Issue 27, 2013

Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor

Abstract

The utility of 5-fluoro-5-deoxyribose (FDR) as an efficient bioconjugation agent for radiolabelling of the RGD peptides c(RGDfK) and c(RGDfC) is demonstrated. The bioconjugation is significantly superior to that achieved with 2-fluoro-2-deoxyglucose (FDG) and benefits from the location of the fluorine at C-5, and that ribose is a 5-membered ring sugar rather than a 6-membered ring. Both features favour ring opening to the aldehydic form of the sugar to promote smooth oxime ligation with aminooxy ether functionalised peptides. [18F]FDR was prepared in this study by synthesis from fluoride-18 using an automated synthesis protocol adapting that used routinely for [18F]FDG. c(RGDfK) was functionalised with an aminooxyacetyl group (Aoa) via its lysine terminus, while c(RGDfC) was functionalised with an aminooxyhexylmaleimide (Ahm) through a cysteinemaleimide conjugation. Bioconjugation of [18F]FDR to c(RGDfC)-Ahm proved to be more efficient than c(RGDfK)-Aoa (92% versus 65%). The unlabelled (19F) bioconjugates c(RGDfK)-Aoa-FDR and c(RGDfC)-Ahm-FDR were prepared and their in vitro affinity to purified integrin αvβ3 was determined. c(RGDfK)-Aoa-FDR showed the greater affinity. Purified “hot” bioconjugates c(RGDfK)-Aoa-[18F]FDR and c(RGDfC)-Ahm-[18F]FDR were assayed by incubation with MCF7, LNCaP and PC3 cell lines. In both cases the conjugated RGD peptides showed selectivity for PC3 cells, which express αvβ3 integrin, with the c(RGDfK)-Aoa-[18F]FDR demonstrating better binding, consistent with its higher in vitro affinity. The study demonstrates that [18F]FDR is an efficient bioconjugation ligand for RGD bioactive peptides.

Graphical abstract: Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2013
Accepted
15 May 2013
First published
15 May 2013

Org. Biomol. Chem., 2013,11, 4551-4558

Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor

S. Dall'Angelo, Q. Zhang, I. N. Fleming, M. Piras, L. F. Schweiger, D. O'Hagan and M. Zanda, Org. Biomol. Chem., 2013, 11, 4551 DOI: 10.1039/C3OB40550H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements