ZIF-8 composite nanofibrous membranes loaded with bFGF: a new approach for tendon adhesion prevention and repair

Abstract

During tendon injury repair, deficiency of basic fibroblast growth factor (bFGF) is a critical factor leading to unsatisfactory repair results. This study aims to prepare bFGF-loaded zeolite imidazole framework-8 (ZIF-8) nanocrystals using a one-pot synthesis method. Subsequently, a bilayer nanofibrous membrane incorporating these drug-loaded nanocrystals was fabricated through electrospinning technology. The potential of this composite nanofibrous membrane to facilitate the continuous release of bFGF at the site of tendon injury was evaluated, with the aim of enhancing the quality of tendon repair. The efficacy of the nanofibrous membrane in promoting tendon differentiation, preventing tendon adhesion, and facilitating tendon repair was assessed through both in vitro and in vivo experiments. At the site of tendon injury, the degradation of ZIF-8 in an acidic microenvironment resulted in the release of bFGF and Zn2+, which contributed to the enhancement of tendon repair. ZIF-8 nanocrystals achieved an encapsulation efficiency of 50.13% ± 1.42%. Following a continuous release period exceeding 40 days, the cumulative in vitro release rate was determined to be 35.02% ± 4.27%. The incorporation of ZIF-8 nanocrystals into a nanofibrous membrane demonstrated the ability to effectively preserve the bioactivity of bFGF while enabling sustained release at the site of tendon injury, thereby facilitating tendon repair. The findings offer novel insights into the treatment of tendon injuries and provide significant theoretical guidance for the tendon repair process.

Graphical abstract: ZIF-8 composite nanofibrous membranes loaded with bFGF: a new approach for tendon adhesion prevention and repair

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2025
Accepted
06 Apr 2025
First published
09 Apr 2025

Biomater. Sci., 2025, Advance Article

ZIF-8 composite nanofibrous membranes loaded with bFGF: a new approach for tendon adhesion prevention and repair

M. Sun, J. Cao, Y. Zou, H. Ju and Y. Lv, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D5BM00062A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements