High-entropy-assisted platinum single atoms for photothermal green syngas production with high CO2 utilization efficiency

Abstract

The reverse water gas shift reaction (RWGS) can convert CO2 into green syngas, but its efficiency is limited by a low CO2 utilization rate. High temperatures can promote CO2 conversion rates in RWGS; however, most catalysts are unstable and inactive at high temperatures. In this study, we synthesized a two-dimensional high-entropy oxide to stabilize Pt single atoms (Pt@CeYLaScZrOx) for high-temperature RWGS. Compared to the 494 mmol g−1 h−1 CO production rate of Pt@ZrO2 at 600 °C in RWGS, Pt@CeYLaScZrOx exhibited a significantly higher CO production rate of 1350 mmol g−1 h−1, a CO2 conversion rate of 55% and stable operation for 72 h at 600 °C, exhibiting unparalleled high-temperature stability. Various characterizations confirmed the robustness of Pt single atoms in Pt@CeYLaScZrOx during high-temperature RWGS, and theoretical calculations indicated that the high-entropy property of CeYLaScZrOx contributed to the thermodynamically stable state of Pt single atoms, preventing Pt sintering. As a result, Pt@CeYLaScZrOx could operate in photothermal RWGS under 3.2 kW m−2 intensity of sunlight irradiation, achieving a CO generation rate of ∼13.6 ml min−1, a CO2 conversion rate of 45% and stable operation for 100 h. This work provides a universal solution for preparing noble metal single-atom catalysts that remain stable under hydrogen-rich and high-temperature environments.

Graphical abstract: High-entropy-assisted platinum single atoms for photothermal green syngas production with high CO2 utilization efficiency

Supplementary files

Article information

Article type
Research Article
Submitted
25 Jan 2025
Accepted
16 Mar 2025
First published
17 Mar 2025

Inorg. Chem. Front., 2025, Advance Article

High-entropy-assisted platinum single atoms for photothermal green syngas production with high CO2 utilization efficiency

X. Liu, S. Huang, D. Yuan, S. Li, L. Ma, L. Gao, Z. Li, Y. Wang, Y. Li and J. Ye, Inorg. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QI00274E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements