Photocatalytic generation of H2O2 over a Z-scheme Fe2O3@C@1T/2H-MoS2 heterostructured catalyst for high-performance Fenton reaction†
Abstract
The wide application of the Fenton reaction has been severely restricted by the requirement of continuous feeding of H2O2, the iron-slurry production, and the slow recycle rate of Fe3+/Fe2+. This work reports transforming type-II Fe2O3@2H-MoS2 heterostructures to a Z-scheme Fe2O3@C@1T/2H-MoS2 catalyst capable of photocatalytic in situ generation of H2O2 as an oxidant for the subsequent Fenton reaction. With MoS2 as a co-catalyst to improve the reduction from Fe3+ to Fe2+, the cascade process demonstrates high performance in oxidative degradation of organics (e.g., 100 mg L−1 tetracycline within 100 min). The in situ generated H2O2, with a yield as high as 1575 μmol g−1 h−1 in air-saturated methanol solution (75 vol%), accounts for 43.5% of the total degradation efficiency. The current system represents an effective solution to the challenges in the traditional Fenton reaction, holding great potential for organic pollutant degradation in wastewater.