
Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
A

ug
us

t 2
01

3.
 D

ow
nl

oa
de

d 
on

 7
/1

7/
20

25
 5

:1
6:

09
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Institute for Solid State Physics, University o

E-mail: noguchi@issp.u-tokyo.ac.jp

Cite this: Soft Matter, 2013, 9, 9907

Received 18th June 2013
Accepted 22nd August 2013

DOI: 10.1039/c3sm51680f

www.rsc.org/softmatter

This journal is ª The Royal Society of
Mechanical properties and microdomain separation of
fluid membranes with anchored polymers

Hao Wu, Hayato Shiba and Hiroshi Noguchi*

The entropic effects of anchored polymers on biomembranes are studied using simulations of a

meshless membrane model combined with anchored linear polymer chains. The bending rigidity and

spontaneous curvature are investigated for anchored ideal and excluded-volume polymer chains. Our

results are in good agreement with the previous theoretical predictions. It is found that the polymer

reduces the line tension of membrane edges, as well as the interfacial line tension between membrane

domains, leading to microdomain formation. Instead of the mixing of two phases as observed in

typical binary fluids, densely anchored polymers stabilize small domains. A mean field theory is

proposed for the edge line tension reduced by anchored ideal chains, which reproduces our simulation

results well.
1 Introduction

Our knowledge of the heterogeneous structure of bio-
membranes has advanced from the primitive uid mosaic
model1 to the modern ra model2,3 over the past decades.
According to this modern model, membrane proteins are not
randomly distributed in lipid membranes but concentrated in
local microdomains, called lipid ras, with a diameter of 10–
100 nm.4–6 The ra contains high concentrations of glyco-
sphingolipids and cholesterol, and plays important roles in
many intra- and intercellular processes including signal trans-
duction and membrane protein trafficking.

In the last decade, phase separation in multi-component
lipid membranes has been intensively investigated in three-
component systems of saturated and unsaturated phospho-
lipids and cholesterol.7–15 Lipid domains exhibit various inter-
esting patterns on the micrometer scale, which can be
reproduced by theoretical calculations and simulations. Various
shapes of lipid domains can be also formed at the air–water
interface.16–18 However, the formation mechanism of micro-
domains on the 10–100 nm scale has not been understood so
far. In lipid ras, glycolipids contain glycan chains. Recently,
network-shaped domains and small scattered domains have
been observed in lipid membranes with PEG-conjugated
cholesterol.19 The effects of anchored polymers have been well
investigated in the case of uniform anchoring on membranes,
but the effects on the lipid domains and line tension have not
been well investigated. In this paper, we focus on the effects of
f Tokyo, Kashiwa, Chiba 277-8581, Japan.

Chemistry 2013
anchored polymers on the properties of biomembranes, in
particular, on lipid domains.

It is well known that anchored polymers modify membrane
properties. The polymer anchoring induces a positive sponta-
neous curvature C0 of the membranes and increases the
bending rigidity k. These relationships are analytically derived
using the Green's function method for the mushroom
region20,21 and conrmed by Monte Carlo simulations.22–25 The
membrane properties in the brush region are analyzed by a
scaling method.20,21,26 Experimentally, the k increase is
measured by micropipette aspiration of liposomes.27 Polymer
decoration can enhance the stability of lipid membranes. PEG-
conjugated lipids can reduce protein adsorption and adhesion
on cellular surfaces, whereby PEG-coated liposomes can be
used as drug carriers in drug-delivery systems.28,29

When vesicles are formed from the self-assembly of surfac-
tant molecules viamicelle growth, the vesicle size is determined
kinetically by the competition between the bending energy and
the line tension energy of the membrane edge.30–38 Recently,
Bressel et al. reported that the addition of an amphiphilic
copolymer induces the formation of larger vesicles.39 A polymer-
anchoring-induced liposome-to-micelle transition is also
observed.26,40,41 The line tension of the membrane edge is
considered to be reduced by polymer anchoring, but it has not
been systematically investigated so far. In this study, we simu-
late the edge line tension for anchored ideal and excluded-
volume chains and analytically investigate the polymer effects
on the edge tension for ideal chains.

In order to simulate the polymer-anchoring effects on bio-
membranes, we employ one of the solvent-free meshless
membrane models.42,43 Since we focus on the entropic effects of
polymer chains, the detailed structures of the bilayer can be
Soft Matter, 2013, 9, 9907–9917 | 9907
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neglected, and thus the membranes can be treated as curved
surfaces. In the meshless model, a membrane particle repre-
sents a patch of bilayer membrane and membrane properties
can be easily controlled.

In sec. II, the membrane model and simulation method are
described. In sec. III, the bending rigidity and spontaneous
curvature are estimated from the axial force measurement of
cylindrical membranes and are also compared with the previous
theoretical predictions. The reduction in the edge tension is
discussed for both ideal chains and excluded-volume chains in
sec IV. In sec V, we present our investigation on how polymer
anchoring modies membrane phase separation. Finally, a
summary and discussion are provided in sec VI.
2 Model and method

In this study, we employ a coarse-grained meshless membrane
model43 with anchored linear polymer chains. One membrane
particle possesses only translational degrees of freedom. The
membrane particles form a quasi-two-dimensional (2D)
membrane according to a curvature potential based on the
moving least-squares (MLS) method.43 Polymer particles are
linked by a harmonic potential, and freely move as a self-avoiding
chain with a so-core repulsion. One end of each polymer chain is
anchored on a single membrane particle with a harmonic
potential and a so-core repulsion.44 First, we simulate a single-
phase membrane, where all membrane particles including poly-
mer-anchored particles are the same type (A) of membrane
particles. Then, we investigate membrane phase separation,
where a membrane consists of two types (A and B) of membrane
particles. The polymers are anchored to the type A particles.

We consider a single- or multi-component membrane
composed of Nmb membrane particles. Among them, Nchain

membrane particles are anchored by polymer chains. Each
polymer chain consists of Np polymer beads with an anchored
membrane particle. The membrane and polymer particles
interact with each other via a potential

Utot ¼ Urep + Umb + Up + UAB, (1)

where Urep is an excluded-volume potential, Umb is a membrane
potential, Up is a polymer potential, and UAB is a repulsive
potential between different species of membrane particles.

All particles have a so-core excluded-volume potential with
a diameter of s.

Urep

kBT
¼ 3

X
i\ j

exp
�� 20

�
rij=s� 1

�þ B
�
fcut
�
rij=s

�
; (2)

in which kBT is the thermal energy and rij is the distance between
membrane (or polymer) particles i and j. The diameter s is used as
the length unit, B ¼ 0.126, and fcut (s) is a CN cutoff function

fcutðsÞ ¼
exp

(
A

"
1þ 1

|s|=scutð Þn � 1

#)
ðs\scutÞ

0 ðsPscutÞ

8>><
>>: (3)

with n ¼ 12, A ¼ 1 and scut ¼ 1.2.
9908 | Soft Matter, 2013, 9, 9907–9917
For excluded-volume polymer chains, all pairs of particles
including pairs of polymer beads have the repulsive interaction
given in eqn (2). In contrast, for ideal polymer chains, polymer
beads have the excluded-volume interactions only with
membrane particles to prevent polymer beads from passing
through the membrane.

2.1 Meshless membrane model

The membrane potential Umb consists of attractive and curva-
ture potentials,

Umb

kBT
¼
XNmb

i

�
3UattðriÞ þ kaaplðriÞ

�
; (4)

where the summation is taken only over the membrane parti-
cles. The attractive multibody potential is employed to mimic
the “hydrophobic” interaction.

Uatt(ri) ¼ 0.25 ln{1 + exp[�4(ri � r*)]}�C, (5)

which is a function of the local density of membrane particles

ri ¼
XNmb

jsi

fcutðrij=sÞ, with shalf ¼ 1.8 and scut ¼ shalf + 0.3, where

fcut(shalf) ¼ 0.5, which implies A ¼ ln(2){(scut/shalf)
12 � 1}. The

constant C is set for Uatt(0) ¼ 0. Here we use r* ¼ 6 in order to
simulate a 2D uid membrane. For ri ( r*, Uatt acts as a

pairwise potential with Uatt ¼ �2
X
j. i

fcutðrij=sÞ, and for ri T r*,

this potential saturates to the constant �C.
The curvature potential is expressed by the shape parameter

called “aplanarity”, which is dened by

apl ¼ 9Dw

TwMw

; (6)

with the determinant Dw¼ l1l2l3, the trace Tw¼ l1 + l2 + l3, and
the sum of the principal minors Mw ¼ l1l2 + l2l3 + l3l1. The
aplanarity apl scales the degree of deviation from the planar
shape, and l1, l2, and l3 are three eigenvalues of the weighted
gyration tensor

aabðriÞ ¼
XNmb

j

�
aj � aG

��
bj � bG

�
wcv

�
rij
�
; (7)

where a, b, ˛{x, y, z}, and the mass center of a local region of

the membrane rG ¼
X
j

rjwcvðrijÞ
.X

j

wcvðrijÞ. A truncated

Gaussian function is employed to calculate the weight of the
gyration tensor

wcv

�
rij
� ¼ exp

" �
rij=rga

�2�
rij=rcc

�12 � 1

# �
rij\rcc

�
0

�
rijPrcc

�
;

8>><
>>: (8)

which is smoothly cut off at rij¼ rcc. Here we use the parameters
rga ¼ 0.5rcc and rcc ¼ 3s. The bending rigidity and the edge
tension are linearly dependent on ka and 3, respectively, for
ka T 10, so that they can be independently varied by changing
ka and 3, respectively.
This journal is ª The Royal Society of Chemistry 2013
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2.2 Anchored polymer chain

We consider exible linear polymer chains anchored on the
membrane. Polymer particles are connected by a harmonic
spring potential,

Up

kBT
¼ kbond

2

X
chains

ðri;iþ1 � bÞ2; (9)

where kbond is the spring constant for the harmonic potential
and b ¼ 1.2s is the Kuhn length of the polymer chain. The
summation is taken only between neighboring particles along
polymer chains and between the end polymer particles and the
anchored membrane particles (a total of Np springs in each
chain).
2.3 Phase separation in membranes

Two types of membrane particles, A and B, are considered in
sec. 5. Numbers of these particles areNA andNB, respectively. To
investigate phase separation, we apply a repulsive term UAB in
eqn (1) to reduce the chemical affinity between different types of
membrane particles.45 The potential UAB is a monotonic

decreasing function: UAB=kBT ¼ 3AB
X

i˛A;j˛B
A1fcutðri;jÞ with n ¼ 1,

A ¼ 1, rcut ¼ 2.1s, and A1 ¼ exp[s/(rcut � s)] to set UAB(s) ¼ 1.
Fig. 1 Front and side views of a snapshot of a cylindrical membrane with
anchored excluded-volume polymer chains at a polymer density f ¼ 0.167 and
cylinder axial length Lz ¼ 45.3s. The red and green particles represent membrane
and polymer particles, respectively.
2.4 Simulation method

The NVT ensemble (constant number of particles N, volume V,
and temperature T) is used with periodic boundary conditions
in a simulation box of dimensions Lx � Ly � Lz. For planar
membranes, the projected area Lx � Ly is set for the tensionless
state. The dynamics of both the membrane and anchored ex-
ible polymers are calculated by using underdamped Langevin
dynamics. The motions of membrane and polymer particles are
governed by

m
d2ri
dt2

¼ � vUtot

vri
� z

dri
dt

þ giðtÞ; (10)

where m is the mass of a particle (membrane or polymer
particle) and z is the friction constant. gi(t) is a Gaussian white
noise, which obeys the uctuation-dissipation theorem. We
employ the time unit s ¼ zs2/kBT with m ¼ zs. The Langevin
equations are integrated by the leapfrog algorithm46 with a time
step of Dt ¼ 0.005s.

We use Np ¼ 10, 3 ¼ 4, ka ¼ 10, and kbond ¼ 10 throughout
this study. In the absence of anchored polymer chains, the
tensionless membranes have a bending rigidity k/kBT ¼ 21 �
0.5, the edge tension Geds/kBT¼ 4.5 and the area a0¼ 1.44s2 per
membrane particle.47 For the single-phase membranes, the
number of membrane particles is xed as Nmb ¼ 1200 and the
number fraction f ¼ Nchain/Nmb of polymer-anchored
membrane particles is varied. To investigate phase separation,
the number of the type A membrane particles is xed as NA ¼
400, and the number of the type B particles is chosen as NB ¼
400 and 2100 for a striped domain and a circular domain,
respectively. The polymer chains are anchored to the type A
particles and the polymer fraction f ¼ Nchain/NA is varied. To
This journal is ª The Royal Society of Chemistry 2013
conrm that the membranes are in thermal equilibrium, we
compare the results between two initial states, stretching or
shrinking, and check that no hysteresis has occurred. We slowly
stretch and shrink cylindrical or striped membranes in the axial
direction with a speed less than dLz/dt ¼ 10�6s/s and then
equilibrate them for t/s¼ 6� 104 before the measurements. For
the simulations of circular domains, the membranes were
equilibrated for a duration of 6 � 104s aer step-wise changes
of 3AB. The error bars are calculated from six independent runs.
3 Bending rigidity and spontaneous
curvature of membranes

A cylindrical membrane with polymer chains anchored outside
the membrane is used to estimate the polymer-induced spon-
taneous curvature and bending rigidity (see Fig. 1). For a
cylindrical membrane with radius R and length Lz, the Helfrich
curvature elastic free energy is given by

Fcv ¼
ð ​ k

2
ðC1 þ C2 � C0Þ2 þ kC1C2

h i
dA

¼ 2pRLz

"
k

2

�
1

R
� C0

�2
#
;

(11)

where C1 and C2 are the principal curvatures at each position on
the membrane surface, and the membrane area A ¼ 2pRLz. The
coefficients k and �k are the bending rigidity and the saddle-splay
modulus, respectively, and C0 is the spontaneous curvature. In
the absence of the anchored polymers (we call it a pure
membrane hereinaer), the membrane has zero spontaneous
curvature, C0 ¼ 0.

The membrane also has an area compression energy Far(A):
Far(A) ¼ KA(A � A0)

2/2A0 for A � A0 � A0, where A0 is the area of
the tensionless membrane. The radius R is determined by free-
energy minimization vF/vR|Lz ¼ 0 for F ¼ Fcv + Far(A). Since the
curvature energy increases with increasing Lz, a contractile
force,

fz ¼ vF

vLz

����
R

¼ 2pk

�
1

R
� C0

�
; (12)

is generated along the cylindrical axis.
Soft Matter, 2013, 9, 9907–9917 | 9909
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Fig. 2 Force fz dependence on the radius R of the cylindrical membranes with
anchored excluded-volume chains at f¼ 0.083, 0.125, 0.167, and 0.250. The solid
lines are obtained by linear least-squares fits.
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Fig. 2 shows the axial force fz calculated from the pressure
tensors,

Paa ¼
 
NkBT �

X
i

ai

vU

vai

!,
V ; (13)

for a ˛ {x, y, z}, where the summation is taken over all
membrane and polymer particles. When the potential inter-
action crosses the periodic boundary, the periodic image ai +
nLa is employed for Paa calculation. The force fz increases
linearly with 1/R.44 Thus, C0 and k of the anchored membranes
Fig. 3 Polymer density f dependence of (a) the spontaneous curvature C0 and (b)
bending rigidity k of the membranes with anchored ideal chains and excluded-
volume chains. The dashed lines in (a) and (b) represent the prediction of the linear
theory (eqn (14) and (15)) for the ideal chains. The solid lines in (a) and (b) represent
the prediction of the scaling theory (eqn (16) and (17)) in the brush region.

9910 | Soft Matter, 2013, 9, 9907–9917
can be estimated from a linear tting method to eqn (12). For
both anchored ideal chains and excluded-volume chains, the
obtained values of C0 and k are shown in Fig. 3. For the pure
membranes, the value of k is in very good agreement with
those estimated from the height uctuations of planar
membranes47 and membrane buckling.48 The estimated value
of C0 for the pure membrane deviates slightly from the exact
value, zero. This small deviation would be caused by a higher-
order term of the curvature energy49 or nite size effects as
discussed in ref. 47.

The anchored polymer generates a positive spontaneous
curvature, and enhances the bending rigidity k. Both quantities
increase with increasing polymer chain density, and for the
excluded-volume chains, these increases are enhanced by the
repulsive interactions between the neighboring chains.

In the mushroom region, the spontaneous curvature and
bending rigidity are linearly dependent on the polymer density
f. Analytically, the relationships20,21

kDC0 ¼ 2aspkBTRendf/a0, (14)

Dk ¼ akkBTRend
2f/a0, (15)

are predicted, where DC0 and Dk are the differences of the
spontaneous curvatures and bending rigidities between the
polymer-decorated membrane and the pure membrane, respec-
tively, and Rend is the mean end-to-end distance of the polymer
chain. The factor 2 in eqn (14) appears because in our denition
the spontaneous curvature is twice as large as that in the previous
studies.20–23 The coefficients are derived analytically using the
Green's function20,21 and also estimated by Monte Carlo simula-
tions of single anchored polymer chains:23 ak ¼ 0.21 and 0.2 and
asp ¼ 0.18 and 0.17 for ideal and excluded-volume chains,
respectively. Our results for the ideal chains are in very good
agreement with these previous predictions (compare the dashed
lines and symbols in Fig. 3). To draw the dashed line in Fig. 3(a),
the end-to-end distance is estimated from the simulation; Rend ¼
4.16s, which is slightly larger than a free polymer chain
Rend ¼ ffiffiffiffiffiffi

Np
p

b ¼ 3:79s. Note that anchored ideal polymer chains
are in the mushroom region for any density f, since the polymer
chains do not directly interact with each other.

For excluded-volume chains, our results deviate from the
theoretical predictions (eqn (14)) for the mushroom region at f
T 0.1. Thus, in the high density of anchored polymer chains,
the interactions between polymer chains are not negligible. We
compare our results with a scaling theory based on a blob
picture for the brush region in ref. 21. For a cylindrical
membrane, the spontaneous curvature is derived from the free-
energy minimization with respect to the radius of the cylinder,21

vfcðxÞ
vx

þ 4k0

kBT
Np

�3G
�3=2n

x ¼ 0; (16)

where fc(x) ¼ [{1 + (1 + n)x/n}n/(1+n) � 1]/x � 1, k0 is the bending
rigidity of the pure membrane, and the reduced spontaneous
curvature x ¼ h0C0/2 for the height of a brush on a at surface
h0 ¼ Np

�G(1�n)/2nb. The polymer coverage on the membrane is
normalized by the maximum coverage as �G ¼ G/Gmax ¼ b2f/a0,
This journal is ª The Royal Society of Chemistry 2013
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Fig. 5 Edge line tension Ged of a membrane strip with anchored excluded-volume
chains estimated for different edge lengths Ly at f ¼ 0, 0.1, 0.15, 0.2, and 0.25.

Fig. 6 Polymer density dependence f of the edge line tension for ideal and
excluded-volume chains. The dashed line represents our theoretical prediction by
eqn (23).
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and the exponent n ¼ 0.6 is used for excluded-volume chains.
The bending rigidity is given by

Dk ¼ nþ 2

12n2
Np

3G
3=2n

kBT ; (17)

in the small curvature limit.21 Our results are qualitatively in
agreement with these predictions from the scaling theory (see
Fig. 3). The deviation is likely due to the polymer length (Np ¼
10) in the simulation, which is too short to apply the blob
picture in the scaling theory.

4 Edge line tension
4.1 Simulation results

Next, we investigate the edge line tension with various anchored
polymer densities for both ideal chains and excluded-volume
chains. A strip of single-phase membrane with anchored poly-
mers is used to estimate the edge tension Ged (see Fig. 4). The
edge tension Ged can be calculated by using47,50,51

Ged ¼ vF

2vLy

¼


Pxx þ Pzz

2
� Pyy

�
LxLz

2
; (18)

since the total edge length is 2Ly. The pressure Pxx ¼ Pzz z 0 for
solvent-free simulation with a negligibly low critical micelle
concentration. We checked that the edge tension is indepen-
dent of the edge length for pure membranes as well as for
polymer-decorated membranes (see Fig. 5).

Fig. 6 shows that the edge tension Ged decreases with
increasing polymer density f. The reduction for excluded-
volume chains is much larger than that for ideal chains, similar
to polymer effects on the bending rigidity. The polymer chains
prefer staying on the edge, since there is more space to move so
that they can gain entropy. Fig. 7(a) shows that the polymer
density distribution rchain is nonuniform at the distance dw
from the strip's central axis. High peaks of rchain are found close
to the edges for both ideal chains and excluded-volume chains,
while the density rmb of all membrane particles has only very
small peak. The relative polymer density rchain/rmb more rapidly
increases at the edges for larger mean density f [see Fig. 7(b)].
The mean polymer density f1 at the edges is calculated as an

average

* X
dw $ dmax

w

rchain

. X
dw $ dmax

w

rmb

+
for the right region of the

peak (dmax
w ) of rmb in Fig. 7(a). The density difference from the
Fig. 4 Top and side views of a snapshot of a membrane strip with anchored
excluded-volume chains at f¼ 0.15 and the length Ly ¼ 57.6s of each membrane
edge.

This journal is ª The Royal Society of Chemistry 2013
mean valueDf¼ f1� f increases with increasing f as shown in
Fig. 8. The excluded volume chains induce higher polymer
concentration at the edges than the ideal chains.

4.2 Theoretical analysis

Here we propose a mean eld theory for the edge line tension
induced by the anchored polymers in the mushroom region.
According to the nonuniform polymer distribution on the
membrane strip, we divide the membrane into two regions, an
edge (region 1) and middle region (region 2). The polymer
density is assumed to be uniform in each region. The area
fractions of the two regions are n1 and n2 with n1 + n2 ¼ 1, and
the polymer densities are f1 and f2 with f ¼ n1f1 + n2f2. The
width of region 1 is considered as the radius of gyration of
polymer Rg, so that the area fraction is given by

n1 ¼ 2LyRg

Nmba0
: (19)

The free energy of the membrane strip is written as

Fed

NmbkBT
¼ n1f1 ln f1 þ n1ð1� f1Þlnð1� f1Þ þ n2f2 ln f2

þ n2ð1� f2Þlnð1� f2Þ � n1f1DS þ f0; (20)
Soft Matter, 2013, 9, 9907–9917 | 9911
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Fig. 7 Density distribution in themembrane strip. (a) Density of polymer-anchored
membrane particles rchain, and the total density rmb at f ¼ 0.25. The solid lines with
symbols and dashed lines represent the data for the excluded-volume chains and
ideal chains, respectively. (b) Density ratio rchain/rmb for the excluded-volume chains.
The distance dw from the center of the strip is taken in the direction perpendicular to
the edge. The membrane lengths are Lst ¼ 60s perpendicular to the edge and Ly ¼
28.8s along the edge.

Fig. 8 Excess polymer densityDfh f1� f at themembrane edge as a function of
the mean polymer density f. The solid lines with circles and squares represent our
simulation results for the ideal chains and excluded volume chains, respectively. The
dashed line represents our theoretical prediction for the ideal chains by eqn (21).
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where f0 is the free energy contribution of the membrane without
polymer anchoring. The rst four terms are the mixing entropy for
regions 1 and 2. When a polymer chain moves from the middle
region to the open edges, it gains the conformational entropyDS.

The partition function of a single anchored polymer chain is
expressed as Zp ¼ qNpW, where q is the number of the nearest
neighbors in the lattice model (q ¼ 6 in a cubic lattice). The
restricted weight of a polymer anchored on the at membrane is

Whs ¼ erf

" ffiffiffi
q

p
lan

2Rend

#
, where erf(x) is the error function and lan is the

anchor length.20,21 On the other hand, the free end of a polymer
anchored on the edge can also move in the other half space, and
has a larger value of weight Wed. We numerically counted the
weightsWed andWhs in a cubic lattice. The ratioWed/Whs increases
with increasing Np, andWed/Whsx 2 for Np¼ 10. Thus, the excess
entropy is estimated as DS ¼ ln(Wed/Whs) x ln 2 under our
simulation condition.

Using minimization of Fed, the polymer density f1 in the
edge region is analytically derived as

f1 ¼
2Qf

sþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4QðQ� 1Þfn1

p
¼ Qf

1þ ðQ� 1Þf

 
1� ðQ� 1Þð1� fÞ

f1þ ðQ� 1Þfg2 n1
!
þO

�
n1

2
�
;

(21)

whereQ¼ exp(DS) and s¼ 1 + (Q� 1) (f + n1). AtQ¼ 2 and n1� 1,
the density difference is simply Df h f1 � f ¼ f (1 � f)/(1 + f),
9912 | Soft Matter, 2013, 9, 9907–9917
which is in good agreement with the simulation results (see
Fig. 8).

The edge tension is derived as Ged ¼ vFed/vLed, where Led is
the total edge length Led ¼ 2Ly. Thus, the polymer-induced edge
tension DGed is given by

DGeda0

RgkBT
¼ lnð1� n1Þ þ f1ln

f1

Qðf� f1n1Þ

þ ð1� f1Þln
1� f1

1� f� ð1� f1Þn1
: (22)

At Q ¼ 2, the Taylor expansion gives

DGeda0

RgkBT
¼ �lnð1þ fÞ þ fð1� fÞ

ð1þ fÞ2 n1 þO
�
n1

2
�
: (23)

Thus, the edge tension Ged decreases with increasing f and is
independent of the edge length Ly for n1 � 1. Fig. 6 shows the
comparison of edge tensions between our simulation and the
theoretical results for ideal chains; the agreement is excellent.
As the membrane strip becomes narrower (n1 increases), the
polymer effect on the edge tension Ged is reduced by the loss of
mixing entropy in region 2, and Ged increases with increasing
edge length Ly.

For the excluded-volume polymer chains, the membrane
cannot be simply divided into two regions because of the
repulsive interaction between polymer chains. The effects of the
membrane edges may be considered as an increase in the
average volume for each chain. For a at membrane without
edges, the volume per chain is given by Vpf ¼ 2RendLxLy/Nchain.
The membrane strip has an additional space pRend

2Ly around
the edges so that the polymer volume becomes Vpe ¼ Vpf +
pRend

2Ly/Nchain. Thus, the polymer chains gain additional
conformational entropy not only at the edges but in the middle
of the strip.

5 Membrane domains with anchored
polymers

In this section, we focus on the effects of anchored polymers on
membrane phase separation. First, in sec. 5.1 we estimate the
This journal is ª The Royal Society of Chemistry 2013
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line tension of polymer-anchored membrane domains, and
then in sec. 5.2 we investigate the polymer effects on domain
separation and domain shape transformation. Here, we inves-
tigate only the membranes with excluded-volume chains, since
the effects of the ideal chains are considered to be very small. As
described in sec. 3, polymers can induce an effective sponta-
neous curvature in the membrane. In order to diminish the
inuence of the induced spontaneous curvature, we symmetri-
cally anchor polymer chains on both sides of the membrane as
shown in Fig. 9. Half of the chains (Nchain/2) are anchored on the
upper (lower) side of the membrane, and each chain is
anchored on one membrane particle. Then, the net curvature
effects induced on both sides of the membrane cancel each
other out.
Fig. 10 Interfacial line tension GAB between membrane domains as a function of
(a) f and (b) 3AB. The solid and dashed lines represent GAB estimated from the
striped domain and the circular domain, respectively.
5.1 Interfacial line tension between two membrane domains

The line tension GAB between the type A and B domains is
estimated by twomethods using a striped domain and a circular
domain. For the striped domain shown in Fig. 9(a), the line
tension is calculated by using

GAB ¼ hPxx � PyyiLxLz/2. (24)

The obtained line tension for tensionless membranes is
shown by solid lines in Fig. 10. We ensured that GAB is inde-
pendent of the boundary length Ly for 24 < Ly/s < 48 (data not
shown). The line tension GAB decreases with increasing f, while
GAB increases with increasing 3AB. Thus, the same value of GAB

can be obtained for different polymer densities f by
adjusting 3AB.

Before investigating polymer effects on the domain shape in
the next subsection, we also estimate GAB from the circular
domain shown in Fig. 9(b). The line tension GAB is calculated
from the 2D Laplace pressure,45,50

GAB ¼ �RDg, (25)

where �R is the average radius of the domain, and Dg is the
difference of surface tension between the type A and B domains:
Dg ¼ gin � gout, where gin is the surface tension of the inner
(type A) domain and gout is that of the outer (type B) domain.
Fig. 9 Snapshots of (a) striped and (b) circular domains with anchored excluded-
volume chains in planar membranes at NA ¼ 400 and f ¼ 0.3. Type A and B
membrane particles are displayed in red and blue, respectively.

This journal is ª The Royal Society of Chemistry 2013
Both of them can be estimated from the pressure tensors of the
local regions

ga ¼ hPa
zz � (Pa

xx + Pa
yy)/2iLz, (26)

where a represents “in” or “out”; Paxx, P
a
yy, and Pazz are the diag-

onal components of the pressure tensors calculated in the local
membrane regions. The outer surface tension gout can also be
calculated from the pressure tensors for the whole area.

To estimate gin and gout, we extract the inner and outer regions
as follows. First, domains of type A particles are calculated. The
particles are considered to belong to the same cluster (domain)
when their distance is less than rcut ¼ 2.1s. Then the radius �R of
the largest domain is calculated. Type A particles contacting type B
particles (closer than rcut) are considered domain boundary parti-
cles. The number of boundary particles is Nbd. In the largest
domain, the distance of the domain particles from the center rG of
the domain is averaged by RA ¼ (1/Nbd)S|r � rG|. For the mean
radius of the domain boundary, the half boundary widthffiffiffiffiffi
a0

p
=2 ¼ 0:6s is added so that �R ¼ RA + 0.6s. Then, the maximum

uctuation amplitude DR around �R is calculated. The surface
tension gin is estimated within the area inside the circular region
with radius �R � DR � 0.5s, while gout is estimated within the area
outside the circular region with radius �R + DR + 0.5s. Note that a
few type B particles can enter the type A domain at small GABs/kBT
� 1 so the type A particles neighboring these isolated particles are
not taken into account for estimation of �R and DR.
Soft Matter, 2013, 9, 9907–9917 | 9913
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The line tension estimated from the 2D Laplace pressure is
shown by dashed lines in Fig. 10. For the pure membrane, the
obtained values are in very good agreement with those from the
membrane strip. However, they are slightly larger for the poly-
mer-anchored membranes. This deviation is likely caused by
the relative larger boundary region of the circular domain than
the striped domain. It is a similar dependence obtained for the
membrane edges (see eqn (23)).

The phase behavior of the pure membranes (3AB ¼ 0) belongs
to the universality class of the 2D Ising model.52 For the poly-
mer-anchored membranes, however, the line tension depen-
dence of the boundary curvature is not explained by the
universality class. Thus, the polymer effects cannot be treated as
an effective potential between neighboringmembrane particles.
Fig. 11 Sequential snapshots of domain separations as (left from (a) to (d)) 3AB
decreases at f ¼ 0 or (right from (a) to (g)) as the polymer density f increases at
3AB ¼ 4. Red and blue particles represent the A and B type membrane particles,
respectively. To show microdomain separation and shape transformation clearly,
polymer particles are not displayed.
5.2 Domain separation and microdomain formation

To clarify the anchored polymer effects, we compare the shape
changes of the type Amembrane domains with increasing f and
with decreasing 3AB. In both cases, the interfacial line tension
GAB decreases and the low line tension leads to the breakup of
domains. However, the resultant states are quite different as
shown in Fig. 11. As the repulsive interaction between the type A
and B particles is reduced with decreasing 3AB, the obtained
phase behavior is similar to that of typical binary uids. At GABs

x kBT (3AB ¼ 2), the domain boundary undergoes large uctu-
ation and a few (type A or B) particles leave their domain to
dissolve in the other domain. As 3AB decreases further, the
domain breaks up into small domains, and nally the two types
of particles are completely mixed.

On the other hand, the anchored polymers induce formation
of small stable domains (called microdomains) instead of a
mixing state, although it can reduce the line tension to GABs (

kBT (see Fig. 11(g)). At f# 0.45, the type A domain remains as one
domain but exhibits an elongated shape at f¼ 0.45. At f$ 0.5, it
starts separating into microdomains. Note that the membrane is
considered in amixed state even at f¼ 0.45, if GAB for the straight
boundary is extrapolated (see Fig. 10). In contrast to the reduction
in 3AB, the boundary of the elongated domain is rather smooth
(compare snapshots in Fig. 11(c) and (f)). We conrmed that
these small domains are also formed from random distribution
of initial states. Thus, it is a thermodynamically stable state.

Let us discuss the effects of the polymer anchoring on the
domain formation. First, we remind that the polymer beads
have only repulsive interactions with the other beads and
membrane particles except for the membrane-anchored head
particles. The polymer effects seem suppressed for shorter
lengths than the polymer size �Rend ¼ 4s. A smaller boundary
undulation than the polymer size does not yield additional
space for the polymer brush. A similar suppression in the short
length scale was reported on the bending rigidity induced by the
polymer anchoring.24 When the domain size is comparable to
the polymer length, most of the particles already stay at the
domain boundary, so that an additional increase in the
boundary length likely yields much less gain in the average
volume per polymer and the polymer conformational entropy.
As explained in sec. 5.1, the line tension of the circular domain
9914 | Soft Matter, 2013, 9, 9907–9917
is larger than the straight boundary. For the smaller domains,
this difference would be enhanced, although the domains are
too small for direct estimation of GAB by Laplace's law.

To investigate the changes of domains in greater detail, we
calculate the mean cluster size �Ndm and a reduced excess
domain length DLbd. The cluster size �Ndm is dened as

Ndm ¼

XNA

ic¼1

niic
2 ​

XNA

ic¼1

niic
​

; (27)

where ni is the number of clusters with size ic. The reduced
excess domain length for the mother (largest) domains DLbd is
dened as

DLbd ¼ Lbd

2
ffiffiffiffiffiffiffiffiffiffiffiffi
pAdm

p � 1; (28)

where Lbd ¼ Nbd
ffiffiffiffiffi
a0

p
is the boundary length of the mother

domains and Adm ¼ NAa0 is the domain area. The length Lbd is
This journal is ª The Royal Society of Chemistry 2013
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Fig. 12 Domain shape changes and domain separation as (a,b) 3AB decreases at
f¼ 0 and (c and d) f increases at 3AB¼ 4. (a and c) The average cluster size �Ndm of
the mother (largest) domains and (b and d) the reduced excess domain length
DLbd of the mother domains. The mean number Nmth of the membrane particles
in the mother domains at each stage is shown in light red color.
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normalized by the length of a circular domain 2
ffiffiffiffiffiffiffiffiffiffiffiffi
pAdm

p
so that

DLbd ¼ 0 for the circular domain.
Fig. 12 shows the development of �Ndm and DLbd. In the 3AB

reduction, the transition to the mixing state occurs sharply
between 3AB ¼ 1.5 and 1. However, for polymer anchoring, a
gradual decrease in �Ndm represents the formation of
Fig. 13 Mean polymer density f dependence of the number fraction fmth of
polymer chain anchors on the mother (largest) domain.

This journal is ª The Royal Society of Chemistry 2013
microdomains (see Fig. 12(c)). Around the transition points,
DLbd is increased less by polymer anchoring than by lowering
3AB, while both domains are similarly elongated (see Fig. 11).
This difference is caused by the weaker undulation of polymer-
decorated domain boundaries.

We calculated the fraction of polymer chain anchors on the
mother domain fmth aer the microdomain separation (see
Fig. 13). Interestingly, it is lower than the initial density f. Thus,
detached small domains have higher polymer densities than
their mother domain. This is caused thermodynamically by the
entropy gain of polymers anchored on small domains and also
kinetically by a higher density at the domain boundary.
6 Summary and discussion

We have systematically studied the entropic effects of anchored
polymers on various types of mechanical and interfacial prop-
erties of biomembranes using particle-based membrane simu-
lations. First, we reconrm the previous theoretical predictions
for the spontaneous curvature and bending rigidity by simu-
lating cylindrical membranes. They increase with the anchored
polymer density f linearly in the mushroom region, but they
sharply increase in the brush region.

Second, we investigated the polymer anchoring effects on the
edge line tension for ideal and excluded-volume chains. It is
revealed that polymer anchoring signicantly reduces the edge
tension. For ideal polymer chains, it is also investigated by a
mean eld theory. It is claried that the entropy gain of polymer
conformation at the membrane edge reduces the edge tension.
Experimentally, it is known that polymer anchoring induces the
formation of large vesicles39 and spherical or discoidal
micelles.41 Since the ratio between the edge tension and the
bending rigidity determines the vesicle radius Rves formed by
the membrane disks as Rves � (2k + �k)/Ged, the reduction in the
edge tension increases the vesicle radius. Our results are
consistent with these experimental observations.

Finally, we investigated the polymer anchoring effects on
phase separation in membranes for excluded-volume chains.
The line tension of the domain boundary is reduced by
anchoring polymers. It is found that densely anchored polymers
can stabilize microdomains, whereas large domains are
unstable. Although we did not investigate polymer length
dependence here, it is expected that the domain size can be
controlled by the polymer length. In living cells, lipid ras
contain a large amount of glycosphingolipids.4–6 Our simulation
results suggest that the entropic effects of glycosphingolipids
may play a signicant role in stabilizing microdomains (100
nm. At a moderate polymer density, elongated shapes of
membrane domains are obtained. In lipid membranes with
PEG-conjugated cholesterol, the domain shapes depend on the
anchored polymer density fPEG; at a high fPEG, small domains
are scattered, while at a slightly lower fPEG, small elongated
domains are connected with each other to form a network.19 The
elongated domains in our simulations may form a network, if
much larger domains are simulated. A further study is needed
to clarify the polymer-anchoring effects on large-scale domain
patterns.
Soft Matter, 2013, 9, 9907–9917 | 9915
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Our present study highlights entropic effects of anchored
polymers on the microdomain formation via the reduction in
domain boundary tension on quasi-2D biomembranes. It is well
known that high line tension can induce budding of
membranes.8,9,52 Nonzero spontaneous curvature induced by
proteins and anchored polymers can lead to various liposome
shapes, such as tube formation and pearling.53–58 Shape trans-
formation of vesicles induced by polymer-decorated domains is
an interesting topic for further studies.
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