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The essential demand for functional materials enabling the realization of new energy technologies has
triggered tremendous efforts in scientific and industrial research in recent years. Recently, high-entropy
materials, with their
correspondingly tunable functional properties,

unique structural characteristics, tailorable chemical composition and
in the fields of
environmental science and renewable energy technology. Herein, we provide a comprehensive review
of this new class of materials in the energy field. We begin with discussions on the latest reports on the
applications of high-entropy materials, including alloys, oxides and other entropy-stabilized compounds
and composites, in various energy storage and conversion systems. In addition, we describe effective
strategies for rationally designing high-entropy materials from computational techniques and

experimental aspects. Based on this overview, we subsequently present the fundamental insights and

have drawn increasing interest

give a summary of their potential advantages and remaining challenges, which will ideally provide
researchers with some general guides and principles for the investigation and development of advanced
high-entropy materials.

The energy crisis and environmental issues caused by the burning of fossil fuels are major challenges facing mankind. In recent years, the pursuit of renewable

energy sources and the development

of sustainable energy technologies have become important research targets. Various technologies have been used to

convert and store energy from clean sources, such as fuel cells, batteries and solar cells, to name a few, and are receiving increasing attention and recognition.

One of the keys to their commercialization is to explore functional materials. High-entropy materials, proposed for the first time in 2004, represent a promising
class of disordered multicomponent materials with tailorable properties/functionalities (and potentially unprecedented performances) and have been used in a

variety of systems and applications. The initial intention was to obtain more robust structures by maximizing the configurational entropy, which resulted in the
well-known high-entropy alloys and the later developed high-entropy oxides. Owing to the entropy-driven effects and their chemical and structural diversity,

high-entropy materials show much promise in the field of sustainable energy storage and conversion.

1. Introduction

approximately 95% of the global energy consumption.”> More
importantly, the increase in greenhouse gas (GHG) emission

World energy demand has been growing exponentially in the
past decades and is estimated to be doubled to 28 TW by the
year 2050, which would be equivalent to 20 billion tons of oil
per year.! This value is alarming due to the essential limitations
on rapidly depleting fossil fuels, which currently present
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produced by burning fossil fuels causes severe environmental
issues, especially climate changes and the resulting global
warming.>* Eliminating that requires the transition to green,
reliable and renewable energy sources, for example, wind,
hydropower or solar energy, to name a few." However, even if
such a transition can be made, most of the renewable power
sources are not continuous power supplies, such as solar panels
at night, so that more energy storage and efficient energy
conversion systems are indispensable in this field and need
to be developed in near future. Furthermore, carbon dioxide
capture and conversion is also a viable solution to reduce GHG
emission and produce carbon-based fuels.*
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The realization of these advanced applications largely depends
on the development of functional materials. Recently, a new class
of materials, so-called high-entropy materials (HEMs), is receiving
continuously increasing attention. HEMs give rise to attractive
features, including the preference for single-phase solid solutions
with simple crystal structures, having attributes exceeding their
constituent elements, as well as the possibility for tailoring the
functional properties.””” A large number of HEMs, including
alloys,>”™*° oxides,""™° oxyfluorides,"”'® borides,'® carbides,**>
nitrides,” sulfides® and phosphides,> have been reported in a
broad range of utilizations, for example, in thermoelectricity
applications, thermal and environmental protections, electro-
chemical energy storage and various catalytic systems. As a very
fresh member of energy storage and conversion materials,
HEMs exhibit charming qualities. Compared with conventional
metal compounds, large entropy may promote the formation of
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a single-phase structure with severe lattice distortion (strain).
Note that lattice distortions are commonly developing in high-
entropy alloys (HEAs)>®%*%?” and are supportive to gas absorp-
tion due to the formation of more suitable reaction sites,
leading to promising properties, especially for hydrogen
storage.'>?®° The strong synergistic effects among the func-
tional units are beneficial to the catalysis of energy conversion
processes, boosting the investigation of high-entropy noble-
metal and noble-metal-free electrocatalysts in methanol
oxidation®’° as well as oxygen evolution®* ™" and
reduction.>'?>*34648752 [ the battery field, HEMs also exhibit
attractive properties. A unique entropy-stabilized conversion
mechanism was proposed for rock-salt high-entropy oxides
(HEOs) as lithium storage anodes, leading to improved cycling
stability and Coulombic efficiency.'>'”'%3%>* Also, layered
O3-type HEOs were investigated as intercalation-type cathodes
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Fig. 1 Schematic of high-entropy materials for applications in energy
storage and conversion. Some elements have been omitted for clarity.

towards sodium/lithium storage, showing good long-term
cyclability and rate performance owing to entropy stabilization
of the host matrix."**"

In this article, we provide a comprehensive overview by
focusing on the applications of HEMs, which can be mainly
classified in HEAs, high-entropy ceramics (HECs), as well as
some other high-entropy composites, in fields of hydrogen
evolution and storage, carbon dioxide conversion, oxygen
catalysis, rechargeable batteries and supercapacitors (Fig. 1).
The (potential) advantages and challenges related to the devel-
opment of HEMs are systematically discussed. We conclusively
extract possible fundamental insights and the most core direc-
tions for designing new materials of the high-entropy family,
which shall enlighten scientists to develop advanced HEMs for
applications in energy storage and conversion.

2. Theoretical concept and structural
diversity

The general high-entropy concept was first deployed at the
HEAs and can be traced back to two independent studies in
2004.°%°7 Yeh and coworkers first proposed and introduced the
concept of HEAs,*® in the same year, independently, Cantor
et al.”” reported a similar study on 5-component single-phase
alloys, without mentioning the term ‘high-entropy” but refer-
ring to “multicomponent alloys”. Since then, HEAs have been
rapidly developed, often considered as a breakthrough in the
field of multicomponent alloy systems. There are two main
definitions of HEAs, one is based on composition, while
the other is based on configurational entropy.>”” In the first
definition, HEAs refer to alloys that contain at least five principal

This journal is © The Royal Society of Chemistry 2021
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elements and each with an atomic percentage in the range of 5%
to 35%.°° If there are any minor elements, then the atomic
percentage of each should be less than 5%.°® For the latter
definition, HEAs are defined as alloys with configurational
entropies larger than 1.5R in a random state, irrespective of
whether they are single-phase or multiphase at room
temperature.>® Accordingly, materials with AS > 1.5R are cate-
gorized as high-entropy class, while materials with 1.0R < AS <
1.5R and AS < 1.0R are classified as middle (or medium)-
entropy and low-entropy class, respectively.>”

Generally, for a random solid solution, the ideal configura-
tional entropy (AScon) per mole can be given as:*°

n
ASC(mf = —R Zx,— lnx,-, (1]
i=1

where R is the ideal gas constant and x; represents the molar
fraction of the ith component. For a given number of
components (n), configurational entropy reaches the largest
value when the atomic fraction of all components is the same
(i.e., equimolar). Then, the configurational entropy per mole is:>’

[ 11 1
ASCOnf:7R<*1H7+71n—+...+,1n7) = _Rln-
n n n n n n n

= Rlnn. )

In the high-entropy concept, AS.ons solely depends on the
number of incorporated elements, thus creating a competitive
situation between the additional enthalpy required for mixing
different elements (AH,,;,) and the increased AS,,x based on the
Gibbs-Helmholtz equation:>’

AGmix = AI‘Im,'X — TASmix- (3)

If TASmix can balance or exceed AHx, entropy stabilization
of the crystal structure is established, and the stability of the
compound would increase with higher configurational entropy
because of the more negative AGn. Additionally, worth to
remark that theoretical computations have shown demonstra-
tions, in a multicomponent system a threshold for the number
of species is discovered, above such value entropy gain would
unavoidably exceed over enthalpy gain and can no longer be
ignored.®*

Various crystal structures of HEAs have been identified,
namely, face-centred cubic (fcc), body-centred cubic (bcc),
hexagonal close-packed (hcp) and C14 hcp, as presented in
Fig. 2a. Many applications of HEAs were reported in the energy
sector, including electrochemical energy storage and conver-
sion and hydrogen storage. Yeh et al.*® summarized four core
effects of HEAs: (1) high-entropy effects, (2) lattice distortions,
(3) sluggish diffusion and (4) cocktail effects. These factors
provide HEAs with numerous versatile properties and hence
make them suitable for many applications. The presence of
lattice distortions in HEAs is due to the different sizes of
elements. Because each metal in the HEA has the same prob-
ability to occupy the lattice site, severe lattice distortion would
arise when ignoring chemical ordering. The mechanical,
electrical, thermal, optical and chemical behaviour of materials

can be varied by the so-called “lattice distortion effects”.'”

Energy Environ. Sci., 2021, 14, 2883-2905 | 2885
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Fig. 2 The identified crystal structures of (a) high-entropy alloys and (b) high-entropy ceramics used in energy-related fields.

For instance, the large lattice strain in the HEASs is beneficial to
the absorption of hydrogen in both octahedral and tetra-
hedral sites, providing great potential for hydrogen energy
applications.'®*$73? Sluggish diffusion effects lead the alloys
to develop nanocrystalline or even amorphous structures,
which is promising for electrocatalysis, including methanol
oxidation®?*®*%3  or oxygen evolution®**"***%%7  and
reduction.*"*>* Qverall, HEAs can be regarded as atomic-
scale composites, since multiprinciple metals are incorporated
and the interactions among the different elements are playing
an important role,**”*° resulting in a kind of composite (cock-
tail) effect on properties.

In 2015, the entropy stabilization concept was first trans-
ferred to a multicomponent oxide,"" initiating the development
of HECs.>®® The molar configurational entropy of ceramic
materials can be obtained based on the following equation:**°

n m
E X Inx i + E X;j Inx j )
i=1 cation-site J=1 anion-site

4)

ASconf =—R

where x; and x; represent the mole fraction of elements in the
cation and anion sites, respectively. Both the structure and com-
position of single-phase HECs are versatile. The most widely
studied materials are rock-salt type HECs, including oxides,
nitrides and carbides (Fig. 2b). Early research on the rock-salt
structure in the energy field focused on (Coy,Mgy2Cuyg,Nig,Zn, )0,
especially its application as a conversion anode material in
lithium-ion batteries (LIBs).">***" By introducing different

2886 | Energy Environ. Sci., 2021, 14, 2883-2905

metal cations and anions, recent studies have shown the
possibility of synthesizing Li-containing rock-salt cathode
materials."®®” The perovskite structure comprises at least two
cation sublattices, both of which can be substituted and shared
by multiple metals to form a variety of HECs.*>®*7? Other
lattice structures, such as fluorite,”>””> spinel*®”®”” and layered
oxides™® were also identified and demonstrated their
potential in various energy storage and conversion technologies
(Fig. 2b). Entropy stabilization and the occurring interactions
between the different incorporated elements endow unique
properties of HEMs. In this review, we will focus particularly
on the effect that entropy stabilization (and the cocktail
effect) has on the applications in electrochemical energy
storage, for example, in batteries'®!317:18:33:35,69.76-79 5pq
supercapacitors.>>80-82

3. Hydrogen energy applications

Hydrogen (H,) is the most abundant substance in terms of
resource availability and is being promoted as a promising
energy carrier and fuel source with high efficiency and zero
emission.*>®> In virtue of the molecular being small and
simple, the energy contained in 1 kg of H, is about 120 M],
exceeding that of most conventional hydrocarbon-based fuels,
and the main by-product is only water after the energy being
consumed.®*"®® On the strength of these features, H, has been
identified as a leading candidate for on-board fuel, which
consecutively promotes the development of hydrogen storage
and hydrogen evolution reaction research. In this section,

This journal is © The Royal Society of Chemistry 2021
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we will focus on the utilization of bec, fcc and C14 hcp
structured HEAs in the hydrogen energy field.

3.1 Hydrogen storage

In practice, being used as a fuel, utilization of H, encounters
drawbacks, such as the low gaseous density and the large
energy consumption from the liquefying process. Another
important issue is safety concerns due to the ready-to-flame
property of H,. Therefore, storage of hydrogen is a key factor
enabling the development of sustainable hydrogen-based
energy systems.**°' Gaseous, liquid and solid-state storage
systems are the three main systems of hydrogen storage tech-
niques available, chosen based on the corresponding size of
storage, the application area and the specific conditions.**°
Among those techniques, solid-state storage in the form of
metal hydrides provides the most compact technology, offering
the highest energy density on a volume basis.’> Recently, HEMs
are receiving increasing attention as a new class of potential
hydrogen storage materials. Especially HEAs are considered to
be the most promising representatives from the high-entropy
class.”'®% Comparing with conventional binary or ternary
alloys, solid-solution HEAs have unusual properties, origina-
ting from the lattice distortion or cocktail effects coming along
with the diversity and number of incorporated elements (5 or
more principal elements, each having a certain size). The local
environment for each atom is different, which may develop
lattice distortions (strain) that eventually provide more suitable
interstitial sites for the occupation of hydrogen atoms. Table 1
lists the main hydrogen-storage HEAs reported in recent years,
which can be classified into two main categories based on their
crystal structures, bec and C14 hep Laves phases.

The first HEA class designed for hydrogen storage reported
by Kao et al.*® was FeMnCoTiVZr. The FeMnCoTi,V,Zr, HEA
represents a single AB, C14 Laves structure, with Zr and Ti
being considered to sit on the A sites, while Fe, Mn, Co and V
are located at the B sites. It is concluded that the formation of
the single C14 Laves phases is promoted by the high-entropy
effect. By adding different elements with similar atomic sizes
and chemical/physical features, Gibbs free energy is lowered as

View Article Online
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the term of TASpx increases due to an increased configura-
tional entropy in the alloy system. Three forms of HEAs,
namely, FeMnCoTig 5_, 5VZr, FeMnCoTiV, 4 30Zr and FeMnCo-
TiVZry 43,0, present single C14 Laves phases, and the hydrogen
absorption/desorption properties can be enhanced by adjusting
the V, Zr and Ti proportion without modifying the original
crystal structure. The affinity between the alloy elements and
hydrogen determines the enthalpy of hydride formation, which
is also the deciding factor of the maximum hydrogen storage
capacity [(H/M)max]- Ti and Zr are shown to be involved in the
hydrogen absorption in both FeMnCoTi,VZr and FeMnCoTiVZr,,
with increased (H/M)pax for x and z in the ranges of 0.5 < x < 2.0
and 0.4 < z < 2.3 (Fig. 3a and b). The (H/M),o reached to 1.8 wt%
for FeMnCoTi,VZr at room temperature. The kinetics of hydrogen
absorption and the time required for FeMnCoTi,V,Zr, to achieve
90% of its absorption capacity (o) were measured and deter-
mined. The size of the interstitial sites is proved to be the decisive
factor in determining the ¢, and the plateau pressure. The
introduction of Ti or Zr enlarged interstitial sites of the alloys
and led to the expansion of the crystal lattice due to lower
compressive atomic stresses. As a result, the ¢, value and plateau
pressure of FeMnCoTi,VZr and FeMnCoTiVZr, decrease as x and 2z
increase.

Similar studies were conducted on FeMnCrTiVZr HEAs by
Chen et al.”* They showed that substituting Cr for Co enhances
the hydrogen absorption properties. Therefore, an effective and
simplified way of designing the HEA composition has been
indicated, which is favoured by the high-entropy effect in the
unique complex system, since tailoring (and optimization) of
the hydrogen storage properties can be achieved by varying/
exchanging certain elements without changing the crystal
structure.

Another C14 Laves structure of FeMnCrNiTiZr was studied
by Edalati et al.,”” the (H/M)max of 1.7 wt% with fast kinetics at
room temperature was discovered, without the material under-
going any activation treatment. They highlighted three criteria
to design FeMnCrNiTiZr that can reversibly store hydrogen at
room temperature: (i) the total valence-electron concentration
(VEC) in HEAs was set to 6.4; (ii) the AB, system was selected to

Table 1 Hydrogen absorption/desorption properties of HEAs reported in the literature

Temperature Maximum hydrogen storage

HEA Method Structure (°Q) Pressure (bar) capacity (wt%) Ref.
FeMnCoTiVZr Arc melting C14 Laves Tabs/Taes: RT  Paps: 200 1.8 28
FeMnCrTiVZr Arc melting C14 Laves Tabs/Tdes: 5 Pabs: 20 2.17 94
FeMnCrNiTiZr  Arc melting C14 Laves Tabs/Tdes: RT  Paps: 100 1.7 95
FeCrNiTiVZr LENS C14 Laves Tabs/Tdes: 50 Pabs: 100 1.81 96
FeCrNiTiVZr Arc melting C14 Laves Tabs/Tdes: RT  Paps: 50 1.6 97
TiNbVZrHf Arc melting bec Tabs: 300 Pabs: 53 2.7 29 and 30
TiNbZrMoV LENS Mixed phases Tabs: 50 Pabst 85 2.3 98
TiNbZrMoV LENS bee Tops: 50 PDabs: 85 0.59 98
TiNbZrTa Arc melting bec Tabs/Tdes: RT  Papst 7 1.67 99
TiNbVCr Arc melting bce Tabs/Tdes: RT  Paps/Pdest Vacuum-25  1.96 100
TiNbVZr High-energy ball milling  bce Tabs: 250 Pabs: 30 2.5 101
FeCoNiMgTiZr = High-energy ball milling  bcc Tabs: 350 Pabs: 20 1.2 102
FeMnNiCrAlW  High-energy ball milling  bce Taps: RT Pabs: atm 0.62 103
LaFeNiMnV LENS G + La(NiMn);  Tape/Taes: 35  Pabs: 50 0.83 104
FeVCoTiCrZr Arc melting Mixed phases Tabs/Tdes: RT  Pges: 1.8 1.88 105

This journal is © The Royal Society of Chemistry 2021
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(a and b) FeMnCoTi,V,Zr, HEAs: PCls for (a) various FeMnCoTi,VZr (Ti,) and (b) FeMnCoTiVZr, (Zr,) materials at 25 °C. Reproduced with

permission.?® Copyright 2010, Elsevier. (c—f) TINbVZrHf HEA: (c) in situ synchrotron-based powder XRD of hydrogen cycling experiments at 500 °C.
(d) Rietveld refinement of the hydride structure after 1 cycle absorption—desorption process, with the distorted fcc lattice indicated by the splitting of the
110/002 reflections (inset). (e) In situ NPD measurement at 500 °C and 50 bar D, and (f) ex situ NPD measurement after getting the deuteride.

Reproduced with permission.?® Copyright 2018, American Chemical Society.

reduce the hydrogen binding energy by increasing the number
of inert elements around the octahedral sites (A and B refer
to the elements that do and do not react with hydrogen,
respectively); and (iii) single-phase thermodynamic stability.
Kunce et al.’® synthesized a C14 Laves structure-dominated
FeCrNiTiVZr via the laser engineered net shaping (LENS)
process. The (H/M)y. reached to 1.81 wt% after synthesis
and to 1.56 wt% after additional heat treatment. The same
HEA was also produced by Zadorozhnyy et al” via an
arc melting-based rapid solidification process. The greatest
hydrogen storage capacity achieved was 1.6 wt% at the first
hydrogenation, then it reduced to 1.3-1.4 wt% in the subse-
quent cycles at ambient temperature. The authors showed
results from cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) combined with pressure-
composition isotherms (PCI), and calorimetric titrations provided
insights into the phase transformations and hydrogen sorption/
desorption kinetics (along with the corresponding charge at each
potential interval).

Bcc HEAs are widely investigated as hydrogen storage
materials, especially alloys composed of refractory elements,
since these metals can absorb large amounts of hydrogen,
thereby forming hydride phases having a maximum (hydrogen-
to-metal) H/M ratio of 2. Sahlberg et al.*® reported a bec-type
TiNbVZrHf, which could be hydrogenated to an H/M ratio of 2.5
in a body-centred tetragonal (bct) structure. It was hypothesized
that such high hydrogen storage capacity (greater than any of its
constituent elements will absorb) was benefiting from the lattice
distortion in the HEA. Similarly, the same composition HEA was

2888 | Energy Environ. Sci., 2021, 14, 2883-2905

also studied by Karlsson et al,”® a phase transition process

(bcc — bct) was carried out, and the results showed the same
maximum H/M ratio of 2.5. The hydrogen absorption mecha-
nism was further confirmed by in situ X-ray diffraction (XRD)
at different temperatures combined with in situ and ex situ
neutron powder diffraction (NPD) measurements. Fig. 3c shows
the in situ synchrotron-based XRD results from hydrogen
cycling experiments at 500 °C, indicating a fully reversible
transition from the bcce alloy to a hydride phase (distorted fecc
lattice, Fig. 3d). NPD revealed that the hydrogen atoms occupy
both the tetrahedral and octahedral interstitial sites in the
tetragonal crystal (Fig. 3e and f). The authors concluded that
the severe lattice strain in the HEA leads to promising hydrogen
storage properties. Interestingly, when studying a similar struc-
tured TiNbZrHfTa HEA, Zlotea et al'°® found a two-phase
hydrogen absorption reaction, which is in contrast with their
previous results for TiNbVZrHf.*® The hydrogen absorption in
TiNbZrHfTa induced a transformation from the initial bce
structure to bct monohydride and eventually to a dihydride
phase (fcc). From the comparison between TiNbZrHfTa'*® and
TiNbVZrHf,*® the authors assumed that the phase transforma-
tion process is highly related to the lattice distortion (J), as
defined for HEAs:® A one-step reaction with hydrogen (bcc —
bet hydride with large hydrogen content) would proceed for
large J, while a two-step phase transition (bcc — bet — fec) is
generally promoted by small d, as also encountered for con-
ventional bec alloys. However, single-phase bee TiNbZrMoV®®
has a significantly lower hydrogen storage capacity (0.59 wt%)
than that of TINbDVZrHf (2.7 wt%), which is presumably due to

This journal is © The Royal Society of Chemistry 2021
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the different hydrogen solubility. In fact, Nb and Mo metals
show limited hydrogen solubility, whereas bcc-structured Ti,
Hf, V and Zr have rather large hydrogen solubility. Other
TiNbZr-based HEAs, such as TiNbZrTa®® and TiNbZrMoHf,'?”
were also investigated, revealing maximum hydrogen storage
capacities at room temperature of 1.67 and 1.18 wt%, respectively.
The corresponding hydrogen absorption mechanism of TiNbZrTa
was shown to be the nucleation and growth mechanism, with
rapid hydrogen absorption kinetics, even at room temperature.
Furthermore, the authors studied the activation behaviour of
TiNbZrTa in another paper,'®® presenting a two-step mechanism
comprising the reduction of surface oxides to sub-oxides and the
subsequent transformation into sub-hydroxides. TiNbZrMoHf
HEAs were also studied on the variation of the concentration of
Mo. The results showed a linear relationship between the thermal
stability of TiNbZrMoHf hydrides and the Mo content, ie., the
higher the Mo concentration, the lower the stability of TiNbZr-
MoHf hydrides.

Very recently, Nygard et a reported a series of quaternary
and quinary refractory TiNbV-based alloys, including TiNbVX
(X = Zr, Cr, Hf, Mo, Ta), TiNbVZrHf, TiNbVCrMo and
TiNbVCrTa. This study revealed the importance of VEC in the
destabilization of hydrides, suggesting two main interesting
trends: (i) from the bcc alloy to the corresponding hydride, the
volume expansion of each metal atom increases linearly with
the VEC of the alloy (Fig. 4a); and (ii) for hydrogen desorption,
the onset temperature decreases linearly with the VEC (Fig. 4b).
Based on these insights, TiNbVCr (VEC = 5) was identified to be

1 100
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the most promising hydrogen storage material with 1.96 wt%
hydrogen storage capacity at room temperature and without
having any activation procedures. Another series of TiNbVTa-
and TiNbVZr-based alloys were developed by the same group.®®
All of these materials exhibited single-phase bcc structures,
which formed fcc hydrides and reached the maximum H/M
ratio of close to 2. Both the bec and fec unit cells expand
linearly with the Zr/M ratio, and the increase in Zr concen-
tration stabilizes the hydrides. However, the desorption from
the Zr-rich hydrides induces phase segregation into two bcc
phases, i.e., one with a larger and the other with a smaller unit
cell than the original bcc alloy. This is proved by in situ
synchrotron-based XRD along with the corresponding thermo-
gravimetry/differential scanning calorimetry (TG/DSC) mea-
surements for 4 samples with increasing Zr content (Fig. 4c-f),
TiNbVTaH, (Zr/M = 0), TiNbVZrysTa,sH, (Zr/M = 12.5 at%),
TiNbVZrH, (Zr/M = 25 at%) and TiNbVZr,H, (Zr/M = 40 at%).
This study revealed that excessive Zr in HEAs leads to poor
reversibility towards hydrogen absorption/desorption. Following
such insight, Montero et al.'®" reported a refractory TiNbVZr alloy
with a small amount of Zr. The material prepared by the ball-
milling method exhibited good stability at the hydrogen storage
capacity of around 2 wt%, although a 26% (capacity) fading
occurred during the initial cycles.

Some new bcc structures of HEAs, such as FeCoNiMgTiZr,
FeMnNiCrAIW'®® and TiZrHfScMo,'*® were also investigated as
hydrogen storage materials. Hu et al.'°® used density functional
theory (DFT) calculations to determine the structural parameters,

102

a c Heat flow 5 d Heat tiow §
imwimg mr, L1VNbTaH, imwimg mk L1VZrg sNbTag sH,
05 - =2 o % o2 %
0
a=0.185 - VEC - 0.546 < d
o exo ot exo
0.4 " » =
& TiVCrNb © .-~ 600
et 104
P i -
S TiVNb 0.~~~ 3 G =
=03 TVZINE -~ o TivNbTa - T
[S] TIVZrNbHf.o~ TiVNbHf E E
TiZeNbHE o s L
e 200
o2 L 0 20 pa}
100
o bec
i 0
0.1 i B

4.0 4.25 45 4.75 5.0 5.25 © 1 3 30o0mosors i1z 3 4 5 6 7 S 1 : 300050511 2 3 4 5 6 7
VEC [2] Om [WE.%]  Mphase/Miot [@] QA Y Om IWE.%] Mpnase/Miot [O] oA
M [Elements] =
b CrTa e f
TiZrNbHf Hf Ta Mo TiVCrMo neat now = 5
ZH 77 o a cMo mwrma i1 TIVZrNbH
PO B N T g
.0 d
SSeen 800 exo-
4001 Ssgi o 5 -
~~~~ 700
R i o~ 100
03001 +———F———=s S g~
= N o ~ < s
0] [- 2SN H 2
e ~.. £ £ a0
£ 200 o 3
E [
kS 00
20° N
100 200 10
m—
=== Tonset=1203 *C —(184 *C)- VEC 10 i i

42 44 46 48 50 52 54 L
VEC [2]

Fig. 4

3 oomosers 11 2 3 4 5 6 7 s 1 2
Pm [WE. %] Mphase/Mtot [@]

30005075 11 2 3 4 5 6 7

QA Y] Pm [WE. %] Mpnase/Miot (D] QA

(a and b) TiNbV-based HEAs: (a) linear correlation between the expansion of the volume of each metal atom and VEC (bcc to the corresponding
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alloy) and VEC. Reproduced with permission.’°® Copyright 2019, Elsevier. (c—f) TiNbVTa- and TiNbVZr-based HEAs: in situ synchrotron-based XRD
measurements during desorption of hydrogen from (c) TiNbVTaH,, (d) TiNbVZrq sTag sH,, (e) TiNbVZrH, and (f) TINbVZr,H, and the corresponding TG/
DSC analysis and sequential refinement. Reproduced with permission.®® Copyright 2019, Elsevier.
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binding energy and formation enthalpy, as well as the electronic
properties of hydrogenated TiZrHfScMo. The first-principles
calculations indicated that the hydrogenation is a chemical sorp-
tion process, with the possibility of covalent bonding between the
metal elements and hydrogen. It was also observed that during
the hydrogen absorption process, the different alloy elements are
playing different roles, featuring on the advantage of HEMs.

In addition to the C14 Laves and bcc structures, alloys with
mixed phases were also reported. For instance, the laser-
manufactured LaFeNiMnV showed a primary two-phase structure
that changed from initial c + La(NiMn)s to fcc + La(NiMn)s
phases, with a maximum hydrogen storage capacity of 0.83 wt%.'%*
Multiphase (FeV)go(CoTiCr)yo_,Zr, (0 < x < 2) alloys can quickly
absorb hydrogen without any activation process, even at room
temperature.'® For improvements of the hydrogen absorption/
desorption kinetics, Ti was substituted by Zr, which can help
reduce the microstrain accumulation during the cycles. It is also
suggested that a controllable substitution should be considered
for optimizing performance, as hydrogen storage capacities
decrease with an increased amount of substitution. Nevertheless,
it is important to highlight that the properties of HEMs can be
fine-tuned by adding species and tailoring concentrations.

3.2 Hydrogen evolution reaction

To date, most hydrogen is being produced by nickel-catalyzed
conversion of CH, to H, and CO or CO,. However, water
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electrolysis/splitting has been recognized as an extraordinarily
clean and the most promising method for hydrogen production.'*°
HEMs are particularly receiving more and more attention for
catalytic water splitting. Known procedures include electrocataly-
tic splitting by PtAuPdRhRu,""! NiFeMoCoCr,'"> AINiCuPtPdAu,*?
AINiCuPtPdAuCoFe®> and AINiCuMoCoFe,”” electrocatalytic
splitting by FeCoNiAlTi high-entropy intermetallic (HEI),'"’
CoCrFeMnNi-based high-entropy metal phosphide (HEMP)*®
and CoFeLaNiPt high-entropy metallic glass (HEMG),’® thermo-
chemical splitting by (FeMgCoNi)O, poly-cation oxide (PCO),"**
as well as photocatalytic splitting by TiZrHfNbTaO,; HEO.%®

Liu et al.'™ synthesized carbon-supported PtAuPdRhRu HEA
nanoparticles via a facile ultrasonication-assisted wet-chemistry
method, as shown in Fig. 5a. Benefiting from the strong synergistic
effects, the PtAuPdRhRu/C exhibited greater electrocatalytic activity
for hydrogen evolution reaction (HER) in an alkaline solution
than that of PtAuPdRh/C and commercial Pt/C. A noble-metal-
free fce-type NiFeMoCoCr HEA electrocatalyst was investigated
by Zhang et al,"** providing promising activity in both acidic
and alkaline conditions. For instance, in the acidic electrolyte
(0.5 M H,SO,), the HEA exhibited good HER activity, with a low
onset potential (44 mvV), small Tafel slope (41 mV dec™') and
low operation overpotential (281 mV) at the current density of
100 mA cm >,

In addition to the HEAs, some reports also focused on other
high-entropy alternatives for electrocatalytic HER. Jia et al.'*?
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Fig. 5 (a) Schematic diagram of the synthesis of carbon-supported PtAuPdRhRu HEA nanoparticles as HER electrocatalyst. Reproduced with permission. !t
Copyright 2019, Wiley-VCH. (b—d) FeCoNiAlTi HEI: (b) schematic illustration of the dealloying process from a dual-phase structure to a dendritic-like L1,-type
structure. (c) Electrocatalytic performance for HER in 1.0 M KOH solution: polarization curves (left) and Tafel slopes at a sweep rate of 5 mV s~ (right). (d) High-
magnification high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) image accompanied by atomic-scale elemental
mapping showing the ordered lattice structure (left) and DFT modeling of the site occupancy emphasizing the site-isolated structure (right). Reproduced with
permission."® Copyright 2020, Wiley-VCH. (e and f) CoFelaNiPt HEMG nanoparticle electrocatalyst: (e) nanodroplet-mediated electrodeposition for
controlling stoichiometry and microstructure. (f) Electrocatalytic evaluation of anodic polarization (left) and cathodic polarization (right) of the HEMG and
each of its components. Reproduced under the terms of the CC BY 4.0 license.*® Copyright 2019, the Authors. Published by Springer Nature.
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reported on a non-noble HEI (FeCoNiAlTi) and revealed this
surface dendrite-like, well-ordered porous L1,-type structure
enables good HER electrocatalytic activity in alkaline condition,
with an overpotential of 88.2 mV at the current density of
10 mA cm™> and a Tafel slope of 40.1 mV dec™' (Fig. 5b-d).
Glasscott et al.® reported on a facile one-step nanodroplet-
mediated electrodeposition strategy for fabricating HEMG
nanoparticles with up to 8 equimolar principle metals, with
the capability of controlling precisely the elemental stoichio-
metry (Fig. 5e). A general synthetic strategy for designing a
multifunctional electrocatalyst (CoFeLaNiPt) for both HER and
oxygen evolution reaction (OER) was illustrated by combining
transition and noble metals with desirable synergistic interactions
(Fig. 5f). Zhao et al.®® reported on a single-phase CoCrFeMnNi-
based HEMP prepared by an eutectic method and studied the
catalytic activity for both HER and OER. Very recently, a high-
entropy photocatalyst, TiZrHfNbTaO,;, was synthesized by
Edalati et al,°® which had dual monoclinic and orthorhombic
perovskite phases, and shown to exhibit an appreciable visible
light absorption, with a bandgap of 2.9 eV and suitable valence
and conduction bands (energy levels) for water splitting.

3.3 Summary of HEMs for hydrogen energy applications

Compared to conventional binary or ternary alloys, the lattice
distortions (strain) in HEAs often provide more suitable inter-
stitial sites and diffusion pathways for hydrogen atoms, leading
to promising hydrogen storage properties. In addition, HEAs
often present highly reversible phase transitions upon hydro-
genation/dehydrogenation cycling, which is advantageous to a
reversible storage process. Therefore, HEAs represent a good
choice to improve the hydrogen storage properties of conven-
tional metal hydrides. On the other hand, when comparing
with the rapid developing sorbent materials for hydrogen
storage, such as the well-known metal-organic frameworks
(MOFs),"*>'1¢ the gravimetric capacity for hydrogen storage in
HEAs (typically less than 2.5 wt%) has not yet shown obvious
advantages. However, HEAs exhibit superior reaction thermo-
dynamics, which is a known disadvantage of MOF-based materials
that require cryogenic temperatures.''® Also, their properties can be
readily tailored through compositional design.

Regarding the application of HEMs for catalytic water splitting,
the reported studies are rather limited. However, some high catalytic
activities in this field are encouraging. The high-entropy approach
can be applied to Pt- or PtRu-based single or binary catalysts and
can also be employed in noble-metal-free alloy catalysts to increase
their activity by making use of the cocktail effect. In general, it has
been observed that HEAs show improved catalytic activity and better
stability compared to conventional alloys. Nevertheless, the func-
tionality of individual components is still largely unclear and further
experimental research is urgently needed.

4. Oxygen catalysis

Oxygen evolution and reduction reactions (OER and ORR) form
the core of various energy conversion technologies, including

This journal is © The Royal Society of Chemistry 2021
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fuel cells, metal-air (metal-oxygen) batteries and water splitting.
The efficiencies of these electrochemical energy conversion
systems are severely hampered by sluggish reaction kinetics,
requiring the development of electrocatalysts to overcome the
energy barriers. HEMs, particularly HEAs of fcc structure, are
attracting continuous attention as newly developed catalysts for
both OER and ORR.

4.1 Oxygen evolution reaction

HEMs can work as highly efficient electrocatalysts toward the
OER both in acid and alkaline conditions. Jin et al.®>® synthe-
sized a series of nanoporous Ir-based quinary HEAs, AICoNilIrX
(X = Mo, Cu, Cr, V, Nb), via a simple alloying-dealloying
strategy, in which the Ir content was only 20 at% (sufficiently
less Ir content compared to the common Ir-based binary and
ternary alloys with >50 at%). Benefiting from the possible
high-entropy and sluggish diffusion effects of HEAs, all of these
materials showed good OER activities in an acidic environment.
AlCoNiIrMo exhibited the highest OER activity and a substan-
tially enhanced cycling stability (Fig. 6a and b).

Some noble-metal-free HEAs, such as FeNiMnCrCu,**
FeCoNiCrAl,** CoCrFeMnNi,*” FeCoNiMn®’ and AlCoNiFeX
(X = Nb, Mo, Cr),*"*® were studied in an alkaline environment,
showing great potential for future applications as OER electro-
catalysts. Qiu et al*' synthesized several nanoporous
AlCoNiFeX (X = Nb, Mo, Cr, V, Zr, Mn, Cu)-based HEAs that
have a high-entropy (oxy)hydroxide surface. It was demon-
strated that the composition of the alloy plays a crucial
role to enhance the OER performance, with AlCoNiFeMo,
AlCoNiFeNb and AlCoNiFeCr showing the highest activity
(Fig. 6¢ and d). Furthermore, this group assembled both aqu-
eous and solid-state zinc-air battery cells with AlCoNiFeCr-
modified carbon cloth as cathode and a Zn foil anode,*®
showing superior performance compared to Pt/C-IrO,-based
battery cells. Similarly, a core-shell structure of FeCoNiMn-
based HEA was investigated by Dai et al.?” Through a CV scan
activation, MO, (M = Fe, Co, Ni, Mn) nanosheets were grown
directly onto the FeCoNiMn particle surface, thereby forming
the core-shell structure. It was found that such composite
exhibits a low overpotential of 302 mV at the current density
of 10 mA cm ™2, a small Tafel slope of 83.7 mV dec ' and good
long-term stability of electrolysis for over 20 h in alkaline
conditions, which is comparable to the commercial RuO,
OER electrocatalyst.

Recently, Wang et al.’® reported a new low-temperature
synthesis method for (CoCuFeMnNi);0, HEO nanoparticles
with the average particle size of 5 nm. Such HEO nanoparticles
showed promising performance toward the OER in an alkaline
solution. Some other HEMs, such as high-entropy metal-
organic framework (HE-MOF),** high-entropy perovskite fluoride
(HEPF),”® HEMG®® or PCO,"* were also studied on their OER
ability. For instance, Zhao et al.** reported a MnFeCoNiCu-based
HE-MOF synthesized by a facile ambient-temperature solution-
phase method (Fig. 6e), demonstrating high electrocatalytic
activity for OER in an alkaline system. Wang et al.** developed
a feasible synthesis method for HEPFs by incorporating
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