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ment learning-guided polymer
generation for multi-objective polymer discovery

Wentao Li,†a Yijun Li,†ab Qi Lei,†a Zemeng Wanga and Xiaonan Wang *a

Designing high-performance polymers remains a critical challenge due to the vast design space. While

machine learning and generative models have advanced polymer informatics, most approaches lack

directional optimization capabilities and fail to close the loop between design and physical validation.

Here we introduce PolyRL, a closed-loop reinforcement learning (RL) framework for the inverse design

of gas separation polymers. By integrating reward model training, generative model pre-training, RL fine-

tuning, and theoretical validation, PolyRL achieves multi-objective optimization under data-scarce

conditions. We demonstrate that PolyRL is capable of efficiently generating polymer candidates with

enhanced gas separation performance, as substantiated by detailed molecular simulation analyses.

Additionally, we establish a standardized benchmark for RL-based polymer generation, providing

a foundation for future research. This work showcases the power of reinforcement learning in polymer

design and advances AI-driven materials discovery toward closed-loop, goal-directed paradigms.
1 Introduction

Polymers have emerged as versatile and economically viable
platforms for addressing global challenges such as climate
change mitigation and environmental sustainability owing to
their inherent exibility, ease of processing, and scalable
production. They play a crucial role in various industrial sepa-
ration processes when used in membranes, including gas
purication, oxygen enrichment, biogas upgrading, and carbon
capture applications.1–4 Due to the vast design space of poly-
mers, obtaining polymer materials with better performance has
always been a challenging issue.

Traditional approaches for developing high-performance
polymers have largely relied on trial-and-error methods
guided by experimental intuition and incremental optimization
of chemical structures. Although computational techniques,
such as Density Functional Theory (DFT) calculations, molec-
ular dynamics (MD) and Monte Carlo (MC) simulations, offer
effective property predictions, their computational intensity
restricts exploration to limited chemical spaces.5–7 Machine
learning (ML) has emerged as a promising alternative,
employing large-scale data-driven models, such as Random
Forest (RF), Deep Neural Networks (DNNs), Graph Convolu-
tional Networks (GCNs) and Transformer, to predict polymer
properties directly from chemical structures8–13 and discover the
ineering and Low-carbon Technology,
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relationship between microscopic features and macroscopic
properties.14–16 However, this train-and-predict paradigm is
inherently constrained by existing datasets or predened
candidate polymer materials, limiting exhaustive exploration of
the vast design space and preventing the targeted optimization
of material properties.

With the rise of generative models and inverse design
methods, an increasing number of researchers are using deep
generative algorithms to explore the chemical space of
compounds, especially in the elds of drug and inorganic
material discovery.17,18 In polymer informatics, researchers use
deep generative algorithms to generate polymers with specied
properties. For example, Batra et al.19 combined syntax-directed
variational autoencoders (VAEs) and Gaussian process regres-
sion (GPR) to identify robust polymers suitable for extreme
conditions. Liu et al.20 employed an invertible graph generative
model focused on discovering high-temperature polymer
dielectrics. Gurnani et al.21 proposed an inverse design method
named PolyG2G, aiming to discover better polymer dielectric
materials. Basdogan et al.22 customized the tness of gas
separation polymer materials and used genetic algorithms to
generate high-performance gas separation polymer materials.
However, most of the research on the inverse design of gas
separation polymer materials remains at the data-driven model
level and has not completed the closed-loop discovery process
from AI models to theoretical calculations or experimental
verication. Additionally, the conditional generation methods
for materials cannot directionally optimize specic properties,
and genetic algorithms face problems of large sample sizes and
low efficiency in directional optimization.
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Reinforcement learning (RL), an alternative paradigm
distinct from conventional generative and genetic algorithms,
has demonstrated notable potential for inverse design and
directional optimization of material properties. RL systemati-
cally explores chemical spaces through autonomous and
sequential decision-making strategies, effectively balancing
exploration and exploitation to efficiently identify optimal
candidates. Its inherent ability to directly optimize specic
properties through goal-oriented reward mechanisms enables
RL to overcome limitations associated with existing generative
models and genetic algorithms, such as inefficient sampling
and weak directional control. Reinforcement learning based
generative methods have been used in drug discovery,23–25

crystal material optimization26 and functional material
design.27,28

However, RL-based generative approaches have not yet been
thoroughly explored for polymer materials, particularly in the
context of gas separation polymers. In this work, we introduce
the PolyRL framework (Polymer Reinforcement Learning) and
specically target its application to gas separation polymers,
aiming to address the existing gap in RL-driven material design
for this critical domain.

The main contributions of this study can be summarized as
follows.

(1) This work presents the rst reinforcement learning-based
framework for the generation of gas separation polymers,
establishing a closed-loop system that integrates reward model
Fig. 1 The framework of PolyRL. First, polymer property datasets are use
dataset. Meanwhile, generative model pretraining is conducted based on
polymer domain pretraining. Next, with the help of the reinforcement l
generate polymer sequences under a reward mechanism based on m
evaluation module calculates the properties of the generated polymers.

Digital Discovery
training, generative model pre-training, reinforcement learning
ne-tuning, and theoretical validation. Our results demonstrate
the feasibility of our reinforcement learning approach and the
effectiveness of the generated polymer candidates. This study
provides a foundational exploration into the utility of rein-
forcement learning in the eld of polymer informatics.

(2) Multi-objective optimization has remained a challenging
task in the conditional generation of materials. This work
addressed this issue through custom-dened reward functions,
achieving multi-objective optimization of gas separation poly-
mer materials in targeted properties.

(3) A comprehensive benchmark for reinforcement learning-
driven gas separation polymer generation is developed,
including evaluations of the reinforcement learning algorithm,
pre-trained generative model, and the size of pre-training
dataset. This benchmark will facilitate future research in
developing more advanced algorithmic frameworks for gas
separation polymer and membrane design.
2 The overall PolyRL framework

The overall PolyRL framework is composed of ve main parts:
data acquisition, property prediction models, deep generative
models, reinforcement learning, and high throughput calcula-
tion pipeline. The overall framework of PolyRL is illustrated in
Fig. 1.
d to train models such as random forests and PolyBERT on the polymer
GPT2, LLaMA2, LSTM, etc., through SMILES contextual pretraining and
earning generation module, the Generator and Predictor interactively
odel weights and prior information. Finally, the molecular dynamics

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.1 Task denition

The primary objective of the PolyRL framework is to optimize
gas separation polymer materials used in membrane for
enhanced gas permeability and selectivity. Specically, the
target is to achieve high selectivity for CO2 over N2, ensuring
efficient separation by maximizing permeability for CO2 while
maintaining low permeability for N2.
2.2 Data acquisition

To obtain a diverse and representative dataset for training the
property prediction model, we collected a wide range of gas
separation polymer materials from literature. The dataset of gas
separation polymer materials from Yang et al.9 was used as
a basic dataset. Aer data cleaning, we obtained a dataset
containing 353 gas separation polymer materials. To enhance
the polymer generation model's understanding of polymer
semantics, we selected 1 million hypothetical polymers
mentioned in the paper by Yang et al.9 as the pre-training
dataset. More detailed statistical information about the data-
set is provided in part 2.1 of the SI.

All polymer material data are represented using polymer
simplied molecular input line representation (P-SMILES)
strings. P-SMILES is a special string representation that is
used to describe the chemical structure of polymers. These
strings play an important role in data-driven tasks related to
polymer discovery, design, or prediction. In the representation
of homopolymers, P-SMILES contains two asterisks (linear
homopolymers) ([*] or *) or four asterisks (ladder polymers) in
the string. These asterisks represent the endpoints of the
polymer repeat units, effectively marking the boundaries of the
repeating segments in the polymer chain.
2.3 Deep generative models

Deep generative models learn the distribution of existing data
and generate new data through sampling, achieving signicant
progress in both image and text domains. In the eld of mate-
rial generation, most research focuses on generating one-
dimensional (SMILES sequences), two-dimensional (graph),
and three-dimensional (geometric coordinates) material repre-
sentations. The one-dimensional SMILES representation
method can succinctly and thoroughly represent material
information. Moreover, with the success of the transformer
architecture and pre-training paradigm, chemical language
models trained on a large SMILES corpus have become powerful
tools for one-dimensional SMILES generation.

P-SMILES and SMILES are fundamentally similar in form.
Throughout the entire PolyRL framework, we need to obtain
a pre-trained chemical language model as a prior model. This
model can generate valid P-SMILES strings and will be di-
rectionally optimized through reinforcement learning ne-
tuning to produce high-performance polymers. The model
architectures considered include traditional GRU29 and LSTM30

as well as the latest GPT2 (ref. 31) and LLaMA2 (ref. 32) archi-
tectures. All chemical language models are pre-trained through
the “next-token prediction” paradigm on the hypothetical dataset
© 2025 The Author(s). Published by the Royal Society of Chemistry
of 1 million polymers, enabling them to learn the semantic
information inherent in P-SMILES and generate valid polymers.
This training process is detailed in eqn (1). Specically, given
a SMILES sequence x = x1x2/xn, the models are trained to
maximize the probability P(xijx1, x2, ., xi−1; q), where each xi
represents the i-th token in the sequence, and q denotes all
parameters of the language model. The hyperparameters of the
pre-trained chemical language model and details of the training
performance evaluation are provided in part 2.3 of the SI. Aer
the pre-training is completed, we load the pre-trained chemical
languagemodels to directionally generate polymermaterials with
better performance in the reinforcement learning process.

L ðxÞ ¼
X
i

log Pðxijx1; x2;.; xi�1; qÞ (1)
2.4 Property prediction models

Machine learning-driven chemical property prediction models
map material features to predicted properties. Due to the effi-
ciency of machine learning, these models oen serve as surro-
gate models for experiments or theoretical calculations,
enabling high-throughput screening of materials. In the rein-
forcement learning framework, the property prediction model
acts as a reward model, providing scores for the currently
generated samples to the generative model, thereby achieving
optimization for specic properties.

We selected methods for property prediction that combine
molecular descriptors or molecular ngerprints with traditional
machine learning models, including Random Forest (RF)
combined with molecular ngerprints and Support Vector
Regression (SVR) combined with molecular ngerprints. Addi-
tionally, in alignment with the emergence of large-scale pre-
training methods, we also integrated polymer material pre-
training models based on the transformer architecture like Poly-
BERT10 and general large language models such as GPT-3.5-turbo.
These pre-trained models directly use P-SMILES as input for
property prediction. The evaluation of the prediction models was
conducted on the gas separation polymer material dataset we
constructed.
2.5 Reinforcement learning algorithm

In the context of gas separation polymer material generation,
the reinforcement learning task can be framed as a sequential
decision-making process, where a polymer is incrementally
constructed through successive actions. Formally, this task can
be dened using Markov Decision Processes (MDPs), charac-
terized by the tuple hS, A, P, R, r0i. Here, S denotes the state
space representing partially constructed polymers, and A
denotes the action space comprising modications or exten-
sions to the polymer structure encoded in the SMILES or P-
SMILES representation.

The transition dynamics P : S� A/P ðSÞ determine the
probability distribution of transitioning from a current polymer
conguration (state) st to a subsequent conguration st+1 given
a polymer-building action at. The reward function
Digital Discovery
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R : S� A� S/R assigns numerical feedback based on
performance metrics such as gas permeability and selectivity,
encouraging the generation of materials with enhanced desired
properties. r0 signies the initial state distribution.

To optimize policy performance, we dene the expected
cumulative return in eqn (2),

JðqÞ ¼ Es�pq

"XT
t¼0

rðst; atÞ
#

(2)

In eqn (2), pq denotes the policy parameterized by q, and the
trajectory s = (s0, a0, s1, a1, ., sT, aT) represents the complete
molecular generation process. The immediate reward r(st, at)
corresponds to the gain obtained by executing action at at state
st. In this study, r(st, at) is not computed step by step but
assigned based on the nal performance score R(x) of the
generated molecule. This scalar reward is uniformly distributed
to all steps in the trajectory, allowing the nal molecular
performance to directly inuence the policy optimization.

In policy gradient methods, the gradient of the objective
function is typically expressed in eqn (3).

VqJ(q) = E(s,a)∼pq
[Vqlogpq(ajs)$Qpq(s,a)] (3)

In eqn (3), Vqlogpq(ajs) measures the sensitivity of the policy
to action selection, and Qpq(s,a) denotes the expected return
aer taking action a in state s under policy p. As Qpq(s,a)
depends on the cumulative rewards from future state-action
sequences, its exact value is oen intractable.

To address this issue, reinforcement learning methods
generally fall into two categories: the rst retains the original
policy gradient form and employs various strategies to estimate
Qpq(s,a) (e.g., REINFORCE,33 A2C,34 PPO35). All three methods
satisfy the form of eqn (3). The second bypasses the direct use of
this gradient expression and instead denes surrogate objec-
tives that approximate or transform the optimization process to
steer the policy toward high-reward regions (e.g., REINVENT,36

AHC,37 DPO38).
Despite differences in implementation, all approaches share

the common objective of maximizing the expected cumulative
return by minimizing an appropriately dened loss function.
The basic principles of each reinforcement learning algorithm
in PolyRL framework are detailed in part 2.4 of the SI.

Subsequently, we utilize the Robeson upper bound as
a benchmark which is commonly used for evaluating gas
separation performance, dening a shied reward in eqn (4).

R(x) = log S − (a − b × log PCO2
) + 2 (4)

In eqn (4), log CO2 denotes the logarithm of CO2 perme-
ability. log S represents the logarithm of the ratio of CO2 to N2

permeability, also called selectivity. The constants a and b are
parameters obtained from Robeson's upper bound correlation,
specically a = 2.595 and b = 0.3464 for the CO2/N2 separation.
Eqn (4) is expanded and written in the form of eqn (5).

R(x) = (b + 1)logPCO2
− log PN2

− a + 2 (5)
Digital Discovery
2.6 Feature attribution and model interpretation

SHAP (SHapley Additive exPlanations) is a model interpret-
ability framework based on cooperative game theory that
decomposes a single-sample prediction into the sum of the
contribution values of all input features.39 Its core idea is to
sequentially add features to the model and compute each
feature's average marginal gain across all possible feature
combinations, thereby quantifying its contribution to the nal
prediction. SHAP results satisfy additivity and consistency: the
sum of all feature contributions equals the difference between
the sample prediction and the baseline prediction, and when
the impact of a feature on the model output increases, its SHAP
value increases monotonically. This analysis enables us to
identify which structural fragments enhance or reduce CO2

permeability and CO2/N2 selectivity (i.e., the contribution of
structural features to performance), and to measure the overall
importance of each feature across the entire dataset by calcu-
lating the mean absolute SHAP values. The detailed SHAP
calculation procedure and results are provided in Part 3.2 of the
SI.

2.7 High throughput calculation pipeline

Molecular dynamics (MD) simulation is a precise approach to
calculate the transport properties and structural characteristics
of the gas separation polymer materials. In the MD procedure,
polymer structures were initially generated from repeating unit
representations and converted into polymer models with peri-
odic boundary conditions to simulate innite polymeric chains.
A series of preparatory simulation steps, including energy
minimization, thermal annealing, and equilibration under
controlled temperature and pressure conditions, were
employed to stabilize the polymer congurations.

Thermal annealing procedures were applied systematically,
decreasing the temperature stepwise to identify transitions in
the material properties indicative of the glass transition
temperature (Tg). Gas molecules were introduced into the
equilibrated polymer structures at dilute conditions to evaluate
fundamental transport properties, such as solubility and
diffusivity. Production simulations under steady-state condi-
tions were then conducted to quantify these properties. The key
characteristics of gas separation polymers, including gas
permeability, were computed from simulated solubility and
diffusivity data. The detailed calculation parameters are
provided in Part 3.3 of the SI.

3 Results and discussion
3.1 Generative model performance

Four autoregressive models were rst pre-trained for the next-
token prediction task on a P-SMILES dataset containing 1
million entries. We observed that, due to the simplicity of the
semantic information in P-SMILES, the massive pre-training
dataset was redundant for the models to comprehend the
semantics of P-SMILES. Both GPT-2 and LLaMA-2 converged
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The performance of the generative model in terms of the
validity of generated P-SMILES

Model GRU LSTM GPT2 LLaMA2

Validity 100% 98.44% 94.53% 100%
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within 1–2 epochs during pre-training. We utilized the validity
of molecules generated by the models as an indicator of model
training performance, specically the proportion of valid
molecules among 128 molecules generated by each model. The
results are presented in Table 1.
Fig. 3 Error scatter plot of (a) RF, (b) SVR (c) PolyBERT and (d) GPT-
3.5-turbo in gas permeability tasks.
3.2 Prediction model performance

A dataset for gas separation polymer was rst constructed using
data from literature, comprising a total of 353 entries. The
dataset was split into training and test sets in a 282 : 71 ratio.
The distribution of the gas separation properties is illustrated in
Fig. 2. Two traditional machine learning models (RF and SVR)
and one pre-trained polymer language model (PolyBERT) were
trained for this task. Furthermore, the large language model
GPT-3.5-turbo was ne-tuned to assess its capability on this
dataset. The Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and inference time on the test set of all the three
methods are summarized in Table 2.

The two traditional machine learning models, RF and SVR,
achieve faster inference speeds. While GPT-3.5-turbo outper-
forms other models owing to its large-scale pretraining and
strong semantic understanding, its slow inference renders it
impractical as a surrogate model for reinforcement learning. In
particular, RF as a traditional machine learning model outper-
forms the pre-trained PolyBERT in accuracy. To further inves-
tigate the difference of model performance, a sample-by-sample
Fig. 2 The distribution of CO2/N2 permeability properties in our
dataset.

Table 2 The performance of property prediction model on CO2/N2

permeability task

Model MAEPN2
RMSEPN2

MAEPCO2
RMSEPCO2

Time/s

RF 0.623 0.894 0.555 0.802 0.022
SVR 0.676 0.990 0.614 0.903 0.031
PolyBERT 0.689 1.006 0.574 0.860 0.452
GPT-3.5-turbo 0.626 0.856 0.501 0.771 1.812

© 2025 The Author(s). Published by the Royal Society of Chemistry
comparison was conducted among the RF, SVR, PolyBERT and
GPT-3.5-turbo. The results of this comparison are presented in
Fig. 3. From the error scatter plots, the predictions of RF present
a higher accuracy, with fewer outliers in the test set, suggesting
that the model is more robust and can providereliable predic-
tions for unseen samples.
3.3 Reinforcement learning performance

3.3.1 The performance of different reinforcement learning
algorithms. In this part, the best-performing random forest
with comparable accuracy to Molecular Dynamics (MD) simu-
lations was employed as the reward model, while the pre-
trained GPT-2 architecture was selected as the generator. We
systematically evaluated six reinforcement learning (RL) algo-
rithms: REINVENT, REINFORCE, AHC, A2C, DPO, and PPO for
the multi-objective optimization of gas separation polymers. As
illustrated in Fig. 4, the dynamics of selectivity and CO2

permeability for these six RL algorithms are depicted as
a function of training steps.
Digital Discovery
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Fig. 4 Property optimization curves of six reinforcement learning algorithms in multi-objective gas separation polymer generation. Subplots
(a)–(f) correspond to the six algorithms REINVENT, REINFORCE, AHC, A2C, DPO, and PPO, respectively. The x-axis of each subplot is log10 PCO2

,
and the y-axis is log10 SCO2/N2

. Scatter points represent the values of different polymers on these two properties, with color indicating the
generation step (color bar ranges from the initial step to step 10 000). The figure also annotates polymer structure schematics at Step 1 and Step
10 000 to illustrate the changes in polymer structure during the optimization process. The inset graph in the upper right corner of each subfigure
shows the cumulative max score curve, where the orange line represents the cumulative max score and the green line represents the average
score per batch.
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REINVENT and REINFORCE demonstrate superior capa-
bility in multi-objective molecular generation, successfully
discovering candidates that surpass the Robeson upper bound.
In contrast, although algorithms such as A2C and PPO exhibit
improvements in CO2 permeability, they fail to yield further
enhancement in selectivity, limiting their effectiveness in
achieving a balanced optimization of both objectives.

REINVENT and REINFORCE are categorized as policy
gradient methods, typically comprising a single actor model. In
contrast, A2C and PPO adopt an actor-critic architecture,
incorporating both actor and critic components. The critic
estimates the value function, providing feedback that guides
the actor's policy updates. However, inaccuracies in the critic's
value estimations can introduce bias, potentially steering the
policy updates toward suboptimal solutions. As depicted in
Digital Discovery
Fig. 4d, the A2C algorithm's average score per batch converges
prematurely, highlighting the tendency of actor-critic methods
to settle into local optima during polymer generation tasks.

As training progresses, the gas separation polymers gener-
ated by REINVENT, REINFORCE, and AHC exhibit a two-phase
optimization trend, initially improving permeability, followed
by an enhancement in selectivity. This behavior can be attrib-
uted to the reward formulation in eqn (3). Specically, the
reward function assigns a greater weight to the permeability of
CO2, making the early stages of optimization favor an increase
in CO2 permeability to maximize the overall reward. However,
due to the predictive model's boundary limitations, further
improving CO2 permeability becomes increasingly difficult in
later iterations. Consequently, the optimization process shis
toward reducing N2 permeability, thereby improving selectivity.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Properties optimization curves of four different models (GPT2,
generation. Subplots (a)–(d) correspond to the four models mentioned ab
PCO2

, the vertical coordinate is log10 SCO2/N2
, the scatter points indicate t

represent the generation steps (the color bars show the range of values of
are labeled in the figure to represent the evolution of the polymer struct
corner of each subfigure shows the max average score curve, where th
represents the average score per batch.

Fig. 5 Performance of six Reinforcement Learning algorithms
(REINVENT, REINFORCE, DPO, PPO, A2C, AHC) on eight metrics in
multi-targeted gas separation polymer generation. The metrics
include validity rate, Unique Count (Molecule), Unique Count (Scaf-
fold), Novelty Count (Molecule), Novelty Count (Scaffold), max score,
Top100 Mean, Top100 SAScore.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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This results in the observed progression: an initial rise in CO2

permeability followed by a subsequent enhancement in CO2/N2

selectivity.
We evaluated the performance of molecular generation

algorithms using eight comprehensive metrics. Max score
denotes the highest score among all generated molecules based
on a predened scoring function that considers properties such
as chemical stability, reecting the algorithm's optimal gener-
ation capability. Top100 mean is the average score of the top
100 highest-scoring molecules, indicating the algorithm's
ability to consistently generate high-quality candidates. Top100
SAscore measures the synthetic accessibility of these top
molecules, with lower scores suggesting greater ease of
synthesis and higher practical feasibility. Validity rate repre-
sents the proportion of chemically valid molecules that comply
with valence and structural rules, assessing structural correct-
ness. Unique Count (molecule) quanties the number of
distinct molecules generated, indicating structural diversity.
Unique Count (scaffold) captures the diversity at the scaffold
level, reecting the algorithm's ability to explore different core
structures. Novelty Count (molecule) and Novelty Count (scaf-
fold) measure the number of novel molecules and scaffolds not
LLaMA2, GRU, and LSTM) in multi-objective gas separation polymer
ove, respectively. The horizontal coordinate of each subfigure is log10
he values of different polymers for the two properties, and the colors
the steps). The schematic polymer structures at Step 1 and Step 10 000
ure during the optimization process. The inset graph in the upper right
e orange line represents the cumulative max score and the green line
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Fig. 8 Performance of four dataset size scenarios (100 k, 250 k, 500 k,
and 750 k) on eight metrics in multi-targeted gas separation polymer
generation. Themetrics include validity rate, Unique Count (Molecule),
Unique Count (Scaffold), Novelty Count (Molecule), Novelty Count
(Scaffold), max score, Top100 mean, Top100 SAScore.
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present in the training data, respectively, highlighting the
model's capacity for structural innovation, which is crucial for
de novo molecule design.

As shown in Fig. 5, REINVENT, REINFORCE, and AHC ach-
ieved higher scores and more novel molecules relative to the
training set, with lower synthetic complexity. PPO and A2C
generated molecules with higher synthetic complexity, but the
uniqueness of the molecules generated during the process was
greater. In summary, REINVENT performs best in the task of
generating polymers for gas separation.

3.3.2 The performance of different generative models. We
used Random Forest and the REINVENT algorithm as the basis,
selecting four model architectures: LSTM, GRU, GPT2, and
LLaMA2, to compare the performance of different generative
model architectures in the generation of gas separation
polymers.

Fig. 6 shows the trends in gas selectivity and CO2 perme-
ability of molecules generated by four generative models as the
number of reinforcement learning iterations increases. It can be
seen that GPT-2 and LLaMA-2 are able to obtain molecules with
higher selectivity and permeability in the later stages of itera-
tion, while the LSTM and GRUmodels only optimized primarily
for CO2 permeability, and the selectivity of the generated
molecules did not improve signicantly. Fig. 7 reects eight
comprehensive indicators of the generation performance of the
four models. Notably, GPT2 and LLaMA2 achieved the best
results in the Top100 scores and max scores, and both also had
the highest novelty in molecules and scaffolds. This reects that
models based on the transformer global attention mechanism
can better focus on specic substructure information and
explore the space of gas-separation polymers more compre-
hensively, thereby achieving improvements in both novelty and
score.

3.3.3 The impact of pre-training dataset size on generation
performance. To investigate the impact of the size of the pre-
Fig. 7 Performance of four generative models (GPT2, LLaMA2, GRU,
and LSTM) on eight metrics in multi-targeted gas separation polymer
generation. Themetrics include validity rate, Unique Count (Molecule),
Unique Count (Scaffold), Novelty Count (Molecule), Novelty Count
(Scaffold), max score, Top100 mean, Top100 SAScore.

Digital Discovery
training dataset on various metrics of molecule generation,
we randomly divided the pre-trained 1 million polymer dataset
into subsets of different sizes, containing 100 k, 250 k, 500 k,
and 750 k polymers respectively. For each pre-training dataset
size, the GPT2 and REINVENT algorithms were used for
comparison to obtain various metrics of molecule generation.

The generation metrics for gas separation polymers are
shown in Fig. 8. We can see that as the amount of pre-training
data increases, the average score of the molecules, uniqueness,
and novelty all improve signicantly, but this is accompanied by
an increase in synthetic complexity. This aligns with intuition:
with more high-scoring polymers in the training set, the model
learns a larger search space, generating more diverse and
complex molecules. At the same time, there is no signicant
improvement in the average molecular score between 500 k and
750 k data points. These results suggest that selecting a suffi-
ciently large pre-training dataset is important for polymer
generation via reinforcement learning, and that a balance
between synthetic complexity and diversity needs to be
considered.
3.4 Molecular dynamics evaluation and chemical
interpretation

We selected the top 20 gas separation polymers recommended
by the optimal combination of GPT-2 + REINVENT + RF, which
exhibit similar predicted scores and chemical structures. To
obtain more reliable performance evaluations, we conducted
molecular dynamics (MD) simulations on these candidate
polymers. Fig. 9 presents both the reward scores predicted by
the RF model and those obtained from MD calculations across
four categories of generated gas separation polymers.

As shown in Fig. 9a, the GPT-2 + REINVENT + RF framework
tends to generate monomers containing silicon (Si) atoms and
large ring structures. This trend is consistent with observations
from the original labeled dataset, where polymers containing Si
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Comparison of relevant performance in multi-objective gas
separation polymer generation. (a) Partial presentation of polymer
structures in the original dataset along with their ground truth values
(GT) for carbon dioxide permeability (PCO2

), nitrogen permeability (PN2
),

and selectivity (Sel). Also shown are the predicted values (Pred) and
calculated values (Calc) for the generated monomers, illustrating the
differences between model predictions and actual calculations. All
values are presented in log10 scale. (b) Comparison of calculated
scores (calc_scores) and predicted scores (pred_scores) for four
molecules (Molecule 1–4).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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atoms and cyclic backbones oen exhibit both high CO2

permeability and high CO2/N2 selectivity. Consequently, the RF
reward model shows a bias toward overestimating the perfor-
mance of polymers with Si-containing moieties and cyclic
structures, thereby guiding the generation process toward such
motifs.

From a chemical perspective, Si-containing groups are bulky
and fan-shaped, occupying substantial spatial volume. This
steric hindrance disrupts close packing of polymer chains and
signicantly enhances the free volume and fractional free
volume of the resulting polymer. The SHAP analysis results
further corroborate this point. For the high-scoring molecules,
the ngerprint features with the highest SHAP values are asso-
ciated with Si-containing structural regions, indicating that
these Si-based groups make signicant contributions to the
nal score, with details provided in Section 3.2 of the SI.
Additionally, cyclic backbones restrict the rotational freedom of
the polymer chains, contributing to the preservation of high
free volume. These structural features promote the formation of
microporous domains, which favor the adsorption of highly
condensable gases such as CO2, thereby improving the solu-
bility selectivity. As a result, these polymers demonstrate
a desirable combination of high permeability and reasonable
selectivity.

In terms of model error, the RF prediction model exhibits
a mean absolute error (MAE) of approximately 0.6. For the rec-
ommended gas separation polymers, the deviations between
predicted scores and MD-calculated scores mostly fall within
this error margin, supporting the reliability of the model's
overall predictions. In Fig. 9b, we compare the reward scores
predicted by the RF model with those obtained from MD
simulations. Although the MD-derived scores are generally
lower, indicating a tendency of the RF model to overestimate
performance, the highest MD score reaches 1.90, closely
approaching to the predicted score of 2.01. This consistency
between the top-performing predictions and the simulation
results underscores the practical relevance of the PolyRL
framework in guiding the discovery of high-performance gas
separation materials.

4 Conclusions

In this study, we introduced PolyRL, the rst reinforcement
learning (RL) framework specically designed for the inverse
design of high-performance gas separation polymers. PolyRL
effectively addresses the long-standing challenge of multi-
objective optimization in polymer design by integrating gener-
ative model pre-training, property prediction, and RL ne-
tuning into a unied, closed-loop system. Our extensive evalu-
ations demonstrate that RL algorithms, particularly REINVENT
and REINFORCE, effectively generate polymer candidates that
surpass traditional design boundaries. Furthermore, the inte-
gration of transformer-based generative models, notably GPT-2
and LLaMA-2, signicantly enhanced the quality and novelty of
the generated polymers.

Through molecular dynamics validation, we conrmed that
polymers recommended by the PolyRL framework exhibit
Digital Discovery
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superior performance, aligning closely with predicted results.
Chemically, our analysis revealed that polymers containing
silicon atoms and cyclic structures provide optimal perme-
ability and selectivity due to their structural properties
enhancing free volume and microporous domain formation.

In summary, this work establishes a robust benchmark for
RL-driven polymer generation, facilitating future research into
algorithmic advancements and data efficiency. Ultimately,
PolyRL represents a signicant stride toward AI-driven, goal-
oriented polymer discovery, highlighting the potential of rein-
forcement learning to accelerate the development of advanced
materials for critical applications in gas separation.
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