Photocatalytic NO removal: complete oxidation and reduction reaction for by-product inhibition and end-product recovery

Abstract

Nitrogen oxides (NOx, x = 1,2, the proportion of NO was about 95%), as one of primary precursors for particulate matter and ozone, limits the continuous improvement of air quality. Photocatalytic NO purification technology has aroused wide attention and much efforts have been made to realize photocatalytic NO complete oxidation and reduction for toxic by-product inhibition and end-product recovery. This work presents a timely overview of current research progress on the conversion of NO into nitrate/ ammonia (NO3−/NH3) that could be further recycled and utilized. According to the essence of heterogeneous photocatalysis and considering the significance of reaction microenvironment (surface active sites of photocatalyst, target pollutant and reaction medium), this review systematically summarized the progress about control strategy on photocatalyst surface structure and reaction medium. Specifically, the critical overview focused on various surface modification methods of photocatalyst, coping strategy on accelerating mass transfer process of gaseous NO, and the effect of additional introduction of reductant/ antioxidant into reaction system. Furthermore, the research trends and future prospects are discussed, aiming to provide an insight into the breakthroughs and boost the development of photocatalytic NO removal technology.

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Critical Review
Submitted
07 Aug 2024
Accepted
20 Sep 2024
First published
26 Sep 2024

Environ. Sci.: Nano, 2024, Accepted Manuscript

Photocatalytic NO removal: complete oxidation and reduction reaction for by-product inhibition and end-product recovery

W. Cui, J. Wang, Y. Li, P. Liu and F. Dong, Environ. Sci.: Nano, 2024, Accepted Manuscript , DOI: 10.1039/D4EN00715H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements