High entropy biphasic oxide cathode materials for sodium-ion batteries to mitigate performance degradation

Abstract

Layered oxide materials have high theoretical capacity, simple structures and a wider range of elements to choose from. For sodium-ion batteries (SIBs), they are an ideal cathode material. However, these materials are prone to an interlayer slip and phase transition, which limits their application. In order to solve this problem, we designed a P2/O3-type Na0.85Mn0.44Fe0.17Ti0.05Ni0.16Mg0.06Zn0.06Cu0.06O2 (P2/O3-HEO) cathode material based on entropy tuning and biphasic tailoring strategies. We have used a variety of material characterisation techniques to identify the impact of related factors on material performance. The phase transition of the material is effectively mitigated by increasing the constitutive entropy of the material, which mitigates the cycling performance degradation induced by irreversible phase transitions during high-voltage charging and discharging. Meanwhile, the biphasic tailoring strategy improves the discharge capacity of the material to some extent and reduces the structural collapse due to oxygen depletion. The biphasic P2/O3-HEO cathode exhibits a large discharge specific capacity (0.1C, 162.3 mA h gāˆ’1) and capacity retention of 72.9% over 300 cycles at 5C within the potential range of 2ā€“4.3 V. As a result, this work provides a different perspective for solving similar problems that occur in composite cathode materials for SIBs.

Graphical abstract: High entropy biphasic oxide cathode materials for sodium-ion batteries to mitigate performance degradation

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2024
Accepted
16 Dec 2024
First published
17 Dec 2024

Sustainable Energy Fuels, 2025, Advance Article

High entropy biphasic oxide cathode materials for sodium-ion batteries to mitigate performance degradation

Y. Wang, Y. Wang, L. Liu, Z. Wang, X. Ding, Q. Zhou, S. Huang, H. Zhang and H. Gao, Sustainable Energy Fuels, 2025, Advance Article , DOI: 10.1039/D4SE01012D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements