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The application of non-linear curve fitting routines
to the analysis of mid-infrared images obtained
from single polymeric microparticles†

Hakan Keles,a Andrew Naylor,b Francis Clegga and Chris Sammon*a

For the first time, we report a series of time resolved images of a single PLGA microparticle undergoing

hydrolysis at 70 �C that have been obtained using attenuated total reflectance-Fourier transform infrared

spectroscopic (ATR-FTIR) imaging. A novel partially supervised non-linear curve fitting (NLCF) tool was

developed to identify and fit peaks to the infrared spectrum obtained from each pixel within the 64 � 64

array. The output from the NLCF was evaluated by comparison with a traditional peak height (PH) data

analysis approach and multivariate curve resolution alternating least squares (MCR-ALS) analysis for the

same images, in order to understand the limitations and advantages of the NLCF methodology. The

NLCF method was shown to facilitate consistent spatial resolution enhancement as defined using

the step-edge approach on dry microparticle images when compared to images derived from both PH

measurements and MCR-ALS. The NLCF method was shown to improve both the S/N and sharpness of

images obtained during an evolving experiment, providing a better insight into the magnitude of

hydration layers and particle dimension changes during hydrolysis. The NLCF approach facilitated the

calculation of hydrolysis rate constants for both the glycolic (kG) and lactic (kL) acid segments of the

PLGA copolymer. This represents a real advantage over MCR-ALS which could not distinguish between

the two segments due to colinearity within the data. The NLCF approach made it possible to calculate

the hydrolysis rate constants from a single pixel, unlike the peak height data analysis approach which

suffered from poor S/N at each pixel. These findings show the potential value of applying NLCF to the

study of real-time chemical processes at the micron scale, assisting in the understanding of the

mechanisms of chemical processes that occur within microparticles and enhancing the value of

the mid-IR ATR analysis.
Introduction

Multivariate analysis of hyperspectral imaging data is a rapidly
developing research eld and has received considerable atten-
tion over the last decade.1 Hyperspectral images that provide
spatial and spectral information at the same time in an array of
pixels and an individual pixel, respectively, can be obtained by a
number of techniques including, X-ray tomography,2 X-ray
uorescence,3 Raman microscopy,4 and near infrared (NIR)
imaging.5

Over the last two decades Fourier transform infrared (FTIR)
spectroscopic imaging has become routine, facilitating chem-
ical characterization of multicomponent systems under both
Engineering Research Institute, Sheffield,
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static and kinetic conditions.6,7 Currently more than 80% of all
pharmaceutical formulations are delivered in a powder format8

and attenuated total reectance (ATR) mode has proved
advantageous, particularly for pharmaceutically relevant
systems, because the sample can be in any phase, form or shape
therefore no sample preparation is necessary.9 Micro-ATR-FTIR
imaging with a germanium objective provides a higher spatial
resolution compared to transmission and transection due to
the effective magnication imparted by the high refractive index
of the ATR crystal material. Conveniently, ATR-FTIR imaging in
macro mode, i.e. without the use of a microscope, provides a
temperature controlled environment for studying dynamic
systems with a larger eld of view.10 In the macro ATR mode,
kinetic processes can be probed with IR light such that each of
the 2D array of pixels of the focal plane array detector acts as an
individual detector, allowing the collection of thousands of IR
spectra simultaneously. Consequently, a stack of 2D images at a
range of IR wavelengths can be collected within a few minutes,
proving good temporal resolution for relatively slow processes.11

The use of ATR sampling in infrared spectroscopy is based
upon the fact that, although total internal reection occurs at
Analyst, 2014, 139, 2355–2369 | 2355
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the sample–crystal interface, radiation does in fact penetrate a
short distance into the sample, this is known as the evanescent
eld. The distance that the evanescent eld can travel within a
sample in direct contact with the ATR crystal is dened as the
depth of penetration (dp). Harrick and duPre12 dened dp as the
value at which the initial electric eld strength (Eo) decays to a
value of Eo exp

�1 and can be given as;

dp ¼ l

2pn1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

q� ðn1=n2Þ2
q (1)

where l is the wavelength of light, q is the angle of incidence, n1
and n2 are the refractive indices of the ATR crystal and the
sample in contact with it, respectively.13 For example, for the
conditions of the experimental setup and sample used in this
study; diamond crystal (n1 ¼ 2.42) in contact with PLGA (n2 ¼
�1.45), eqn (1) gives a calculated dp of �1 mm for l ¼ 5.7 mm
(1745 cm�1 where the PLGA carbonyl band shows high
absorption). In practice, the true depth of penetration is
�3 times more than the calculated dp value.13 Clearly, ATR
imaging only probes the near-surface of a sample but this
permits the study of samples in aqueous media (n2 ¼ �1.33)
which can be very challenging using traditional approaches
such as transmission. Eqn (1) also shows that a good optical
contact between the sample and ATR crystal is critical for
obtaining a uniform absorbance prole avoiding artefacts
within the eld of view. The Golden Gate™ Imaging Single
Reection Diamond ATR Accessory (Specac Ltd) has corrective
optics that adjust the plane of best focus to be situated on the
crystal surface thus minimising any anamorphism and an auto-
levelling sapphire anvil that ensures a uniform contact between
the crystal and sample.14

FTIR images, consisting of spectral and spatial information,
must be analysed in detail to convert the data into chemically
and physically signicant information.6 Several methods for
spectral and spatiotemporal data modelling can be used inde-
pendently or in combination, however, the choice of analysis
approach(es) for a series of hyperspectral image sets is deter-
mined by the nature and quality of the spectra and the infor-
mation that needs to be extracted.15

The main challenge in hyperspectral image analysis on time-
resolved multicomponent data sets is the extraction of the
important information from the large volume of data generated
including overlapping spectral features and noise. For time
resolved experiments that continue for longer than a few hours
unavoidable contributions from variations of atmospheric
water vapour during the experiment has a huge effect particu-
larly when the spectral region of interest is between 1500–1700
cm�1. This creates complications in the image analysis because
the true peak centre, required for peak height measurements,
may vary between pixels due to the superimposition of the
rotational ne structure of atmospheric water onto the sample
spectrum. Algorithms for subtracting atmospheric water vapour
superimposed on the sample spectrum using a known water
vapour spectrum can be employed for bulk ATR measurements
collected using a single pixel detector. However, this does not
always eliminate the problem in hyperspectral imaging,
2356 | Analyst, 2014, 139, 2355–2369
because of spectral variations between pixels emerging from the
inherent low signal to noise ratio (S/R) compared to single point
IR measurements. Applying a derivative is a common approach
which eliminates baseline effects in univariate analysis but the
water vapour bands are magnied by derivatives to such a
degree that spectral information from the sample may be
difficult to observe. Therefore spectra need to be deconvoluted
by using so or hard multivariate methods so that bands from
the sample can be elucidated from the interfering water vapour
signal. The most commonly applied multivariate tools to extract
information from hyperspectral images include principal
components analysis (PCA) and multivariate curve resolution
(MCR) and comparisons between their application have been
discussed elsewhere.1,16,17

The aim of this paper is to evaluate the advantages and
limitations of univariate, hard and somultivariate approaches
for the analysis of ATR-FTIR images, collected during a dynamic
process in real time. We also investigate the suitability of each
of these analysis approaches for extracting quantitative infor-
mation regarding the changes in the hydration and chemistry of
a single poly(lactic-co-glycolic) acid (PLGA) microparticle and
calculate the reaction rate during hydrolytic degradation.
Experimental
Materials

PLGA RG752H (75 : 25 lactide : glycolide, I.V. 0.16–0.24, Boh-
ringer-Ingleheim) pharmaceutical grade CO2 (BOC Special
Gasses) were used as received. Water used in the experiments
was puried with the ELGA Purelab option-R water distillation
apparatus (Up to 15 MU cm, Type II water) and degassed using a
Fisherbrand FB11004 ultrasonic bath at ambient temperature
and 100% ultrasound power for 15 minutes.
CriticalMix™ process

PLGA is a random copolymer of poly(glycolic acid) (PGA),
poly(lactic acid) (PLA), and is a U.S. Food and Drug Adminis-
tration (FDA) approved, biodegradable18,19 synthetic polyester
that is physically strong and highly processable.20 PLGA has
suitable properties for biomedical applications as a scaffold21

and sustained release systems22 and has been comprehensively
studied as carrier matrix for macromolecules such as proteins
and peptides which are considered promising for the treatment
of a range of conditions such as cancer, human growth de-
ciency, and multiple sclerosis.23 The manufacturing process
used to produce the microparticles used in this study was a
simple, one-step process which has been used recently to
encapsulate protein based drugs with 100% encapsulation
efficiency.22,24 When PLGA is exposed to scCO2 in a pressure
vessel, the polymer is liqueed. If the liquid is depressurised
through a nozzle, whereby the CO2 returns to a gaseous state,
the polymer solidies resulting in the production of micropar-
ticles. Careful control of the nozzle dimensions and depres-
surisation rate determines the particle size. Batches used in this
study were prepared by adding 2.1 g of pre-weighed polymer, to
the Particles from Gas Saturated Solutions (PGSS) apparatus.
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 (a) A microparticle on the Agar microtool straight needle T5340
to be placed on the ATR crystal. (b) A microparticle placed on the ATR
crystal before the anvil was brought into contact with it. (c) Schematic
of the experiment setup after the particle was placed, anvil was in
contact and water was added.
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The apparatus was sealed, pressurised with CO2 to 700 psi
(48 bar) and heated to 40 �C. Once at temperature, the pressure
was increased to 2030 psi (140 bar). The liqueed polymer was
then stirred at 150 rpm for 1 hour, aer which time stirring was
stopped and the mixture was depressurised through a nozzle
generating microparticles. These were collected in a cyclone
and recovered as a free owing white powder.

Real time ATR-FTIR imaging of reactions

Infrared images were collected using an Agilent 680-IR FT-IR
spectrometer coupled with a liquid nitrogen cooled mercury
cadmium telluride focal plane array detector MCT-FPA (64 � 64
pixels), capable of simultaneously collecting 4096 spectra from
an image area of 640 mm � 640 mm using the Golden Gate™
Imaging Single Reection ATR Accessory (Specac Ltd). This
accessory has a diamond internal reection element with
corrective optics that adjusts the plane of best focus to sit on the
crystal surface, eliminating any distortion, so that a symmet-
rical point spread function can be assumed. The angle of inci-
dence of the infrared beam was 45� and the numerical aperture
(NA) of the system was 0.32. Images were recorded in rapid scan
mode and typical collection times were �5 minutes. The
detector was mounted on a Large Sample (LS) external sample
compartment and the infrared beam from the spectrometer was
projected directly on to the FPA aer passing through the ATR
sampling accessory. The physical size of each FPA pixel is 40 mm
� 40 mm and with 4� magnication, each pixel represents a
10 mm � 10 mm square in the image.

To set up the hydrolysis experiment, a single PLGA micro-
particle was placed in direct contact with the ATR crystal using a
40� microscope standing on top of the ATR accessory and
sufficient pressure was applied using the sapphire anvil to
ensure good contact between the particle and the crystal
resulting in some deformation of the spherical particle. The
images collected were not circular, most likely showing some
evidence of anamorphism despite the use of corrective optics
and this issue when using such collection optics has been
observed previously by Everall et al.25 and Chan et al.26 Once a
satisfactory ‘dry’ image was collected water was introduced into
the chamber in such a way that access to the particle was limited
to the sides only as depicted in Fig. 1. Images were collected
using the Agilent Technologies' ResolutionsPro FTIR Spectros-
copy soware version 5.2.0(CD846) at pre-determined time
intervals and the collection parameters used were 128 co-added
scans at a 4 cm�1 spectral resolution, in the mid-infrared (MIR)
range (3800 to 950 cm�1). The raw processed images were
obtained by ratioing against a background of the blank ATR
crystal comprising of 256 co-added scans.

Data pre-processing

Raw processed image les were cropped between 1820 and
1000 cm�1 which provided a number of characteristic bands
associated with PLGA and also included the water d(OH) peak
�1635 cm�1. In order to remove systematic discrepancies such
as variations in detector sensitivity or sample thickness, raw
images were vector normalised to minimise absorbance
This journal is © The Royal Society of Chemistry 2014
variance. Vector normalisation works such that each spectrum
is divided to the vector length which is square root of the sum of
all absorbance values squared. Instrumental factors such as
uctuations caused by the changes in the IR source intensity or
temperature or detector sensitivity and optical artefacts caused
by mismatch of the refractive index of species being imaged are
known to cause a slope in the baseline in FTIR spectroscopy. In
order to eliminate this slope, a second derivative can be applied,
however caution is advised if there are very weak infrared bands
of interest as a second derivative will magnify the noise and
some low intensity peaks may be lost in the noise. However a
rst order baseline correction between the two end points of the
previously cropped spectral range was found useful for elimi-
nation of the baseline dri when collecting an image. The full
data pre-processing procedure is described in the ESI section
including Fig. S1.†

Univariate analysis. Univariate analysis, or functional group
imaging, only considers the peak height of, or the integrated
absorbance under, a peak of interest, therefore chemical
information can be obtained based on the association of the
peak position with certain functional groups. Although it is
useful in providing a quick overview of the species in the raw
image data, a peak height image usually convolutes the
underlying chemical information from the overlapping peaks in
Analyst, 2014, 139, 2355–2369 | 2357
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the intensity map. Integrating the absorbance for a particular
peak over a spectral region of interest may provide a better
distribution map by increasing the S/N. However, as in most
cases, a complex heterogeneous mixture will not include an
isolated band of interest therefore the integrated values will not
represent the amounts present at different locations in the
image with the required certainty. Another draw-back of func-
tional group imaging is that a homogeneous object may be
shown to be in a different location in the image when univariate
images are created based on the integration of infrared bands
observed in different parts of the spectrum. This occurs because
the diffraction limited spatial resolution of the generated
images strongly depend on the chosen part of the MIR spectral
region.27 These disadvantages can be overcome by using
multivariate approaches, which allow all of the species to be
searched in the same spectral range thus allowing a contribu-
tion from all the peaks of the same species (or factor). Another
advantage of multivariate approaches is that the interferences
such as water vapour can be detected as a factor, and may
therefore be eliminated.

Multivariate curve resolution-alternating least squares.
Multivariate curve resolution-alternating least squares (MCR-
ALS) is a tool that facilitates the extraction of information from
various spectroscopic and imaging techniques and is widely
used in physical and biological sciences.28MCRmethods are so
modelling tools that require no prior knowledge of the nature of
the components in the mixtures to be deconvoluted29 and can be
grouped into, non-iterative and iterative approaches. Non-itera-
tive MCR algorithms are unconstrained therefore may nd
unique proles within the mixture being studied. However
although these mathematically obtained unique proles may be
close to real chemical proles that are to be resolved from the
mixture data set, non-iterative methods oen suffer from
ambiguities that arise due to strong overlap between compo-
nents of the species or low S/N of the data. On the other hand,
with iterative MCR algorithms, so concentration constraints
such as non-negativity and unimodality or hard constraints such
as the use of pure component proles, which are compared with
extracted proles andmodied accordingly, are implemented to
minimise ambiguities.30 By denition, MCR-ALS is a so-
modelling method that can extract component information
from the raw measurement data alone, as long as this data
contains some variance; spatially as one might anticipate in an
image or as a function of time when monitoring a reaction.
Detailed information about curve resolution techniques can be
found elsewhere31 however we would like to provide the neces-
sary theory on the MCR-ALS soware employed here (MCRv1.6)
developed by Andrew and Hancewicz.32

The MCR-ALS algorithm used in this paper32 has been
developed for two-way data, therefore to use this approach,
the 3D hyperspectral data cube must be unfolded into a two-
dimensional matrix and refolded aer analysis as shown in
Fig. 2.

FTIR images have a bilinear structure and it is assumed that
some form of a Beer–Lambert relationship exists between
spectral intensity and concentration.33 Therefore a bilinear
model representing a spectroscopic image can be given as,
2358 | Analyst, 2014, 139, 2355–2369
Duxv ¼ AuxzBzxv (2)

where D is the measured data matrix, A is the matrix of nor-
malised spectra of pure chemical components and B is the
related intensity matrix for each component.34 The matrix size
indices, u, v and z represent the number of spectroscopic
resolution elements (wavenumbers), total number of spectra
and number of resolvable components, respectively. Rearrang-
ing eqn (2) for the least squares estimation of A and B yields:
A ¼ (XBT)(BBT)�1 (3)

B ¼ (ATA)�1(ATD) (4)

To generate optimal matrices of A and B, one rst needs to
estimate their initial values. In this paper, a non-linear iterative
partial least squares (NIPALS) decomposition method has been
applied, the merits of which when compared to using random
numbers, eigenvalue decomposition, or dissimilarity criterion
is discussed in detail elsewhere.33 This is followed by the
selection of the optimal number of factors to calculate and is
achieved by considering the appropriateness of the initial esti-
mate of the number of components. The nal step, factor
rotation, is a rening process where alternating least squares
(ALS) is used to determine the optimal loadings and abstract
factors matrices such that once recombined they most closely
resemble the hyperspectral data matrix.

Although ALS is the most common method to decompose
eqn (2) iteratively, a modied alternating least squares method
(MALS) proposed by Wang et al.,34 which has been shown to
overcome unstable convergence properties giving a non-
optimum least squares solution, has been used for decompo-
sition for all the MCR images generated here. The MCR-ALSv1.6
soware was run from its graphical user interface (GUI) that
allowed the user to input the number of factors (or components)
to be estimated, number of iterations (used 500), and an ALS
non negativity constraint (in this instance we used MALS-2D).
The rationale for the use of 2 factors is justied based on the
fact that the image quality (S/N, resolution) is better when using
2 factors than when using 3 or 4 factors and the same as using 5
factors, see ESI, Fig. S2.† And it is important to note that MCR
results might be improved by using different strategies that
were not covered in this paper and/or more so constraints or
hard constraints.35,36 For example, when the data were cropped
down to the 1820–1500 cm�1 region which includes the PLGA
carbonyl (�1745 cm�1) and water dOH (�1635 cm�1) MCR
results were improved and although LA and GA peaks were not
deconvoluted usingMCR even when used cropped data between
1500 and 1300 cm�1, they were deconvoluted when 2 other
PLGA compositions (PLGA100/0 and PLGA50/50) were included
in the data set.

Another interesting, but rather lengthy, strategy that could
have been considered was removing the solvent IR background
contributions as developed and demonstrated by Kuligowski
et al.37 in liquid chromatography infrared detection. They have
estimated the solvent background successfully and by two
different methods; principal component analysis and simple-to-
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Unfolding and re-folding spectroscopic imaging data to generate factor distribution images using MCR-ALS.
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use interactive self-modeling analysis (SIMPLISMA) and aer
subtracting the estimated background contributions from their
data sets, MCR-ALS provided improved S/N ratios and resolved
overlapping chromatographic peaks. As the shape of the d(OH)
band has been shown to change from pixel to pixel in FTIR
imaging data, we considered that using the simple subtraction
of a pure water spectrum at each pixel would introduce spurious
peaks due to imperfect subtraction and hinder the MCR anal-
ysis. Therefore, for the purposes of this study and to keep the
MCR analysis as a so modelling approach, we decided to use
no prior information of the pure components and utilise the
whole ngerprint region of the IR spectra (1820–1000 cm�1) for
the MCR analysis. We have not applied hard constraints such as
pure spectra and/or different compositions of pure PLGA
spectra as initial estimates of the MCR factors in the image set.
Each of these would have been valid approaches but were
beyond the scope of this work.

Nonlinear curve-tting. The strategy behind curve tting or
hardmodelling is to generate amodel spectrumbased on the sum
of the component peaks that it contains. If the components within
a spectrum and by extension an image are known, then an esti-
mate of the relative amount of each component can be used as a
starting point in the application of hard modelling. Here we have
developed an efficient curve-tting algorithm to optimise the
parameters (lineshape, peak height, peak width) for infrared
absorption bands and the percentage contribution of each tted
curve to the overall spectrumwas used as the initial loading value.

In order to use curve-tting procedures, analytical functions
must be used which describe the lineshapes of the peaks.
Typical lineshapes encountered in spectroscopic studies are the
Gaussian

I(k) ¼ I(k0)exp[�2.773(k � k0)/D
2] (5)

and the Lorentzian

I(k) ¼ I(k0)/[1 + (2(k � k0)/D)
2] (6)

where I(k) is the intensity at wavenumber k, k0 is the wave-
number at the peak centre and D is the full width at half
maximum (FWHM).38 The Lorentzian peak shape is oen used
to t infrared absorption bands.39 However in real infrared
spectra, effects including hydrogen bonding, rotational ne
This journal is © The Royal Society of Chemistry 2014
structure and, in FTIR-ATR, anomalous dispersion effects might
affect the shape of the infrared band thus a true Lorentzian
shape does not always occur. Due to the asymmetry and
complexity of the bands within infrared spectra, these standard
lineshapes should only be used with caution. In such situations
a third lineshape function, the Voigt prole representing the
convolution of a Gaussian and a Lorentzian, is oen used.39

However in practice, the use of the exact Voigt prole in curve
tting can be time consuming because it involves repeated
convolutions. Each of the mentioned lineshapes are symmetric
functions, but it is very important to note that unlike traditional
IR spectra, IR imaging spectra are more susceptible to asym-
metry even in transmission mode. It has oen been assumed
that recorded infrared imaging data are exactly like their
traditional single point counterparts of bulk materials, and the
spatial geometry of the sample was not thought to be an
important factor in the processed IR image.6 In transmission
and reection absorption measurements, it is recognized that
there are differences in the data recorded from a bulk
measurement and a microscopic measurement, caused by light
focusing at the point of interaction with the sample when the
microstructure of the sample is of the same length-scale as the
wavelength of the interrogating radiation40 and differences in
the refractive indices of the rarer media at air/sample interface
can result in artefacts in mid-IR images. In ATR-FTIR dispersion
effects can lead to asymmetry in observed infrared bands,
therefore in this paper we have considered the use of a family of
peak curves called the Pearson proles, specically the Pearson
IV prole which is asymmetric and is related to the Pearson VII,

I(k) ¼ I(k0)[1 + P2]�M (7)

where P ¼ ½2ðk � k0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=M � 1

p
�=D and M is known as the

Pearson parameter. Eqn (7) reduces to the Lorentzian function
when M ¼ 1, approaches the Gaussian function when M
becomes large and can approximate to the Voigt function for
intermediate M.38 Modifying eqn (7) with an exponential term
provides the required asymmetry and for M < 1 the distribution
has very broad wings. The Pearson IV function is given in terms
of this by

I(k) ¼ I(k0)[1 + P2]�M exp[�n tan�1 P] (8)
Analyst, 2014, 139, 2355–2369 | 2359
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The exponential term has been shown to affect peak shapes
whenM is close to 1 (i.e. Lorentzian) more than it does for those
where M is close to 10 (i.e. Gaussian).38

A routine in MATLAB Version 7.10 (R2010a), was developed
to create ts for the each pixel within an IR imaging data set
consisting of 4096 spectra individually. Peaks were detected
using the algorithm described elsewhere41 and height and width
of the peaks in the raw spectra at detected positions were used
as initial guesses for the iterative loop. Application of non-linear
curve-tting to large two-dimensional experimental infrared
spectroscopic arrays39 and a combination of non-linear curve-
tting and self-modelling curve resolution (SMCR)42 have been
demonstrated. Soware packages such as PyMCA, which is a
non-linear least-squares tting application have previously been
developed for X-ray imaging data.43 However to the best of our
knowledge, we are demonstrating a peak detecting non-linear
optimisation algorithm applied to temporal ATR-FTIR imaging
data for the rst time.

The method by which we have approached this tting
procedure is described in detail in the ESI† and examples of the
output from of the peak detection algorithm are given in
Fig. S3.† To summarise our approach:

1. We select 18 spectra from the image based on their posi-
tion; 6 from the water rich regions, 6 from the PLGA rich regions
and 6 from the interface.

2. We iteratively and in a user supervised manner, adjust a
peak detection threshold, such that all peaks in all 18 spectra
are automatically detected by the peak detection algorithm. We
x the peak detection sensitivity parameter ‘Delta’.

3. Using the xed peak detection parameter we apply the
peak detection algorithm to all 4096 spectra in an unsupervised
manner.

4. We then t peaks of all 4096 spectra based on the number
of detected peaks and their positions using a gradient search
algorithm which nds the best t for the measured data opti-
mising the variables; peak height, peak width, peak centre,
Pearson parameter and asymmetry parameter for each peak.

5. We then use the intensity of the peak �1635 cm�1

(selected in a supervised manner) to determine the distribution
of water in the system and the sum of the intensity of all the
peaks except the peak �1635 cm�1 to determine the distribu-
tion of PLGA.

6. The intensity of the peaks �1456 and �1424 cm�1, were
used to calculate k values for lactic acid and glycolic acid units
respectively.

Results and discussion

Fig. 3 shows the result of processing the same infrared image of
a single PLGA microparticle in four different ways; using the
peak height of a single peak in this case the ester carbonyl at
�1745 cm�1 (Fig. 3(a)), plotting the distribution of a factor
identied as deriving from PLGA in MCR-ALS (Fig. 3(b)), by
plotting the sum of 10 peaks tted between 1800 and 1000 cm�1

which does not include the peak �1635 cm�1 assigned to the
water bendingmode resulting from a NLCF procedure (Fig. 3(c))
and by plotting the sum of 10 peaks tted between 1800 and
2360 | Analyst, 2014, 139, 2355–2369
1000 cm�1 which does not include the peak �1635 cm�1

resulting from a peak tting procedure using solely Gaussian
lineshapes procedure (Fig. 3(d)). Images were generated from
measurements conducted on an as received PLGAmicroparticle
and on the same PLGA microparticle, immediately aer water
had been brought into contact with it.
Spatial resolution comparison

The spatial resolution of a microscope is theoretically deter-
mined by the diffraction of radiation i.e. the Rayleigh criterion,
which is dened in eqn (9) as

r ¼ 0:61
l

NA
(9)

where l is the wavelength and NA is the numerical aperture.
This implies that two objects are totally resolved if they are
separated by 2r.44 Under these conditions, 2r is the denition of
spatial resolution. However in an infrared imaging system, FPA
detector pixels are not points and have a nite size that is
greater than the wavelength of the IR light, therefore this rela-
tion is never observed. Furthermore, in the ATR experiment, the
penetration depth (eqn (1)) can degrade the lateral resolution.
Therefore for FPA imaging systems it has been shown to be
more appropriate to determine the spatial resolution based on
real measurements.25,26,45 The practical method we have used is
the ‘step-edge’ method25 which is based on the observation of a
step change increase when the intensity of a selected wave-
length is plotted along a chosen line parallel to one of the axes
in the 2D image. This step shape represents the Line Spread
Function (LSF) (Fig. 3). The derivative of the LSF with respect to
its variable (which is position or pixel number) is described as
the Point Spread Function (PSF). The PSF is the response of the
system to a point source and is generally considered to be an
Airy function. The FWHM of the PSF gives the spatial resolution
of the imaging system. Therefore, the FWHM of a Gaussian that
is tted to the PSF has been dened as the spatial resolution in
this paper as described by Offroy et al.44

A study on the effect of sample geometry on spatial resolu-
tion of the same ATR-FTIR imaging system used in this study
has been conducted by Everall et al.25 for convex solid objects.
They determined that this imaging system with a calculated NA
of �2 was underestimating the size of 20–140 mm objects and
approximating solid spheres, of varying dimensions, to be the
same size (�30 to 35 mm). The authors postulated that this was
due to the shallow evanescent wave penetration (eqn (1)) and
blurring caused by the nite spatial resolution. Our experiment
however is different when compared to such a case, as the
sample is a rather so solid which, with a gentle anvil pressure,
provides a at central area that is quite large (�100 mm) and the
convex shape only occurs at the edges. As the main purpose of
this paper is not to estimate the real size of the microparticle,
but to compare the output of univariate, hard and so multi-
variate tools, we are more interested in seeing how the different
data analysis approaches impact upon measured spatial reso-
lution and the sharpness of the interfaces. The measured
spatial resolution for each of the data analysis methods is
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Data used to measure spatial resolution using the “step-edge”method for the dry PLGA particle (1st column of images and labelled ‘DRY’)
and the same PLGA microparticle immediately after surrounding it with water as shown in Fig. 1 (2nd column of images and labelled ‘WET’) for
images processed using peak height (a) PH, (b) MCR-ALS, (c) NLCF and (d) Gaussian. The raw data along the grey arrow in each image is shown in
Fig. S3.†
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summarised in Table 1 and the spectra along the grey arrow on
all spectra are shown in Fig. S4.†

Table 1 shows that the NLCF approach improves the
measured spatial resolution of a mid-IR image when there is a
large discrepancy between the refractive index in adjoining
pixels, i.e. an air/polymer interface. Lasch and Naumann have
shown the application of Fourier self-deconvolution to IR
microspectroscopy images has led to an improvement in the
spatial resolution by improving the spectral resolution at each
pixel.45 The NLCF approach we have used here, is also acting in
Table 1 Summary of spatial resolution calculated using different
image analysis approaches of the mid-IR image of a single PLGA
microparticle under dry and wet conditions. All values are given in mm

Method Peak height MCR-ALS NLCF
Gaussian peak
tting

Dry 70.2 � 15.8 60.6 � 0.4 42.7 � 1.5 55.8 � 4.1
In water 52.4 � 4.7 48.8 � 4.1 48.6 � 4 49.2 � 4.9

This journal is © The Royal Society of Chemistry 2014
a spectral resolution enhancement manner and the ability,
when used in a supervised manner, to discriminate between
species in adjoining pixels more readily than the peak height,
MCR-ALS and Gaussian peak tting approaches that limits the
blurring effects at interfaces.

The comparison between the images generated using NLCF
and the images generated using traditional Gaussian tting is
an interesting one. The results are showing that NLCF facili-
tated an improvement in spatial resolution compared to a
Gaussian t. This is likely to be mainly due to the optimisation
algorithm (trust region) falling into local minima as a result of a
lack of change between consecutive iterations due to the limited
number of parameters in the Gaussian tting protocol not
allowing an improvement in t, due to variations in the
symmetry of bands between pixels. In order to make the algo-
rithm robust for not only this but different data sets and as we
know that IR bands are asymmetric, we chose to use the Pearson
IV function despite the delay in computation time. The merits
of using this function compared to Gaussian and or Lorentzian
functions is also discussed in the text and in ref. 38 and 39.
Analyst, 2014, 139, 2355–2369 | 2361
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When the refractive index change at an interface is small,
such as when a PLGA microparticle is surrounded by water, the
blurring of the interface is reduced and the spatial resolution
determined by this step-edge approach is comparable between
the each of the analysis approaches. It should be noted that for
a sharp interface, such as the USAF (1951 1X 38257) target
sample described in ref. 44, we have calculated the spatial
resolution of the system to be �18 mm using the step edge
method.
Image comparison

As indicated previously FTIR imaging is a powerful tool that
facilitates the collection of spatially resolved chemically relevant
data from samples in real time. By conducting such measure-
ments in situ, we can minimise the perturbations to the system
and follow chemical changes from the same region of the same
sample. One of the challenges presented is the efficient analysis
of the huge data matrices that are generated during such
experiments (4096 spectra at each time point). To explore the
relative merits of a number of different analysis approaches
(univariate peak height image plotting, so and hard multi-
variate modelling), we have taken single PLGA75/25
Fig. 4 ATR-FTIR spectrum of a pixel on the left hand side chosen from t
surrounding the PLGA particle with water and a set of false colour images
bottom for (a) peak height (PH), (b) MCR-ALS and (c) NLCF methods res

2362 | Analyst, 2014, 139, 2355–2369
microparticle and followed its interaction with water as a
function of time at 70 �C. The experiment is setup in such a way
that the interaction between the particle and water will only
occur at the interfaces that we are monitoring.

Fig. 4(a) shows ve false colour images obtained using the
univariate peak height method and a spectrum taken from close
to the ‘dry’ polymer/hydrated polymer interface in the t ¼
0 image. From this spectrum we are able to see both of the
bands used to determine the polymer distribution (the ester
carbonyl at �1745 cm�1) and the water distribution (the OH
bending mode �1635 cm�1). The two images at the extreme le
show the distribution of polymer (top) and water (bottom),
within the ATR eld of view, immediately aer the experiment
was started. Even at this short time (data collection was
�5 minutes) there is evidence of an interface layer of hydrated
PLGA around the particle, with an apparent concentration
gradient from the particle centre outwards towards the aqueous
media. As the contact time with water increases, a number of
phenomena occur. Firstly the microparticle (dened by the red
zone) initially appears to increase in size (2 h), which is indic-
ative of swelling and the hydrated PLGA layer (yellow) becomes
thicker. Images collected at times exceeding 2 hours show the
particle decreasing in size and the boundaries of the particle
he core of the particle from the first image collected immediately after
representing temporal distribution of PLGA on the top and water at the
pectively.

This journal is © The Royal Society of Chemistry 2014
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becoming less well dened. The complementary images per-
taining to water concentration show an inverse relationship, as
one would expect in a binary system. The changes to the
interface layer as a function of time will be discussed later. It is
clear however, that the overlap between the bands used to
determine the distribution of the two components in this
systemmust inuence the sharpness of this image and increase
the magnitude of the measured interface.

Fig. 4(b) shows the equivalent false colour infrared images
for the same data described in Fig. 4(a), this time, obtained
using a MCR-ALS approach and 2 factors. The spectral features
shown to the le hand side of this gure are the ‘pure compo-
nent spectra’ for PLGA and water generated using this so
modelling method and are oen referred to as factors. This data
is in general agreement with the ndings from the peak height
measurement approach shown in Fig. 4(a). Closer inspection
indicates that the interfaces in this set of images are blurred as
were those observed in the univariate data set (Fig. 4(a)) and less
sharp than those obtained using the hard modelling approach
(Fig. 4(c)). But this data set does exhibit improved S/N compared
to the univariate data (Fig. 4(a)). The blurring of the interfaces is
the result of the ‘pure component spectrum’ representing PLGA
still displaying a feature at �1635 cm�1 associated with water
and due to the fact that the MCR factor for PLGA has xed peak
centres and band widths meaning they approximate rather than
exactly replicate the spectrum at each pixel. The improvement
in the S/N is the result of the elimination of water vapour in the
pure spectral factors combined with the fact that the signal
comes from many more spectral data points compared to the
peak height data.

Fig. 4(c) shows 5 false colour images equivalent to those
described in Fig. 4(a) and (b). However, this time they were
obtained using the nonlinear curve-tting approach and are the
result of the summation of the peaks, generated during the
tting process, that have been assigned to PLGA (upper row)
and water (lower row). The data to the le of these images shows
the 11 component peaks used to t the spectrum, from the
same pixel used to obtain the peak height and MCR-ALS data
within the PLGA/water interface. The dotted line denotes the
synthetic spectrum generated from the combination of the
tted peaks, which matches the real spectrum at that pixel.
The upper set of images shows the distribution of PLGA deter-
mined using all of the tted peaks except the peak with a
maximum at 1635 cm�1 which is used to obtain the distribution
of the water within the ATR eld of view. These images are, in
general, in agreement with the data shown in Fig. 4(a) in that
they indicate the formation of a hydrated region around a dry
PLGA particle that increases in thickness over the rst 2 hours
and that this occurs concurrently with particle swelling. Closer
inspection and comparison with the data in Fig. 4(b) indicates
that the interfaces and boundaries in this set of images are
much sharper and the data exhibits less noise, i.e. there is less
variation in colour intensity between equivalent pixels. This
(apparent) improvement in resolution and S/N in each image is
achieved by the elimination of contributions from overlapping
features at each pixel such as other chemical species, instru-
ment noise and atmospheric water vapour. Another
This journal is © The Royal Society of Chemistry 2014
contributing factor to the broadening of the interfaces in the
MCR-ALS images when compared with those generated using
NLCF, is the fact that the NLCF peak centres are optimised for
each peak within each pixel, whereas the MCR-ALS images used
a xed factor, with xed peak centres and band widths. It is
likely that during ALS optimisation, then a linear combination
of the water and PLGA factors may give a better mathematical t
in some of the interface pixels resulting in a less well dened
image, whereas the NLCF approach is better able to discrimi-
nate between water and PLGA. This does come at a considerable
time and convenience penalty. The images shown in Fig. 4(a)
can be obtained in seconds, whilst the data shown in Fig. 4(c)
takes approximately 5 hours to generate using a PC with an
Intel® Core™ i7-2620M CPU @ 2.7 GHz and 8 GB of RAM. In
many applications this approach may not be feasible due to a
number of considerations such as time, CPU availability and,
more importantly, spectral data which is too challenging to t
due to a lack of knowledge of the species within that system
Fortunately, the authors have amassed an understanding of the
components within this system, i.e. water and PLGA thus
generating condence in the peak assignments. The MCR-ALS
approach facilitates the collection of false colour images in a
few minutes and thus offers an attractive/acceptable compro-
mise between the slow but accurate hard modelling method-
ology and the rapid univariate approaches.
Interface analysis

The generation of false colour images, from the mid-infrared
imaging dataset highlighted here, facilitates the rapid assimi-
lation of trends in physical processes such as particle swelling,
particle shrinkage, hydration layer formation etc. but cannot
readily be used to obtain quantitative information about such
processes. This can be problematic when a particle is not
uniform in shape and oen the dimensions are estimated by
assuming a particular geometry (circle, square etc.) that may not
be appropriate. To compare the quality of the output generated
using the NLCF approach with standard image generation
strategies (peak heights and MCR-ALS) we have compared the
ndings along the centre line across the particle as a function of
time. To facilitate comparison between the data analysis types
we have dened two parameters; the full width at half
maximum height of the normalised particle prole (A) and the
dimensions of the right hand side interface (B). Their derivation
is shown in the ESI, Fig. S5.†

Fig. 5(a) and (b) show quantitative data extracted from across
the centre line of the generated images shown in Fig. 4(a).
Fig. 5(a) shows the evolution of the intensity of the water peak at
each pixel across the image as a function of time and Fig. 5(b)
shows the associated normalised plot of the full width at half
height of the parameter ‘A’ for the images generated using peak
heights.

From Fig. 5(a) it is possible to observe that the overall water
concentration across the particle increases as a function of time
as one might reasonably expect; rising from an intensity �15%
of its maximum value at the local minimum at t ¼ 0 h to a value
of �75% of its maximum value at the local minimum at t ¼ 9 h.
Analyst, 2014, 139, 2355–2369 | 2363
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Fig. 5 (a) The normalised change in the intensity of the water peak at each pixel across the image as a function of time, (b) the normalised plot of
intensity of the polymer particle, (c) the evolution of parameter ‘A’ as a function of time and (d) the evolution of the parameter ‘B’ as a function of
time for the peak height derived images.
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The prole at t ¼ 0, which is �5 minutes aer the particle has
been subjected to water, indicates that the initial ingress of
water into the particle is rapid, most likely due to the porous
nature of the scCO2 processed starting material. The shape of
the prole initially appears to be fairly uniform and becomes
less so as time progresses which may reect the irregular shape
of the particles. It is likely that initial compression onto the ATR
crystal may make the analysed surface uniform (the ATR
experiment collects data from the rst 2–10 mm in direct contact
with the crystal) but as the particle hydrates, swells and
hydrolyses, the signal obtained via the ATR crystal will depend
on the volume of the particle directly above the evanescent eld
and how it swells and or moves, potentially resulting in a loss of
uniformity.

Fig. 5(b) shows the complementary data to that in Fig. 5(a)
relating to the intensity of the polymer particle extracted from
across the centre line of the peak height generated images. As
the particle swells, the concentration of polymer measured
within any given pixel will decrease and the concentration of
water within that same pixel will increase. Therefore the
intensity of the polymer peak (which should be the inverse of
the water peak in this binary system) would provide an indica-
tion of the degree of swelling in the z-direction. Instead, we are
using the change in width of the normalised intensity of the
peak height of polymer peak, as a function of time, to provide an
indication of the degree of swelling in the y-direction. We have
chosen to normalise this data as it facilitates the observation of
the change in full width at half height maximum (FWHHM)
better than the equivalent data with the non-normalised y
2364 | Analyst, 2014, 139, 2355–2369
values, which decrease over time. For the peak height derived
images we clearly see the width of this peak increasing as a
function of time and this is plotted in Fig. 5(c).

When water is introduced into our system, there exist
domains where we only measure water, others where polymer is
the dominant signal and others where we observe a clear
mixture of water and polymer; a hydrated zone. Determining
the exact point where each domain ends and another domain
begins is somewhat arbitrary, but some form of denition is
necessary if we are to quantitatively compare data extracted
from images generated using different approaches. As
described above we have dened a hydrated zone ‘B’ where both
the water intensity and the polymer band intensity are below a
certain threshold (10% of the maximum value). Fig. 5(d) shows
the plot of the B zone for the peak height derived images as a
function of time. The size of this zone increases quite dramat-
ically over the course of this experiment, with dimensions
around 70 mm at t ¼ 0 and expanding to 140 mm at t ¼ 9 h. This
increase in thickness of the outer hydration layer is an inter-
esting nding and in broad agreement with confocal uores-
cence images generated by Bajwa et al.46 of hydrating HPMC
tablets. In the HPMC system an outer hydration layer of
�100 mm increasing to 200 mmwas measured over the course of
a ‘wetting’ experiment. Clearly the timescales are different
between the two systems due to the inherently different
hydrophilicities, but nonetheless this adds credence to the
nature of our measurements and our denition of B.

Fig. 6(a)–(d) show data comparable to that presented in
Fig. 5, this time derived from the MCR-ALS generated images
This journal is © The Royal Society of Chemistry 2014
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Fig. 6 (a) The normalised intensity of the water peak at each pixel across the image as a function of time, (b) the normalised plot of intensity of
the polymer particle, (c) the evolution of parameter ‘A’ as a function of time and (d) the evolution of the parameter ‘B’ as a function of time for the
MCR-ALS derived images.
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shown in Fig. 4(b). Fig. 6(a) and (b) show the evolution of the
water intensity and the normalised plot of the polymer factor
intensity respectively. The shape and the intensities of the
proles in these gures are similar to those derived from the
peak height measurements, but there was less noise in the MCR
derived data (most evident in Fig. 6(a)), particularly at longer
time points, where the band intensities of the polymer peaks are
quite low. This improvement of S/N occurs because the peak
height data is derived from a single point and theMCR-ALS data
is derived from a large number of data points. There is perhaps
some evidence of the polymer band intensity prole being less
sharp at longer time points and at its maximum, which could be
related to the contribution of water within the extracted pure
factor associated with the polymer (MCR factor 2; Fig. 4(b)) and
will also be a function of the xed lineshape of factor with its
associated peak maxima and minima which will not be able to
exactly match the spectrum at each pixel.

Both the B values (Fig. 6(c)) and the full width at half
maximum height values (Fig. 6(d)) as a function of time are very
similar to those shown in Fig. 5(c) and (d). This indicates that
there is perhaps no signicant improvement in the quality of
output obtained for this system when performing an MCR-ALS
analysis on the data when compared to the more rapid peak
height approach. Of course the MCR-ALS method can be used
without any prior knowledge of the system; therefore there is no
need to identify a peak specic to each component within it,
which could be advantageous in some instances.

Fig. 7(a)–(d) show data comparable to that shown in Fig. 5
and 6, this time derived from the NLCF generated images
(Fig. 4(c)). Fig. 7(a) shows the intensity of the curve tted water
band as a function of time. Both the intensities and width of
This journal is © The Royal Society of Chemistry 2014
these proles are somewhat different to those observed in those
derived from the peak height (Fig. 5(a)) andMCR-ALS (Fig. 6(a)).
Firstly the intensities are generally higher than those observed
for the data derived using the other two approaches, this is
more pronounced at short times, with the values at t ¼ 0 being
approximately 30% of their nal intensity (cf. 15% for both peak
heights and MCR-ALS). Some explanation is found in the
consideration of the factors/bands used to generate the initial
images from which these line proles were generated. In the
case of the peak height data, it is clear that the vector normal-
isation and baseline correction has enhanced S/N of the images
(compare Fig. 4(a) with the data in ESI, Fig. S6†), but it is
entirely feasible that this will exert some inuence on the
intensity values generated for each spectrum within a given
pixel.

In the case of the MCR-ALS the extracted pure factor for the
polymer contains a contribution from water (Fig. 4(b)) and
therefore when the scores at each pixel for the pure water factor
are calculated then they will be underestimated. As the NLCF
approach is able to generate both a pure water signal and a pure
polymer signal free from interference, we anticipate that the
intensities presented in these proles will be more likely to
match the true concentration prole.

Fig. 7(b) is also somewhat different to the analogous peak
height and MCR-ALS data; in that it is narrower and different in
shape. Once more it is the convolution of the water and polymer
bands in both the peak height and MCR-ALS spectra that
contributes to the broadening of this prole, relative to the
NLCF data.

Fig. 7(c) shows the increase in the B zone dimension as a
function of time. The values plotted here are lower than those
Analyst, 2014, 139, 2355–2369 | 2365
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Fig. 7 (a) The increase in the intensity of the water peak at each pixel across the image as a function of time, (b) the normalised plot of intensity of
the polymer particle, (c) the evolution of parameter ‘A’ as a function of time and (d) the evolution of the parameter ‘B’ as a function of time for the
NLCF derived images.
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obtained via both the peak height and MCR-ALS approaches and
the error determined at each time point is somewhat lower than
the corresponding values for the other two methods. This is a
clear indication of the ability of the NLCF procedures to eliminate
noise from the processed images. Fig. 7(d) shows the FWHM of
the normalised polymer band prole generated from the NLCF
images (Fig. 4(c)) and this also shows a reduction in width in
comparison with the analogous data generated using the other
two methods. The reduction in size of the B zone and the FWHM
in comparison with the data generated using peak heights and
MCR-ALS is a reection of the ability of the NLCF method to
discriminate between the water and polymer contributions at
each pixel, reducing the blurring effect of convoluted spectra.
Degradation rate calculation

Coupling the chemical selectivity of infrared spectroscopy with
the regional selectivity of an FPA detector facilitates remarkable
insight into a wide range of processes. PLGA microparticles can
be used as sustained delivery vehicles, where the rate of hydro-
lysis will control the release rate. Parameters that govern the
hydrolytic degradation of PLGA include molecular weight,
structure and morphology and PLGA degradation dynamics.
FTIR spectroscopy has routinely been used to follow hydrolysis
kinetics, but we believe this is the rst time that measurements
have been undertaken on single microparticles in this manner.
Two infrared bands have been observed at �1452 cm�1 and
�1424 cm�1 that correspond to the antisymmetric bending of
CH3 from the lactic acid units and the symmetric bending of
CH2 from the glycolic acid units of the PLGA polymer. The
relative intensities of these two bands can be used to estimate
2366 | Analyst, 2014, 139, 2355–2369
the relative quantity of glycolic and lactic acid units present in
the polymer and has been used to determine the rate of hydro-
lysis of the two co-polymer segments within the same experi-
ment. Work by Vey et al.47 has shown that the lactic acid units
hydrolyse �1.3 times slower than the glycolic acid units. Unlike
large-sized (a few mm) PLA/GA polymer devices, microspheres
less than 300 mm in diameter have been shown to undergo
homogeneous degradation with the rate of degradation of the
core being equivalent to that at the surface.48,49 Therefore rate
constants from different regions within amicroparticle would be
expected to give the same calculated rate.

Fig. 8 shows typical single pixel spectra (Fig. 8(a)), spectra
resulting from the binning of 5 � 5 pixels (Fig. 8(b)), the
resultant peak ts from a single pixel (Fig. 8(c)) and the result of
peak ts from the binning of 5 � 5 pixels (Fig. 8(d)) which have
been used to calculate the rate constants, shown in ESI, Fig. S6.†
It should be noted that due to a deviation from a linear rela-
tionship between the ln(intensity) versus time plot, no k values
for the MCR data could be determined.

To compare the relative merit of each of the data analysis
approaches used in this study, we have calculated the hydrolysis
rates for both the glycolic and lactic blocks independently
within the same experiment. MCR-ALS was unable to provide
pure component spectra for both the lactic and glycolic
segments of PLGA, probably due to the nature of the iterative
extraction process. MCR-ALS relies on variance within spectral
data sets to extract pure component factors and as the ratio
between the glycolic and lactic units during hydrolysis is
constant throughout the experiment (i.e. the data is co-linear)
the algorithm does not detect any variance. Consequently a
single ‘PLGA’ pure component is generated.
This journal is © The Royal Society of Chemistry 2014
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Fig. 8 Typical single pixel and averaged (over 5 � 5 pixels) spectra of pre-treated raw ((a) and (b)) and non-linear curve fitted ((c) and (d)) data.
Spectra from bottom to top were obtained at t ¼ 0, t ¼ 2 h, t ¼ 5 h, t ¼ 7 h and t ¼ 9 h, respectively.
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Hydrolysis rate constants for the lactic units (kL) and the
glycolic units (kG) were calculated using both the peak height
data and the NLCF data from the logarithmic plot of peak
intensity versus degradation time (see ESI data S7†) using the
band �1452 cm�1 for the lactic units and that at �1424 cm�1

for the glycolic units, using the spectra shown in Fig. 8. First
order kinetics as dened in eqn (10) and (11) were assumed;

ln(I) ¼ �kLt + n (10)

for the lactic unit and,

ln(I) ¼ �kGt + n (11)

for the glycolic unit.
Table 2 List of degradation rate constants (day:1) calculated for
triplicates of averaged 5 � 5 pixels and single pixel spectra using peak
height values and curve fitted area values over the course of the 9 h
hydrolysis experiment. Errors quoted are the standard deviation of 3
measurements taken from 3 different regions of the same particle

Method

5 � 5 pixels Single pixel

kL kG kL kG

Peak height 1.13 � 0.2 1.41 � 0.35 0.9 � 0.53 1.53 � 0.98
NLCF 1.47 � 0.1 2.06 � 0.13 1.29 � 0.21 1.67 � 0.34

This journal is © The Royal Society of Chemistry 2014
Rate constants were calculated by selecting the spectrum (or
extracted factor) at 3 random pixels within each image. For
comparison, the same positions were used for each of the peak
height, MCR-ALS and NLCF image analysis approaches and the
mean of the three values are shown in Table 2.

Rate constants were also determined by binning the spectra/
factor score from 3 areas of 5 � 5 pixels from random regions
within each image. Once more the same regions were used for
each of the peak height, MCR-ALS and NLCF image analysis
approaches and the calculated rate data (where possible) are
shown in Table 2 and are the result of the mean of three values.

Tracy et al.48 studied the degradation of poly(lactide-co-gly-
colide) microspheres in vivo and in vitro and determined
degradation rate constants by measuring the polymer molec-
ular weight as a function of time by gel-permeation chroma-
tography. They found that the in vivo degradation rate was
higher than in vitro degradation one. Their calculations of in
vivo rate constant by GPC analysis for ester capped and
uncapped (–COOH) PLGA50:50 microspheres were 0.033 �
0.006 per day and 0.13 � 0.05 respectively. Considering that the
PLGAmicroparticle studied here was scCO2 processed therefore
very porous, and a calibration (i.e. %GA or %LA versus IR
absorbance) was not considered as in ref. 47, due to having one
polymer composition, the k values calculated are in reasonable
agreement with each other and with the values determined by
Tracy et al.48 and, as one might anticipate, the error obtained
when calculating rate constants by binning a number of spectra
Analyst, 2014, 139, 2355–2369 | 2367
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is somewhat lower than that obtained from a single pixel. The
errors are larger for the peak height derived calculations than
those from the NLCF measurements. It is also clear that the
ratio of the rate constants calculated for the lactic and glycolic
groups is also comparable with that determined by Vey et al.;47

we have determined the ratio of rate constants to be 1.2
(peak height binned pixels), 1.7 (peak height single pixels), 1.4
(NLCF binned pixels) and 1.3 (NLCF single pixels). Interestingly
the error determined for the k calculations for the MCR-ALS
processed images seemed to be independent of the number of
pixels used to determine them. It is unclear if this nding is
real or an anomaly of the pixels chosen to make the
measurements.
Conclusions

A new algorithm for nonlinear curve tting (NLCF) has been
developed and applied to the analysis of mid-IR images of a
single PLGA microparticle undergoing hydrolysis at 70 �C for
the rst time. The supervised NLCF approach has been shown
to have several advantages over traditional peak height
measurements and a commonly applied multivariate tool;
MCR-ALS. Firstly the application of NLCF routines to such data
has been shown to enhance the spatial resolution within a
sample with (a) overlapping spectral signals and (b) containing
interfaces with large discrepancies in the refractive index (i.e.
air/polymer). Secondly it has been shown to improve S/N and
sharpen features such as interfaces in processed images, due to
its ability to discriminate between different species in amixture,
this is particularly pronounced when one compares this
approach to standard peak height measurements. Thirdly as the
approach does not appear to be greatly inuenced by colin-
earity, unlike MCR-ALS, supervised NLCF can be used to extract
chemical information from species changing at the same ratio
during a kinetic process such as hydrolysis. Finally the high S/N
at each pixel readily facilitates the calculation of rate constants
from a single pixel with a low error when compared to tradi-
tional peak height approaches. All these advantages come at a
signicant time penalty; the NLCF algorithm described takes
�5 hours to extract information from a single mid-IR image
containing 4096 spectra, this compares to �2 seconds for peak
height analysis and �1 minute for MCR-ALS on the same image
using the same PC.

With the help of fast developing computing hardware
power, the supervised NLCF method developed here will be a
useful IR imaging analysis tool providing high resolution
images and quantitative analysis for many more cases partic-
ularly where hard modelling is the only option such as
deconvoluting protein spectra when searching for changes in
secondary structure.
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43 V. A. Solé, E. Papillon, M. Cotte, P. H. Walter and J. Susini,
Spectrochim. Acta, Part B, 2007, 62, 63–68.

44 M. Offroy, Y. Roggo, P. Milanfar and L. Duponchel, Anal.
Chim. Acta, 2010, 674, 220–226.

45 P. Lasch and D. Naumann, Biochim. Biophys. Acta,
Biomembr., 2006, 1758, 814–829.

46 G. S. Bajwa, K. Hoebler, C. Sammon, P. Timmins and
C. D. Melia, J. Pharm. Sci., 2006, 95, 2145–2157.

47 E. Vey, C. Rodger, J. Booth, M. Claybourn, A. F. Miller and
A. Saiani, Polym. Degrad. Stab., 2011, 96, 1882–
1889.

48 M. A. Tracy, K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong,
R. Qian and Y. Zhang, Biomaterials, 1999, 20, 1057–
1062.

49 G. Spenlehauer, M. Vert and J. P. Benoit, Biomaterials, 1989,
10, 557–563.
Analyst, 2014, 139, 2355–2369 | 2369

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3an01879b

	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b

	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b

	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b
	The application of non-linear curve fitting routines to the analysis of mid-infrared images obtained from single polymeric microparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c3an01879b


