 with low and Group 3 with high levels of anaerobic glycolytic activity,
respectively). In between these two groups, few cells can be found. These cells are part of Group 2, which is an intermediate state between
Groups 1 and 3. (B) Based on these three groups, a decision tree can be constructed. Using a t-test statistical approach, key metabolites that are
statistically different can be retrieved. For example, for the first decision step – used to differentiate Group 1 from the rest – guanosine
triphosphate and phospho-gluconolactone can be used as part of the selection criteria (p-values are 7.83 � 10�8, 8.11 � 10�6 respectively). For
the second decision step, aspartate and phosphoenol pyruvate (p-values are 5.89 � 10�5 and 2.09 � 10�3, respectively) can be used.
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impact cellular metabolism.20-22 Here, we assume that the
external source of cell-to-cell heterogeneity, such as oxygen
availability, is not predominant since we cannot measure it
directly with our system.

For this purpose, we monitor metabolite signals (or metab-
olite signal ratios) that are used as biomarkers for identifying
the cell state. For example, a trivial source of cell-to-cell
heterogeneity is cell viability (i.e., cells are either alive or dead).23

Because the mass spectra signals for adenosine mono-
phosphate could not be identied, the ATP/ADP ratio was used
instead of the energy charge for monitoring the viability of the
cells.8 As it was expected, all single cells measured showed a
remarkably constant ATP/ADP ratio, which indicates that all of
them were equally viable at the moment of analysis (Fig. 3A).
This gives additional condence that our cell handling proto-
cols truly quenched the metabolism of the cells without intro-
ducing analytical artifacts.

Another source of cell-to-cell heterogeneity is the cell stage of
development. It has recently been demonstrated that the GTP/
GDP ratio in combination with cytosolic pH acts as a triggering
signal for yeast growth by activating the Ras/TOR signal
cascade.24 Since we did not attempt to synchronize our yeast
cultures prior to collecting the samples, it is not surprising to
see a greater amount of variability (biological noise) between
the individual cells (Fig. 3B), in particular when compared to
the previous parameter (cell viability).

Finally, another source of cell-to-cell heterogeneity is asso-
ciated with how cells process the available nutrients in the
This journal is © The Royal Society of Chemistry 2014
growth medium (i.e., glucose). Therefore, a ratio that could be
easily linked to the way fermentation is performed was plotted.
One of the metabolites that we chose for this ratio was F16BP,
whose levels in yeast cells have been correlated with carbon
uptake via the anaerobic glycolysis pathway.25,26 The other
metabolite was phosphenolpyruvate (PEP), which strongly
correlates with the pentose phosphate pathway activity.27

Interestingly, when comparing the ATP/ADP and the GTP/GDP
ratio data dispersion, which have a clear uni-modal distribu-
tion, the plot of the F16BP/PEP ratio (Fig. 3C) presents a
bimodal distribution. It is important to state that this bimodal
distribution is not associated with the previously observed
bimodal distribution observed for F16BP (this will be better
claried in the following paragraphs). It is also an interesting
observation that the overall dispersion (coefficient of variability,
CV) for this ratio is higher than the one observed for ATP/ADP
(Fig. 3A), while at the same time lower than the one observed for
the GTP/GDP (Fig. 3B). This is interesting because the naturally
occurring cell-to-cell heterogeneity reected by the F16BP/PEP
ratio uctuates between two conserve values, even when the
overall biological noise (reected by the GTP/GDP ratio) is much
higher. Since this nding shows that glycolysis has a role in the
cell-to-cell heterogeneity observed for this yeast strain, we will
attempt rst to classify the cells based only on their F16BP/PEP
cellular ratios. Once this classication has taken place, we will
compare our results with a non-supervised classication. Based
on our measurements, we tentatively assigned three different
phenotypes, labeled here as: (i) Group 1, (ii) Group 2, and (iii)
Analyst, 2014, 139, 5709–5717 | 5713

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c4an01119h


Fig. 5 Three (3) core groups (or phenotypes) could be identified over the previous ones shown in Fig. 2B, based on the mass spectrometry
signals of the central metabolism (as shown in Fig. 4). (A) The histogram of fructose-1,6-bisphosphate for all measured yeast samples (i.e., pooled
data – shown in Fig. 2B) is further de-convoluted using these three groups that are characterized by different levels of glycolytic activity. By de-
convoluting the co-existing populations, it is possible to avoid overlapping of three different phenotypes that present similar levels of F16BP, but
show different glycolysis activity (100% ¼ 75 cells, which is the total population of the measured yeast cells). (B) The co-existence of these three
groups in different ratios is also associated with the growth rates observed in liquid growth medium (100%¼ 32, 17, 13, and 13, for the 0.21, 0.18,
0.16, and 0.14 1/h – cell growth rate samples, respectively). (C) The Group 3 (i.e., the group characterized by a high glycolytic activity) can be
further subdivided in two sub-populations, one with high and another with low levels of fructose-1,6-bisphosphate (100% as in (B)). (B and C)
show that it is the relative abundance of these four subgroups in the overall population (and not only 2 based on a high and low F16BP
phenotypes) which can explain the growth rates observed for the CEN.PK.KOY.TM6*P populations.
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Group 3 (Fig. 4A). Due to the ability of mass spectrometry to
simultaneously monitor multiple metabolite signals from the
central metabolism, we can describe each group in terms of a
metabolic pattern (Fig. 4B).

We will now compare the above result with the one obtained
from a non-bias classication based on the whole metabolic
prole of the cells. For this purpose, 75 single-cell mass spectra
were analyzed using a non-supervise principal component
analysis (MatLab, MathWorks). To have condence that the
analysis represents biological information, we identied the
principal component that fullls the following conditions: (i) it
can explain most of the population variance; and (ii) its loading
values for the signals of F16BP and PEP will have opposite signs
(i.e., they will be anti-correlated as it is to be expected).27 In our
case, both conditions were fullled by the principal component
4. In ESI, Fig. 6,† we plot the principal components 1 vs. 4. Each
point corresponds to a single yeast cell, and is described by 332
relative ion intensity signals (normalized by a single correction
factor, as described in the ESI†). On the one hand, because
97.8% of all the loading values for the PC1 (33.6% of the sample
variance) were positive, we hypothesize that the PC1 represents
a trivial biological trait/feature (i.e., size) or an analytical
5714 | Analyst, 2014, 139, 5709–5717
artifact, e.g., laser uctuations that – although minimized by
our analytical protocol – cannot be completely removed from
the analysis. On the other hand, we hypothesize that the prin-
cipal component 4 (7.9% of the sample variance) is associated
with the naturally occurring cell-to-cell heterogeneity because (i)
the loadings associated with the principal component 4 show
different signs, in particular for metabolites from competing
metabolic pathways such as PEP and F16BP and (ii) known
metabolite MS signals (ESI, Table 2†) scored – either positive or
negative – high loading values. Interestingly, the level of non-
trivial (metabolite) cell-to-cell variability (i.e., the variance
contribution of PC4) found here is realistic and in agreement
withmodels of metabolic cell-to-cell heterogeneity that assumes
variations between 5 and 10% for glycolytic intermediates.19 The
groups obtained in the principal component analysis conrm to
some extent our previous classication based exclusively on the
F16BP/PEP signal ratio. Group 1 is clearly isolated from Group 2
and 3, due to its characteristic metabolic prole (as described in
Fig. 4B), while Group 2 and 3 share a more common metabolic
prole. Although, a supervised PCA approach, in which only the
mass spectrometry signals of selected metabolites are detected,
could have improved the clustering of the cells in Groups 2 & 3,
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 (A) Partial rank correlation for the whole population of measured cells based on the post-measurement pooling of the mass spectra from
Groups 1, 2, 3a & b characterized by low glycolytic, intermediate, and high glycolytic activity (with high and low levels of fructose-1,6-
bisphosphate), respectively. (B) Partial rank correlation for a small subset of metabolites using the data obtained exclusively fromGroup 1 (i.e. low
glycolytic activity yeast cells). (C) Partial rank correlation for a small subset of metabolites using the data obtained exclusively fromGroup 3b (high
glycolytic activity with low cellular levels of F16BP yeast cells). (D) Partial rank correlation for a small subset of metabolites using the data obtained
exclusively from Group 3a (high glycolytic activity with high cellular levels of F16BP yeast cells).
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it would not have yielded a signicant improvement over the
classication based on the F16BP/PEP signal ratio.

Following the tentative identication of the molecular
phenotypes, we plotted the distribution of these molecular
phenotypes in terms of their relative levels of F16BP – in an
analogous way to the one shown in Fig. 2 (Fig. 5A), considering
100% to be the “master” population (i.e., all measured cells).
Interestingly, by reducing the technical and analytical vari-
ability, we could de-convolute the overlapping populations with
low F16BP levels (based on the above introduced classication,
Fig. 4). Furthermore, we can clearly observe that only Group 3
(i.e., with high levels of glycolytic activity) presents the above
mentioned F16BP bi-stability – the presence of both high and
low level F16BP populations. In Fig. 5B and C, we demonstrate
that the different growth rates observed for this yeast strain can
now be clearly correlated with an increasing number of yeast
cells with high glycolytic activity, and in more detail with those
yeast cells that showed high levels of F16BP. This result – the
correlation between glycolysis and cell growth – is in accordance
with the Warburg effect, which states the increased utilization
of glucose via glycolysis as a cellular resource for fast cell
growth.26

Finally, in ESI, Fig. 7,† we can take advantage of the analyt-
ical power associated with the pooling of single-cell level
measurements and compare the mass spectra of one particular
cell vs. another cell (ESI, Fig. 7A†), or for example between the
pooled mass spectra of two different phenotypes (ESI, Fig. 7B†)
This journal is © The Royal Society of Chemistry 2014
and perform an in-depth statistical analysis to nd the key
differences between the two populations. For example, when
compared with our rst attempt to characterize the high and
low F16BP populations using our single-cell platform,8 the
possibility of accumulating larger numbers of single-cell data,
with a lower technical/analytical variability, allowed us to
perform a 2-sample t-test statistical study on both populations.
Furthermore before performing this comparison, we can
remove from the high and low F16BP populations (character-
ized by a high glycolysis activity) other cells that might present
similar levels of F16BP but present different levels of glycolytic
activity. Thus, in addition to the trivial difference in F16BP, the
high and low F16BP populations can be differentiated for
example in terms of adenosine triphosphate, uracil triphos-
phate, and 3-deoxy-D-arabino-heptulosonic-acid-7-phosphate
(p values equal 6 � 10�5, 2.69 � 10�3, and 1.89 � 10�3,
respectively).

Furthermore, we can now also observe that metabolite–
metabolite correlations present unique information about the
metabolic networks' underlying system architecture for each
phenotype. In Fig. 6A, the “average” partial rank correlation for
those metabolites that have been described in ESI, Table 2.†
While, Fig. 6B–D, the partial rank correlations for a selected
cluster of metabolites belonging to Group 1, Group 3b, and
Group 3a are shown. Interestingly, for cells associated with
Group 1 (low glycolytic activity) the partial correlation between
oxaloacetate and coenzyme A is quite strong. However, the
Analyst, 2014, 139, 5709–5717 | 5715
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correlation between these two metabolites becomes fainter for
the cells from Group 3 (high glycolytic activity). In addition,
cells from Group 3 show additional correlation between these
two metabolites and phosphogluconolactone. The latter corre-
lation even differs in the case if the cell levels F16BP are high or
low (Group 3a and b, respectively). It would be tempting at this
stage to provide a metabolic model that explains the differences
between the observed phenotypes (in particular for Group 1,
Group 3a and Group 3b). However, a more in-depth analysis is
required prior to developing such a biological model. Fortu-
nately, the MAMS substrates are compatible with uorescence
microscopy measurements, thus it would be possible to label
transcription factors and/or proteins with uorescent protein
tags to monitor the up- or down-regulation of a particular
metabolic pathway. For this reason, we believe that a MAMS-
based mass spectrometric analysis at the single-cell level is a
great rst step in trying to understand the causes for cell-to-cell
heterogeneity.

In summary, this new generation of microarrays for mass
spectrometry is able to show the non-genetic heterogeneity
present in a clonal population, and it might prove useful as a
rst line of study to better understand cell-to-cell heterogeneity.
The possibility of coupling these transparent substrates with a
uorescent read-out could be the next step to better identify the
biological processes that allow the formation of different non-
genetic phenotypes. This could be of great interest in a clinical
research application, where a clonal population of cells might
present non-genetic heterogeneity (e.g., cancer cells). A MAMS-
based approach could identify different phenotypes, and
possibly identify the effect of a drug on these populations in
such a way that aer measuring the cell population at different
time points we could identify the surviving phenotype. This
would then really lead to a “tailor-made” therapy for diseases,
such as cancer.

Conclusions

In this study we exploit a new microfabrication method (i.e.,
projection laser ablation) for the fabrication of microarrays for
mass spectrometry. By using this new generation of MAMS
substrates, we reduced the technical (or analytical) variability to
directly visualize four different co-existing phenotypes (charac-
terized by the cellular levels of glycolytic intermediates) in an
isogenic cell population of Saccharomyces cerevisiae strain,
CEN.PK.KOY.TM6*P. The existence of these subpopulations in
different ratios can be correlated with the different growth rates
observed in the liquid cultures of this particular yeast strain.

There is in theory no limitation to the number of single-cell
level measurements that can be performed and combined to
compare/characterize – with statistical signicance – individual
cells, a group of cells that are phenotypically similar, or the
whole cell population (the latter two by pooling selected or all
the individual results together, respectively). Because, we
exploit the inherent variability between individual cells (e.g. due
to the cell cycle, stochastic effects, cell age, cell size, etc.) as a
potent system perturbation, we could observe differences in the
metabolic networks' underlying system architecture. This
5716 | Analyst, 2014, 139, 5709–5717
information in combination with the ability of this platform to
calculate the biological variance, and the number of co-existing
phenotypes, can be later used for data driven modeling or for
designing more complex biological experiments to validate the
existence of the co-existing phenotypes.
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T. Schmid, S. Mädler, J. Puigmarti-Luis, N. Goedecke and
R. Zenobi, Lab Chip, 2010, 10(23), 3206–3209.

12 A. M. Schmidt, PhD thesis, ETH Zürich, 2013.
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24 R. Dechant, S. Saad, A. Ibáñez and M. Peter, Mol. Cell, 2014,
55, 1–13.

25 D. H. Huberts, B. Niebel and M. Heinemann, FEMS Yeast
Res., 2012, 12(2), 118–128.

26 H. Pelicano, D. S. Martin, R. H. Xu and P. Huang, Oncogene,
2006, 25, 4633–4646.
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