Issue 8, 2025

Effect of growth dynamics on the structural, photophysical and pseudocapacitance properties of famatinite copper antimony sulphide colloidal nanostructures (including nanosheets)

Abstract

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (fCAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4–18.0 nm were grown under variable conditions of temperature (60–200 °C), time and oleylamine capping ligand concentration using copper(II) acetylacetonate and antimony(III) diethyldithiocarbamate precursors. Data from powder X-ray diffraction, Raman spectroscopy and high-resolution scanning/transmission electron microscopy confirm the tetragonal structure of the famatinite phase. X-ray photoelectron spectroscopy, transmission electron microscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy data suggest a correlation of particle size, morphology and composition of the off-stoichiometric fCAS nanostructures with growth temperature and time, and oleylamine concentration. The off-stoichiometric Cu3−aSb1+bS4±c (a, b, c – mole fractions) nanostructures being severely copper-deficient and antimony-rich, exhibit shallow-lying acceptor copper vacancy states, deep-lying donor states of antimony interstitials, sulphur vacancies and antimony-copper antisites and shallow-lying acceptor surface trapping states. These electronic states are likely implicated in tunable UV-visible absorption and bandgaps between 2.3 and 2.8 eV, and broad visible-NIR photoluminescence with fast recombination of radiative lifetimes between 0.2 and 6.2 ns, confirmed from absorption, steady-state and time-resolved photoluminescence spectroscopies. Additionally, cyclic voltammetry and electrochemical impedance spectroscopy confirm that electrodes of the fCAS nanostructures display slightly variable pseudocapacitance of charge-storage primarily via possible sodium ion intercalation with a high specific capacitance of ∼84 F g−1 obtained at a scan rate of 5 mV s−1. Overall, these results show the influence of composition, in particular point defects, phase quality and morphology on the optical and pseudocapacitance properties of fCAS nanostructures, suitable as solar absorbers or electrodes for energy storage devices.

Graphical abstract: Effect of growth dynamics on the structural, photophysical and pseudocapacitance properties of famatinite copper antimony sulphide colloidal nanostructures (including nanosheets)

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2024
Accepted
12 Dec 2024
First published
17 Jan 2025

Dalton Trans., 2025,54, 3174-3187

Effect of growth dynamics on the structural, photophysical and pseudocapacitance properties of famatinite copper antimony sulphide colloidal nanostructures (including nanosheets)

K. Weston, R. A. Taylor, K. Kisslinger and S. Mantripragada, Dalton Trans., 2025, 54, 3174 DOI: 10.1039/D4DT02826K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements