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In this review we will focus on how magnetic fields can be used to manipulate the motion of various micro-

and nanostructures in solution. We will distinguish between ferromagnetic, paramagnetic and diamagnetic

materials. Furthermore, the use of various kinds of magnetic fields, such as homogeneous, inhomogeneous
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and rotating magnetic fields, is discussed. To date most research has focused on the use of ferro- and

paramagnetic materials, but here we also describe the possibilities of magnetic manipulation of
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1. Introduction

Controlled motion of micro- and nanostructures in solution is a
key ingredient for transport and assembly of nanomaterials in
various applications. For instance, in drug delivery it is impor-
tant that carriers can be accurately manoeuvred to pick up drugs
at one location and release it at another." Another example is
the separation of blood cells, bacteria or cancer cells from blood
samples in microfluidics, which is crucial for diagnosing
diseases or infections.” Influencing motion and orientation of
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diamagnetic materials. Since the vast majority of soft matter is diamagnetic, this paves the way for many
new applications to manipulate the motion of micro- and nanostructures.

micro-objects also gives the ability to control their self-assembly
in larger structures® or induce nematic phases in suspensions of
spheroidal particles.”

To master movement at the micro- and nanoscale, different
concepts can be utilized, many of which are also found in
nature. For instance, micro- and nanostructures can be moved
along a predefined path. In cells this is done by kinesis proteins,
which transport biomolecules by moving along tubulin fibers.*®
Another example is the conversion of rotational motion into
linear translation. This concept is applied by flagella, the
rotating tail that bacteria use for propulsion.? Motion can also
be induced by an external field gradient. For example, a proton
gradient is necessary for inducing rotational movement in ATP-
synthase, the protein responsible for ATP synthesis.® Finally,
steering of micro- and nanostructures can be achieved by
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aligning them along an external vector field, such as electric and
magnetic fields. This property is exploited by organisms that
use the Earth’s magnetic field for orientation, like certain birds,
fish and magnetotactic bacteria.’® With such a diversity of
examples, it is not surprising that many synthetic nanomotors
are inspired by those found in nature.

Several review articles have been published over the years that
discuss various nanomotors, for instance, molecular'* and
nanomotors with' or without” moving parts. The motion of
these nanomotors was induced by various stimuli such as elec-
tromagnetic radiation, ultrasound, chemical reactions and elec-
tric or magnetic fields.***® In this review we will discuss
propulsion and steering of micro- and nanostructures induced by
external magnetic fields. Using magnetic fields for manipulation
has several advantages. First of all, the response can be varied by
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choosing the type of magnetism of the material, ranging from
ferromagnetism and paramagnetism to diamagnetism. Second,
for each of these magnetic materials, the field strength and
orientation can be varied, or kept constant, in space, time or both.
We can distinguish homogeneous magnetic fields (field strength
and direction constant in space and time), inhomogeneous
magnetic fields (strength changes with position but not with
time), rotating magnetic fields (direction changes with time), and
oscillating magnetic fields (strength changes with time). Third,
magnetic fields are a non-invasive way of manipulating matter,
because magnetic forces are contactless, volume forces and no
chemical alteration is induced. Fourth, when a magnetic field is
used for propulsion, no depletion of fuel can occur. Fifth, strong
permanent magnets and (superconducting) electromagnets are
nowadays readily, commercially, available. Finally, compared to
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electric fields magnetic fields do not induce currents by acceler-
ating charged particles in solution' and are not as sensitive to
surface charges and pH.”

Although some excellent reviews on magnetic manipulation
of nanostructures have been published in the past,"””™° most of
them have focussed on micro- and nanostructures containing
ferromagnetic and paramagnetic particles, since these only
require magnetic fields up to several tenths of mT. Here, we also
include the magnetic manipulation of diamagnetic materials,
which normally requires magnetic fields in the order of 1 T or
more. The ability to magnetically manipulate seemingly
nonmagnetic (diamagnetic) materials can lead to new oppor-
tunities to control and steer (biocompatible) soft matter. It is
our goal to inform the reader about the possibilities of these
different types of magnetic materials and magnetic fields for
propulsion and steering of micro- and nanostructures.

2. Magnetism

In principle magnetic fields can be produced by free electric
currents or by magnetic materials, like permanent magnets. In
electromagnetism these two different sources of magnetic field
B are distinguished:>

B = puo(H + M). »

The field as a result of A is generated by a free (externally
controllable) current,f like in the coil of an electromagnet.
Magnetic fields produced by magnetic materials are the result
of the so-called magnetization M (magnetic moment per
volume) inside the material. y, is the magnetic permeability of
vacuum.

Magnetic materials can be divided into several different
classes of which the most common are paramagnets, dia-
magnets and ferromagnets.?” In this review we will focus mainly
on these three classes. We shall begin with defining para-
magnetism and diamagnetism, since they can be described in a
similar formalism. After that, ferromagnetism and, shortly,
superparamagnetism will be introduced.

2.1 Basic formalism of paramagnetism and diamagnetism

We consider para- and diamagnets under experimental condi-
tions (ambient temperature, field strengths) in which a
magnetization is induced that is linear with an applied
magnetic field:**

M = xH. 2

Here x is the dimensionless (volume) magnetic susceptibility,
where the sign of x determines whether a material is para- or
diamagnetic: x > 0 for paramagnetic and x < 0 for diamagnetic
materials. This means that the direction of M is parallel to H for
paramagnetic materials and antiparallel to H for diamagnetic
materials. Note that the magnetization is induced by the

+ Actually, H is determined by the free electric current according to: $4 -dl = I,
the integral of H along path dlis equal to the enclosed free current I;.
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external field and reduces to zero when this field is removed,
unlike the ferromagnetic case, which is discussed in Section 2.3.
Combining eqn (1) and (2) gives

—

B =uH, (3)

with u = po(1 + x) being the magnetic permeability of the
material. For paramagnetic materials u > o, while for
diamagnetic materials u < uo. However, in general para- and
diamagnetism is a weak effect and typically |x| < 1, which
implies that the effect of M on the total field is small: B = uoH.
Nevertheless, some quite interesting effects can occur when a
para- or diamagnetic object is placed in an external field.

The magnetic energy E of an object with volume V is
given by**

1
E=——xVB. 4
2uy @
This equation shows that the energy of a paramagnet
decreases with magnetic field, while that of a diamagnet
increases with magnetic field. Since force and energy are related

by F = —VE, the magnetic force can be written as'
ﬁ:ly(ﬁﬁ)é 5)
Ho

with V- B being the magnetic field gradient. From this equation
it follows that paramagnets are attracted to regions of high
magnetic field strength (high field seekers), while diamagnets
are expelled from them (low field seekers). This is the main
difference between para- and diamagnets.

The most common cause for paramagnetism is the presence
of unpaired electrons in atomic or molecular orbitals.*” Since
electrons have a fundamental property called spin, which can
be considered as a magnetic dipole having a permanent
magnetic moment 7, these spins will orient parallel to the
magnetic field to minimize its energy, given by*

1 =
E=——m-B (6)
Ko

In materials where all electrons are paired in atomic or
molecular orbitals (spin up and spin down), all spins cancel at
all times and no net magnetization can be induced. Unpaired
electrons however do not have this restriction and can, there-
fore, contribute to the magnetization of the material. In the
absence of an external magnetic field the unpaired spins point
in random directions, thereby cancelling each other on a
macroscopic level and the total magnetization is zero. When an
external magnetic field is applied, the unpaired spins will start
to align, leading to a net magnetization. This alignment
competes with thermal motion that tends to randomize the spin
orientations, which indicates that the paramagnetic response
strongly depends on temperature. At low temperatures it is
possible to fully align the spins at high magnetic fields and
saturate the magnetization. However, at room temperature and
for magnetic field strengths typically applied in the research
described in this review, the magnetization remains linear with
the applied magnetic field, following eqn (2).
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A historic overview of diamagnetism and its discovery by
Anton Brugmans is given by Kiistler.>* Most often, diamagne-
tism is caused by the tiny distortion of the electron orbits within
atoms or molecules by the applied magnetic field. Magnetic
dipoles are induced that oppose the external field.” This
quantum mechanical effect occurs in all materials but its
absolute value is normally smaller than for para- and ferro-
magnetism. A diamagnetic response is, therefore, observed for
materials that do not exhibit para- and ferromagnetism, which
is roughly 95% of all matter. It also means that stronger
magnetic fields (>1 T) are necessary to efficiently manipulate
(steer, align or propel) diamagnetic structures in a diamagnetic
solution. Although historically this has been relatively hard to
achieve, producing such high magnetic fields is no longer a
limiting factor. Superconducting magnets up to 20 T are
commercially available and in many cases permanent
neodymium-iron-boron magnets are also sufficient.>***¢>%
Since the vast majority of (soft) materials are diamagnetic, this
creates new opportunities to manipulate those materials with
magnetic fields, including many biomolecules, such as DNA,
RNA, peptides and the majority of cells and tissues,* indicating
that diamagnetic manipulation can be employed in biological
and medical research.

2.2 Manipulation of paramagnets and diamagnets

Manipulation of para- and diamagnets can be done in homo-
geneous or inhomogeneous magnetic fields. Homogeneous
magnetic fields are frequently used to align these magnetic
materials. Two mechanisms are available that allow magnetic
orientation of paramagnetic and diamagnetic particles.”* The
first one is due to an intrinsic anisotropy of the magnetic
susceptibility of the material, which occurs when yx differs
between at least two axes. The most simple case is a uniaxial
material, with a susceptibility difference of Ay between the two
main axes, leading to the following angle dependence of the
magnetic energy:*

1
E(0) = o AxVB? cos® 0 (7)

Here, 6 is the angle between the axis of the lowest susceptibility
and the applied magnetic field. These materials will orient in
such a way that their axis corresponding to the highest
susceptibility is parallel to the magnetic field.

The second method to align para- and diamagnetic materials
is via so-called shape anisotropy.” The induced magnetic
moment (magnetization integrated over volume) not only
depends on the magnetic susceptibility, but also on the shape of
the object, due to the so-called demagnetization effect (see
Fig. 1). As a consequence, it is energetically favourable to align
the object with its longest axis parallel to the magnetic field.**

Inhomogeneous magnetic fields can be used to propel micro-
and nanostructures in solution as indicated by eqn (5). Since in soft
matter most structures are in solution, one has to account for
the magnetic susceptibility of the solvent as well. In this case, it
is the difference in magnetic susceptibility between the solvent and
the object that determines the magnetic force:*
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Fig. 1 Two identical pieces of paramagnetic material that are

magnetized along two different axes by an external magnetic field
(dashed arrows). Left: the long axis of the paramagnet is aligned along
the external field. At the ends magnetic dipole charges (indicated by N
and S) are induced leading to a demagnetizing magnetic field Hqy
antiparallel to the induced magnetization. Right: when the paramagnet
is aligned with its long axis perpendicular to the external field, the
induced demagnetizing field is larger, due to the enhanced magnet
surface charges. Alignment along the long axis results in the smallest
demagnetizing field and is therefore energetically favourable.

F = (s~ %) V(BB ©
Ho

with xob; — Xso1 being the difference in magnetic susceptibility
between the object and the solvent. From this equation it
follows that the force on a diamagnetic object (negative x)
can be enhanced by placing it in a paramagnetic solution
(pOSithe X).26,27,31734

Diamagnetic materials are repelled by a magnetic field,
which allows the stable magnetic levitation in a field gradient,
at a position in the magnet where the magnetic force balances
the gravitational force.** Braunbek was the first to demonstrate
diamagnetic levitation by placing graphite and bismuth in an
inhomogeneous magnetic field created by an electromagnet.*
Fifty years later, Beaugnon and Tournier demonstrated the
levitation of other weaker diamagnetic materials such as water,
wood and plastics using a hybrid magnet, composed of a Bitter-
type electromagnet and a superconducting magnet.*® Strong
Bitter and hybrid magnets can provide these gradients over
volumes on the order of cm?®. Indeed, it was demonstrated that
(bio)matter containing large amounts of water (such as a living
frog) could be levitated.*” Water microdroplets have also been
levitated using permanent neodymium-iron-boron magnets,
which proves that these strong gradients can also be created by
permanent magnets albeit over much smaller volumes.>®

Paramagnetic solutions or gasses have been used to lower
the necessary (B-V)B required for levitation.*»***3% In such a
case the forces acting on the diamagnetic particles are deter-
mined by the buoyancy and the difference in magnetic
susceptibility per unit of volume between the diamagnetic
object and the paramagnetic solution:**

—

L o
= _(Qdia - Qsol)g + ’u_o (Xdiu - Xsol) (BV)B> (9)

<[
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with F/V being the force on the diamagnetic object per unit of
volume, @gqia — Qobj the difference in density between the
diamagnetic object and the solvent, g the specific gravity and
Xdia — Xsol the difference in magnetic susceptibility between the
diamagnetic object and the solvent. Levitation occurs when F/V
equals zero and is known as Magneto-Archimedes levitation when
a paramagnetic solution is employed to facilitate the levitation.

2.3 Ferromagnetism

Ferromagnetism is the most familiar type of magnetism, since it
is responsible for permanent magnetism. It occurs for materials
with unpaired electrons, which have a strong mutual interac-
tion and a positive exchange energy.”” As a consequence it is
energetically favourable for adjacent spins to align parallel and
form domains. Within each domain the spins point in the same
direction, but this direction varies amongst different domains.
In an unmagnetized sample the domains are randomly
oriented, so the net magnetization is zero. By applying a
magnetic field the domains tend to align along the field direc-
tion: the domains that are originally aligned along the field
grow at the expense of the others. When the external field is
removed the net magnetization does not return to zero, which is
exploited in the fabrication of permanent magnets.

The magnetization of a ferromagnet is thus highly non-
linear and depends on the history of the sample and the
applied fields (magnetic hysteresis), as is shown in Fig. 2. The
figure shows the applied magnetic field uoH on the x-axis and
the total magnetic field B or magnetization M on the y-axis. For
ferromagnets, B is predominantly given by M, which is much
larger than H.

When starting with unmagnetized material (B = uoH = 0),
applying a magnetic field leads to the dashed curve in Fig. 2.
The magnetization saturates (beyond uoHs) when all domains
point in the same direction. When the applied field is reduced
to zero, the ferromagnet will retain a net magnetization. One
needs to apply a magnetic field in the opposite direction to
bring the magnetization back to zero. The field necessary to flip

B,M
<
—poHs  |—HoHc H
HoHc UoHs Ho
>

Fig. 2 Representation of a typical magnetization hysteresis loop for a
ferromagnet. uoHc is the coercive magnetic field, which is the applied
field at which the total magnetic field B or magnetization M changes
sign. uoHs is the applied magnetic field at which the magnetization
saturates.
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the direction of magnetization is called the coercive field H.. A
magnetized ferromagnet maintains its magnetization as long as
the applied magnetic field is smaller than this coercive field. In
this case, a ferromagnet will orient with its magnetic moment
parallel to the applied magnetic field (eqn (6)). Note the differ-
ence with the magnetization of para- and diamagnets that are
linear with the applied magnetic field at ambient temperatures
(eqn (3)).

According to eqn (6), the energy of a permanent magnetic
dipole decreases with increasing magnetic field. Since force and
energy are related by F = —VE, the magnetic force in an inho-
mogeneous field can be written as®

F=L )8,

Ko (10)

Eqn (10) shows that a ferromagnetic particle in an inhomo-
geneous field will experience a translational force towards
regions of higher magnetic field. The strength of this force
scales linearly with the size of both the magnetic dipole
moment and the field gradient. Again it must be noted that eqn
(10), like eqn (6), is valid as long as the applied magnetic field is
below the coercive field of the material.

2.4 Superparamagnetism

Superparamagnetism occurs for very small single domain
ferromagnets (or ferrimagnets}). In this case, the thermal
energy is able to constantly turn over the direction of the
magnetization. As a result, the average magnetization is zero
and the material behaves as a paramagnet. However, since the
particle still consists of a single domain, its susceptibility for
magnetic fields is much larger than that of a normal para-
magnet, hence its classification as a superparamagnet. Since
superparamagnets behave similarly to normal paramagnets, we
discuss superparamagnetic particles in the paramagnetism
section. A more elaborate discussion of superparamagnetic
particles can be found in ref. 39.

In the remainder of this review, we will focus on the three
introduced classes of magnetic materials. For each, we will
discuss how homogeneous, inhomogeneous, rotating and
oscillating magnetic fields can be used to manipulate the
motion of micro- and nanostructures. Manipulation of motion
consists of propulsion, steering, or a combination of the two. An
overview of these combinations is shown in Table 1.

3. Structures containing
ferromagnetic materials
3.1 Homogeneous magnetic fields and ferromagnets

Several groups have used ferromagnetic particles to enable
steering of their micro- and nanostructures. Kline et al. have

} Ferrimagnets consist of domains like ferromagnets, but within each domain the
spins have an alternating up and down orientation. Since the up and down spins
are created by different species or ions within the crystal lattice, the magnetic
moments of the two are not of equal size and hence do not cancel completely.
Each domain therefore maintains a total magnetic moment unequal to zero.

Soft Matter, 2014, 10, 1295-1308 | 1299
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Table 1 Overview of magnetic materials, magnetic fields and applications
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Static magnetic fields

Dynamic magnetic fields

Homogeneous

Inhomogeneous

Rotating

Oscillating

Ferromagnetic materials Alignment and

steering

Alignment and propulsion

Induce rotational movement
of structures with

Create heat to induce
motion (thermophoresis)

Paramagnetic materials Alignment and

steering

garnet films
Magnetic trapping

Diamagnetic materials Alignment and

deformation separation

Magnetic trapping

fabricated 1.5 micron long rods consisting of two alternating
nickel and gold domains, which were capped by a platinum
domain at one end.* Propulsion was achieved chemically by
catalytic decomposition of hydrogen peroxide on the platinum
surface. This led to the formation of oxygen bubbles, which gave
the rod a recoil upon dissociation from the platinum surface
and hence led to the desired propulsion.** The nickel sections
were magnetized perpendicularly to the rod, ensuring a
perpendicular alignment of the rod relative to the magnetic
field direction (see Fig. 3). Steering was achieved by changing
the direction of an applied magnetic field of only 55 mT.

This combination of magnetic steering and chemical pro-
pulsion has been explored further by other groups. Baraban
et al. made Janus motors by partly capping 5 um silica particles
with a cobalt layer used for magnetization, which was topped
with a platinum layer for catalysis of hydrogen peroxide
decomposition.”” The Janus motors were steered by magnetic
fields below 1 mT. Other examples include microtubes made of
rolled-up titanium-iron-platinum films, which decomposed
hydrogen peroxide inside the tube.® The propulsion resulted
from the expulsion of oxygen bubbles at the largest opening of

I x

Fig. 3 Magnetic steering of rods consisting of Pt, Ni and Au segments.
Rotation of the magnetic field leads to the rotation of the nanorod,
such that the long axis of the rod is perpendicular to the field direction.
The magnetic moments in the nickel segments are indicated by the
small arrows. Adapted from ref. 41.
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Alignment and propulsion
Guidance of paramagnetic
particles over magnetic

Magnetic levitation and

permanent magnetic
moment

Rotational movement of
paramagnetic particle
chains

Induce beating pattern in
paramagnetic bead chains

Separation of paramagnetic
beads in microfluidics

Manipulate the self-
assembly of paramagnetic
beads

Alignment along multiple No known examples so far

axes

the microtube. The presence of the ferromagnetic iron provided
the advantage of facile manipulation and steering of the tubes
by magnetic fields of 5 mT. Furthermore these tubes were able
to transport and organise nanoplates.

3.2 Inhomogeneous magnetic fields and ferromagnets

Gradient magnetic fields were used in many occasions to propel
ferromagnetic micro- and nanostructures. For instance, it was
shown that polymer beads coated with ferromagnetic nickel
could be translated in a horizontal direction by a magnetic field
gradient.”* Movement in the vertical direction was determined
by buoyancy created by oxygen bubbles upon hydrogen peroxide
decomposition on the nickel surface.

Similar experiments were also performed with cobalt ferrite
microparticles, which were doped with palladium.* In a solu-
tion of hydrogen peroxide, propulsion of the particles was
determined by oxygen formation on the particle surface. The
authors demonstrated that small magnetic fields could be used
to align and hence steer the ferromagnetic particles. However,
higher magnetic fields also led to higher magnetic field gradi-
ents, which caused the microparticles to aggregate at the
magnetic poles, where the magnetic field was strongest. It was
also mentioned that relatively large particles, up to 150 pm in
diameter, were used in order to track their movement with
optical microscopy. Many examples in the literature use
micrometer-sized structures to allow for observation using
optical microscopy and to avoid motion disruptions caused by
Brownian motion, which occurs when the structures become so
small that their magnetic energy becomes smaller than the
thermal energy. Besides optical microscopy, only a few other
in situ techniques are available to track magnetic particles. In
situ dynamic light scattering®® or in situ confocal microscopy*
are suitable alternatives, which also have the potential of
tracking nanometer-sized objects. The problem of decreasing
magnetic energy upon miniaturization of magnetic objects is
resolved by the employment of higher magnetic fields (i.e.
superconducting or Bitter magnets).*’

This journal is © The Royal Society of Chemistry 2014
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The use of magnetic field gradients has also shown prom-
ising for applications in drug delivery. Mathieu et al. have
investigated the possibility whether ferromagnetic particles can
be steered through blood vessels by the magnetic field gradients
in a MRI machine.*®**® For this purpose, carbon steel spheres
(with 2.38 and 3.18 mm diameters) were forced to move against
a water flow by a magnetic field gradient of 18 mT m™ " created
within a MRI magnet. The flow properties were chosen to be
close to those in real arteries. Since the employed particles are
rather large (mm range) they could only find applications in the
larger blood vessels like the aorta. The authors underlined that
for propulsion of smaller particles through real mice capillary
gradients of several T m ™" would be needed. Since MRI systems
cannot provide such large gradients additional gradient coils
are needed. A coil providing a gradient of 0.443 Tm ™" proved to
be sufficient to move and steer 10.82 pm iron oxide micropar-
ticles in a simple artificial Y-shaped channel though.*®

More examples on biomedical applications of inhomoge-
neous magnetic fields are summarized in the reviews by Pan-
khurst et al.*"** They offer excellent overviews on topics like
magnetic separation, using magnetic particles, and magneti-
cally guided drug delivery.

3.3 Rotating magnetic fields and ferromagnets

When a magnetic dipole is exposed to a magnetic field, it will
align along the magnetic field according to eqn (6). This prin-
ciple can be utilized to induce rotational motion in a structure
containing a permanent magnetic dipole by rotating the applied
magnetic field. This can be achieved by rotating a bar magnet or
by setting up two perpendicular coils through which an oscil-
lating current is fed. The strength of the rotating field should be
smaller than the coercive field of the ferromagnet. Fields of a
few mT are usually sufficient.>*°

Magnetically induced rotations are often converted into
translational motion,**** but also the investigation of the
rotation itself has been reported.* Translational movements
of micro- and nanostructures induced by rotating magnetic
fields are often inspired by bacterial flagella.**>*® Honda et al.
were the first to investigate if a helical structure coupled to a
permanent magnet could be propelled by a rotating magnetic
field in the microworld.*® Their construct consisted of a 1
mm?® magnet coupled to a thin helical copper wire of several
centimetres long. Rotation of the applied magnetic field
resulted in the rotation of the small magnet and the helix
attached to it, which propelled the whole structure forward.
The direction of the motion inverted by reversing the rotation
direction of the magnetic field. The structure was placed
inside high viscosity silicone oil to emulate low Reynolds
numbers, similar to the condition for microstructures in
water, and operated at frequencies between 2 and 5 Hz for
the most viscous oil used.

A similar structure, but on the micron scale, was made by
Zhang et al.** An artificial bacterial flagella (ABF), 47 pm long,
was fabricated by connecting a magnetic head consisting of a
Cr/Ni/Au trilayer square plate to a helical tail made of an
InGaAs/GaAs bilayer or an InGaAs/GaAs/Cr trilayer. Three pairs
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of orthogonal coils were used to rotate a magnetic field in all
possible directions. Rotation of the applied magnetic field at
1-1.67 Hz resulted in rotation of the magnetic square plate
and hence the helical tail as shown in Fig. 4. Rotation of the
helical tail propelled the ABF forward or backward, depending
on the chirality of the helix. Furthermore, the direction of
propulsion could be inverted by rotating the magnetic field in
the opposite direction. Steering of the ABF was achieved by
alignment of one of the magnetic plate diagonals with the
magnetic field. Other examples utilizing rotating magnetic
fields to induce linear movement include the linkage of a
polystyrene microbead to a magnetic nanoparticle with an
actual flagellar filament,> planar ferromagnetic polymer
structures, which deformed into helical structures when a
rotating magnetic field was applied,” and DNA-linked para-
magnetic particles on glass surfaces.”

A 7 pm long rodlike hybrid motor was reported by Gao et al.,
which consisted of sequential nickel, silver, gold and platinum
domains.*® The nanowire could be propelled either by decom-
position of hydrogen peroxide at the gold/platinum end, or by
applying a rotating magnetic field which led to the rotation of
the ferromagnetic nickel (see Fig. 5). The silver was made flex-
ible by partly dissolving it in a hydrogen peroxide solution,
which allowed the breaking of the symmetry of the rod,
enabling the transfer of rotation into translational motion.
Since the two forms of propulsion acted in opposite directions,
a change in the propulsion method also led to a change in
direction.

3.4 Oscillating magnetic fields and ferromagnets

While rotating magnetic fields were widely used to induce direct
rotational motion, which is often transformed into translational
motion, oscillating magnetic fields were used to induce heat in
ferromagnetic materials. This technique is investigated in the
medical world as a possible treatment for cancer, where it is
known as magnetic hyperthermia.®>* The magnitude of
magnetic hyperthermia is related to the energy needed to
change the magnetization, which is equal to the area under the
magnetization hysteresis curve. By applying an oscillating
magnetic field, the magnetization will change continuously in
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Fig. 4 Helix attached to a ferromagnet in a rotating magnetic field.
The magnetic moment of the ferromagnet constantly aligns along the
magnetic field, leading to rotation of the ferromagnet and the helix.
Rotation of the helix will induce linear motion, in this case along the —x
direction. Adapted from ref. 54.
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Fig.5 Hybrid nanowire showing the two methods of propulsion. Top:
catalytic propulsion by hydrogen peroxide decomposition. Bottom:
magnetic propulsion by a rotating magnetic field. The magnetic
moments in the nickel segments are indicated by the small arrows.
Adapted from ref. 58.

direction and magnitude, following the magnetization hyster-
esis curve like the one shown in Fig. 2. The energy of the
oscillating magnetic field, which is essentially electromagnetic
radiation, is absorbed in this process by the ferromagnet and is
dissipated in the form of heat. The amount of heat generated
can be controlled by both the frequency and the amplitude of
the oscillating magnetic field.*

Propulsion of microstructures using the concept of magnetic
hyperthermia has recently been demonstrated by Baraban
et al.®®* Micron sized silica particles were coated on one side with
a magnetic permalloy. Frequencies of 400-6000 Hz with an
amplitude of 7.5 mT were applied by a solenoid coil. Local
heating of the magnetic cap provided a temperature gradient in
the solvent, which propelled the Janus particle in the direction
opposite to the magnetic cap by thermophoresis.

4. Structures containing
paramagnetic materials
4.1 Homogeneous magnetic fields and paramagnets

Butykai et al. showed that paramagnetic anisotropic rod-like
triclinic heme crystals, called hemozoin, can be magnetically
aligned, using magnetic fields up to 5 T.** The heme crystals
consist of hematin dimers linked via an iron-oxygen bond of
adjacent hematin molecules, which are assembled via hydrogen
bonding. Hemozoin crystals are aligned with their long axis
perpendicular to the magnetic field, since that axis has the
highest paramagnetic susceptibility.

Alignment of particles based on shape anisotropy has been
demonstrated by Tierno et al.*® Ellipsoid polystyrene particles,
doped with superparamagnetic iron oxide, were oriented with
their long axis parallel to the magnetic field. By coating part
of the particle surfaces with platinum, the ellipsoids were
propelled by the catalytic decomposition of hydrogen
peroxide into water and oxygen. Steering of the ellipsoid
particles was successfully achieved by changing the orienta-
tion of the magnetic field as shown in Fig. 6. Steering of
similar particles of spherical shapes could not be achieved,
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indicating that the shape anisotropy was indeed responsible
for the alignment.

Doublet microparticles, consisting of silver and super-
paramagnetic Dynabead microspheres, were demonstrated by
Chaturvedi et al. to form long chains aligned by magnetic fields
generated by neodymium-iron-boron bar magnets.*® Further-
more, the chains could be decoupled from each other by acti-
vating the propulsion of the doublet particles. The propulsion
of the doublet particles was not based on oxygen formation as in
previously reported systems but the result of diffusiophoresis,
which, besides the presence of hydrogen peroxide, also required
irradiation with UV light to form silver and OOH™ ions.

Since homogeneous magnetic fields do not propel ferro-
and paramagnetic particles, the use of such fields is normally
limited to orienting and steering. However, recent experiments
have shown that a homogeneous magnetic field can alter not
only the direction but also the speed of Janus particles partially
covered with a cobalt/platinum layer topped by palladium.* In a
hydrogen peroxide solution, the palladium catalyzes the
decomposition of hydrogen peroxide into oxygen and water.
During this process OH™ and H' ions are formed as interme-
diates, which recombine into water. The authors claimed that
these ions, which are only produced on the palladium side of
the Janus particle, created an electric field responsible for
polarization of the Janus particle and forced it to move towards
the palladium side. This self-electrophoresis counteracts the
propulsion created by the oxygen dissociation. The authors
suggest that the magnetic field is responsible for an increase in
recombination time of the OH™ and H' ions by giving the ions a
helical component. The helical component is induced by the
Lorentz force, acting on moving charged particles in a magnetic
field and directed perpendicular to the velocity of the particle
and the magnetic field. This then leads to a decrease in the
scattering cross-section and hence an increase in the ion
lifetimes.

direction of
magnetic field

direction of ellipsoidal
Janus particle

direction of spherical
Janus particle

v

1 b W y

Fig. 6 Alignment of paramagnetic Janus particle coated partly with
platinum (black) for decomposition of hydrogen peroxide. Formation
of oxygen (small spheres) propelled the Janus particles in the direction

indicated by the small arrows. Magnetic steering occurred only when
shape anisotropy was present. Adapted from ref. 65.
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4.2 Inhomogeneous magnetic fields and paramagnets

The effect of gradient magnetic field forces on different kinds of
paramagnetic transition metal ions has been studied by Tani-
moto and co-workers.®*7* In a gradient of 0.41 T> m ', ((B-V)B),
paramagnetic ions like Fe**, Co**, Ni** and Cu** were deposited
in droplets on a silica gel plate. The droplets followed the
direction of the gradient towards higher magnetic fields. The
authors showed that the extent of displacement depended on
the value of the paramagnetic susceptibility, the adsorption
to the silica gel and the ion concentration of the droplets.**”*
Also, the amount of displacement was much larger than that
could be explained by the drift velocity of a single ion induced
by the magnetic field gradient. These latter results indicate that
the ions do not move separately in a magnetic field gradient but
rather in an orchestrated cluster consisting of both ions and
water molecules. It was suggested that the magnetic force on
individual ions was conveyed to ions and the surrounding water
molecules by collisions resulting in collective behaviour of
paramagnetic ions and water molecules. For Cu®* the diameter
of such a cluster was calculated to be 4.6 um. The movement of
paramagnetic particles does furthermore depend on the
concentration gradient of these particles. Effectively, in an
inhomogeneous solution of paramagnetic particles, the
susceptibility of the solution as a whole will consequently be
inhomogeneous as well. This will lead to magnetoconvection, in
which regions of high susceptibility move towards higher fields,
replacing regions of lower susceptibility.

Magnetic field gradients of a permanent magnet have also
been used to accumulate superparamagnetic iron oxide at one
side of ellipsoidal polystyrene particles, leading to the forma-
tion of ellipsoidal Janus particles.” The authors further showed
that the interaction between such Janus particles differed from
the interaction between ellipsoids with homogeneous distri-
butions of iron oxide.

Magnetic field gradients can also be created by magnetic
garnet films.””* These ferromagnetic films contain magnetic
domains which have their magnetic moments directed
perpendicularly to the plane, pointing either up or down. At
the boundary of two domains with opposite magnetic
moments, a strong magnetic field gradient exists. Dhar et al.
have shown that superparamagnetic particles can easily be
guided along such boundaries as shown in Fig. 7.7 Since the

Fig. 7 Representation of a magnetic garnet film. The arrows at the
sides show the direction of the magnetic moments. A paramagnetic
particle (spheres) can be directed along boundaries of regions with
opposite magnetic moments. Adapted from ref. 73.
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domain sizes and their magnetic orientation (up/down) can be
manipulated beforehand, it is possible to create predefined
magnetic paths along which paramagnetic particles can be
moved.”

Superparamagnetic particles in combination with inhomo-
geneous magnetic fields are also frequently employed in
microfluidic applications, often for separation, mixing, and
biochemical procedures. For an extensive review on this specific
topic we direct the reader to ref. 2-4.

4.3 Rotating magnetic fields and paramagnets

It was demonstrated that superparamagnetic microparticles
(polystyrene spheres doped with iron oxide) form chains when a
magnetic field is applied.” This is caused by the dipole-dipole
interactions between the induced dipoles of each microparticle.
Since these chains are of anisotropic shape, they can be rotated
with a rotating magnetic field. Vuppu et al. achieved this for
rotating fields of 4.5-7 mT.”*”” At very low frequencies (5 rpm),
growth of the chains was observed. This was explained by the
fact that rotation increases encounters between different
chains. Higher frequencies led to breakage of chains, induced
by viscous forces.

To prevent the breakage of the chains, Biswal et al. chemi-
cally linked the beads with glutaraldehyde to create rigid chains
and with poly(ethylene glycol) (PEG) to create flexible chains.””
The stiffness of the PEG-linked chains was adjusted by varying
the length of the PEG linker. Flexible chains were shown to
deform under rotating fields into a bent or even folded
conformation (see Fig. 8).

Rotating magnetic fields were not only used to induce rota-
tion of paramagnetic chains. Karle et al used a rotating
permanent magnet to pull superparamagnetic beads labelled
with DNA from one channel to the other in a microfluidic
device.* The rotating magnet created an alternating strong and
weak magnetic field. While the strong (inhomogeneous) field
was responsible for pulling the paramagnetic particles from one

~e -~

Fig. 8 Rotation of a chain of paramagnetic particles (PEG-linked)
induced by a rotating magnetic field. Left: at low rotation frequencies
the chain of particles will follow the magnetic field without a lag phase.
Right: at high rotation frequencies there will be a lag phase between
the chain and the magnetic field. At sufficiently high frequencies the
chain will break. The small arrows in the paramagnetic particles
represent the induced magnetization. Adapted from ref. 78.
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channel to the other, the weak field was necessary to prevent the
particles from sticking to the channel’s surface, which would
have prevented further movement along with the flow.

The same group also demonstrated how a rotating magnetic
field can be used to allow a superparamagnetic bead chain to
walk over a microchannel’s inner surface.®* Walking of bead
chains was based on alignment of the bead chain by the magnet
(which changed its orientation by rotation) and friction on the
channel’s surface caused by attraction of the bead chain by
the inhomogeneous magnetic field. The authors demonstrated
that the bead chain could even walk against flow of up to

7.9mms .

4.4 Oscillating magnetic fields and paramagnets

Dreyfus et al. have attached paramagnetic bead chains, inter-
connected with DNA linkers, to red blood cells.®*> These struc-
tures were exposed to a combination of a static homogeneous
magnetic field and a perpendicular oscillating magnetic field,
both on the order of 10 mT. The total magnetic field therefore
changes orientation as a function of time and this led to an
induced beating pattern of the paramagnetic bead chain similar
to that of a eukaryotic flagella. This induced beating pattern
propelled the red blood cells in the direction of the para-
magnetic chain. The authors demonstrated that the velocity of
the red blood cells depends on parameters like the length and
rigidity of the bead chain, the oscillation frequency and
strength of the static magnetic field component.

A combination of an oscillating magnetic field with a static
homogenous magnetic field was also used to influence the self-
assembly of superparamagnetic beads.** The authors demon-
strated that at frequencies below 3 Hz, bead chains with Land T
junctions were created. The distance between junctions could
be increased by increasing the frequency. Above 3 Hz, the
changing of the induced magnetic dipole in the beads was too
fast compared to the translational movement. This led to the
formation of dislike structures, originating at the places of
highest bead concentration, which was near the junctions.

5. Diamagnetic structures
5.1 Homogeneous magnetic fields and diamagnets

Alignment of diamagnetic materials in magnetic fields has
already been demonstrated for several molecules or molecular
structures.®* Magnetic alignment can greatly enhance the
orientational order within a material, thereby improving several
of its properties. Depending on the diamagnetic molecules or
clusters used, magnetic alignment has for instance already been
used to improve optical,® transport®* and electrical properties.*”*

A well known example of steering diamagnetic materials is
the alignment of Paramecium Caudatum, a unicellar organism
which is diamagnetically anisotropic.* It was demonstrated
that in fields larger than 3 T, swimming paramecium could
be aligned, and hence their motion could be steered. The
authors emphasised the difference with magnetotactic
bacteria, which contains permanent magnetic structures
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called magnetosomes that allow sensing of the Earth’s
magnetic field of 5 x 107> T.

Alignment of diamagnetic molecules has also been used to
deform structures assembled from diamagnetic molecules.”® A
well-known example is the deformation of liposomes. Phos-
pholipids are diamagnetically anisotropic and tend to align
perpendicular to a magnetic field. Since liposomes are made
from phospholipids, a magnetic field forces the molecules to
reorient, deforming the spherical liposome. This magnetic
deformation force is balanced by the increasing bending force
in the phospholipid membrane. Helfrich was the first to
develop a model for the deformation of lipid bilayer vesicles.?***
Helfrich’s original idea was to use the magnetically induced
deformation to determine the flexibility of these vesicles. The
model assumed deformation of spheres into ellipsoids.

Helfrich’s models have been used by other groups in which
actual experiments were carried out to deform diamagnetic
vesicles in homogeneous magnetic fields.”*** For example, it
has been shown that liposomes made from dipalmitoylphos-
phatidyl choline (DPPC) can be deformed at fields of 3.8 T as a
function of temperature.”” A transformation in shape from
spherical to an elongated sphere (spheroid) was observed at
temperatures higher than the glass transition temperature by
measuring the magnetically induced birefringence. These kinds
of liposomes were also reported to fuse under the influence of
magnetic fields of up to 28 T.”

Deformation is not limited to DPPC liposomes. For instance, a
NMR study on dimyristoylphosphatidylcholine (DMPC) vesicles
also showed deformation at 11.7 T.** With small angle neutron
scattering, deformation was even already observed at magnetic
fields up to 4 T.*® In both cases, the extent of deformation was
increased significantly above the glass transition temperature.

Tan et al. have shown that the orientation of phospholipid
bicelles in a magnetic field can be switched from a parallel to a
perpendicular orientation by adding biphenyl moieties to the
phospholipids.®® This is based on the fact that single bonds
have a negative diamagnetic anisotropy, while that of multiple
bonds is positive.*® Adding a biphenyl group along the alkyl
chains significantly increases the Ay of the phospholipids, such
that the total anisotropy goes from negative to positive.
Consequently, the alignment of the bicelle changes from
parallel to perpendicular to the field. The magnetic anisotropy
of phospholipid molecules can also be modified by incorpora-
tion of certain paramagnetic lanthanide ions. It has been
experimentally demonstrated that doping of phospholipids
with Eu*’, Er’*, Tm**, and Yb®" changes the magnetic anisot-
ropy from negative to positive.”” Incorporation of certain other
paramagnetic lanthanide ions like Dy** leads to a more negative
anisotropy.®*®

Magnetic deformation has also been shown to occur for non-
biological structures. Spherical sexithiophene nanocapsules
were deformed into oblate superspheroids in magnetic fields up
to 20 T.*>'** The deformation was visualized by magnetic
birefringence and scanning electron microscope imaging of the
deformed capsules trapped in a gel (see Fig. 9). Since the Ay of
sexithiophenes is positive, deformation leads to oblate struc-
tures rather than prolate as was the case for liposomes.
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Fig.9 Left: a sexithiophene nanocapsule storedinagelat O T. Right: a
nanocapsule stored in a gel at 20 T. The figure shows how the indi-
vidual molecules are oriented with respect to the magnetic field.
Adapted from ref. 100.

Deformation of spherical nano-objects into spheroids could
find some interesting applications in the manipulation of their
motion. Firstly, a spheroid breaks spherical symmetry and
hence the diffusion coefficient decreases along the long axis
while it increases along the short axis.'*>*** Secondly, by tuning
the sign of Ay, one can differentiate between a prolate (Ax < 0)
and an oblate (Ay > 0) spheroid, where the first is a sphere
elongated along one axis while the second is a sphere which is
contracted along one axis. This differentiation made it possible
to choose the direction of least drag.

In our group, we used diamagnetic amphiphilic block co-
polymers to create several supramolecular morphologies like
micelles, rods, vesicles and so-called stomatocytes.'®*™*'® The
latter architectures were filled with platinum spheres to
construct nanomotors. Since the block co-polymers exhibit
diamagnetic anisotropy, we expect that high magnetic fields will
form an interesting tool to controllably and reversibly modify
the conformations and alignment of these structures. Further-
more, chemical modification of the individual block co-
polymers makes it possible to alter the size and sign of the
diamagnetic anisotropy. Magnetic manipulation of diamag-
netic supramolecular structures might therefore be an exciting
new field of interest.

5.2 Inhomogeneous magnetic fields and diamagnets

Magneto-Archimedes levitation was used to separate mixtures
of diamagnetic matter*>* or mixtures of diamagnetic and
paramagnetic matter.”* Winkleman et al. showed that poly-
styrene particles differing in the amount of CH,Cl groups could
be separated by a pair of permanent magnets when placed
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inside a paramagnetic solution of gadolinium salts.>* Another
example is the levitation and separation of diamagnetic sodium
chloride and potassium chloride particles inside pressurized
paramagnetic gas (oxygen) at magnetic field gradients of 410 T>
m .2 Pressurized oxygen has also been used to separate
different biological materials like DNA and cholesterol.?***

In the area of microfluidics diamagnetic manipulation can
be performed with permanent magnets, since they can be
positioned very close to microchannels or they can be integrated
in microfluidic chips.™* This can create relatively strong
magnetic field gradients over small volumes. Zhu et al. used this
principle to deflect diamagnetic polystyrene particles in a
paramagnetic magnesium chloride solution."* The group of
Pamme also experimented with repulsion of diamagnetic
microparticles in microfluidic chips.'**'** Diamagnetic polymer
microspheres were placed in paramagnetic manganese chloride
solutions and exposed to an inhomogeneous magnetic field
created by a superconducting magnet to create a repelling force
leading to deflection of the diamagnetic particles.

Another example is the trapping of diamagnetic polystyrene
beads and living cells in a paramagnetic buffer between two
permanent magnets placed 30 um apart.”” The two magnets
faced each other with their north poles, creating a large
magnetic field gradient. The diamagnetic particles were trapped
in the midst between the two magnets where the magnetic field
strength was lowest. The authors described this technique as a
viable alternative to optical tweezers, being able to trap a wide
variety of materials with larger sizes than those held by optical
traps.

5.3 Rotating magnetic fields and diamagnets

In the previous sections, it was discussed that static magnetic
fields can be used to align particles with their axis of highest
magnetic susceptibility parallel to the magnetic field. The
drawback of this type of alignment is that it leaves the other two
axes free to rotate perpendicular to the magnetic field.*®
Kimura et al. have shown that it is also possible to align
diamagnetic particles along their axis of lowest magnetic
susceptibility by using a rotating magnetic field. Nylon fibers
were used with x, < x; = X, < 0."° In a static magnetic field, the
fibers aligned perpendicular to the magnetic field, but were still
able to rotate in a plane perpendicular to the field. The authors
showed, both experimentally and theoretically, that the use of a
rotating magnetic field led to alignment of the fibers along the
molecular z-axis. This was achieved by first aligning the fibers by
a static magnetic field, followed by exposure to a rotating
magnetic field. An alternative method used alternating expo-
sure to a homogeneous magnetic field in two perpendicular
directions (see Fig. 10). Although the fiber dimensions were on
the order of millimetres, the authors calculated that this
procedure would also work for smaller particles (dimensions on
the order of tenths of nanometers) if magnetic fields of 10 T or
more are used. Rotating magnetic fields have also been used to
align chiral cellulosic microfibers that form a nematic liquid
crystal phase uniaxially which resulted in the unwinding of the
helical structure."” Theoretical research has also predicted that
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1. No magnetic field 2. Magnetic field

along z-direction

3. Switch magnetic
field to x-direction

1 " Xz <Ay=Ax<0

Fig. 10 Alignment of a nylon fiber can be achieved by an alternating
magnetic field. When no field is present the fiber is free to rotate along
all three axes (1). A field along the z-axis aligns the fiber on the xy-
plane, but the fiber is still free to rotate within this plane (2). A subse-
quent switch of the magnetic field to the x-direction will align the fiber
in the xy-plane along the y-axis. Adapted from ref. 116.

it will be possible to align molecules with a diamagnetic
anisotropy of x, < xy < xx < 0 by a rotating elliptic magnetic
field."** These techniques also apply to paramagnetic particles
with a similar magnetic anisotropy.

6. Conclusions

Most research on the magnetic propulsion and steering of
micro- and nanostructures has been performed with ferro- and
paramagnetic (nano)particles. The most important reason for
this is their relatively strong response to magnetic fields
compared to diamagnetic matter. Manipulation of movement
was achieved with homogeneous, inhomogeneous, rotating and
oscillating magnetic fields.

Exposure of diamagnetic materials to (strong) magnetic
fields can be used to align them and/or to induce shape changes
that make them anisotropic. This allows for reversible modifi-
cations and, therefore, creates new opportunities to control the
motion of novel micro- and nanostructures. Diamagnetic
manipulation with permanent magnets has already been
employed in microfluidics where magnetic repulsion of
diamagnetic particles is enhanced by placing them in para-
magnetic solutions. Deformation of supramolecular structures
built from diamagnetic molecules still requires magnetic fields
up to several Tesla, depending on the diamagnetic anisotropy of
the molecules used.

Most research, for all magnetic materials, has been per-
formed on microstructures rather than nanostructures. One
reason for this is that smaller structures experience smaller
magnetic forces, meaning that they are more easily disturbed by
Brownian motion. This problem could be addressed by the use
of higher magnetic fields. A second reason is the lack of in situ
techniques that allow velocity determination and tracking of
nanoparticles while exposing them to controllable magnetic
fields. Optical microscopes are easily adapted with small bar or
electromagnets but their resolution is usually limited to the
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micron size. Possible techniques that could be developed are
in situ confocal microscopy or in situ dynamic light scattering in
stronger magnetic fields of 2 T or more. This could allow for
miniaturization of para-, dia- and ferromagnetic nanostructures
that can still compete with Brownian motion and whose
movements can be tracked.

In summary, we foresee many opportunities in the minia-
turization of para-, dia- and ferromagnetic structures using
higher magnetic fields combined with the use of new in situ
tracking methods that allow the motion of nanostructures to be
followed in real-time.
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