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Thermophoresis of charged colloidal rods

Zilin Wang,a Hartmut Kriegs,a Johan Buitenhuis,a Jan K. G. Dhont*ab

and Simone Wieganda

The thermal diffusion behavior of dilute solutions of very long and thin, charged colloidal rods (fd-virus

particles) is studied using a holographic grating technique. The Soret coefficient of the charged colloids

is measured as a function of the Debye screening length, as well as the rod-concentration. The Soret

coefficient of the fd-viruses increases monotonically with increasing Debye length, while there is a

relatively weak dependence on the rod-concentration when the ionic strength is kept constant. An

existing theory for thermal diffusion of charged spheres is extended to describe the thermal diffusion of

long and thin charged rods, leading to an expression for the Soret coefficient in terms of the Debye

length, the rod-core dimensions, and the surface charge density. The thermal diffusion coefficient of a

charged colloidal rod is shown to be accurately represented, for arbitrary Debye lengths, by a

superposition of spherical beads with the same diameter of the rod and the same surface charge

density. The experimental Soret coefficients are compared with this and other theories, and are

contrasted against the thermal diffusion behaviour of charged colloidal spheres.
1 Introduction

Thermal diffusion, which is also known as the Ludwig–Soret
effect, is the phenomenon where mass transport is induced by a
temperature gradient in a multi-component system. For suffi-
ciently small gradients, the mass ux induced by a temperature
gradient VT is equal to �DTVT, where DT is the thermal diffu-
sion coefficient. Thermal diffusion leads to gradients Vc in
concentration, which in turn give rise to a mass ux equal to
�DVc, where D is the mass diffusion coefficient. The two uxes
counter balance in a stationary state, from which it follows that
the ratio of the concentration gradient and the temperature
gradient in such a stationary state is equal to the Soret coeffi-
cient ST ¼ DT/rD, where r is the number density of colloids. The
Soret coefficient can be regarded as a response function, which
measures the concentration gradient induced per unit of
temperature gradient. Note that oen a slightly modied de-
nition of the thermal diffusion coefficient is used in experi-
mental contexts,1 which contains an additional prefactor
related to concentration (as discussed by Ning et al.,2 and in
Section 4 of the present paper).

In many previous studies, attempts have been made for
mixtures of non-polar liquids to relate the Soret coefficient to
the mass of the molecules, their moment of inertia, and the
viscosity and thermal expansion coefficient.1 In aqueous
systems, where the situation is more complicated, hydrogen
bonds and the charge effect are of signicant importance.3,4
many. E-mail: j.k.g.dhont@fz-juelich.de;

sität, D-40225 Düsseldorf, Germany
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With the advent of new experimental techniques in the last
few years, it became possible to investigate the thermal diffu-
sion behaviour of relatively slowly diffusing macromolecules. A
number of experimental studies have been performed on
charged macromolecules, such as DNA, ionic surfactants,
surface modied polystyrene spheres and silica colloids.2,5–8 For
charged silica Ludox particles it was found that the Soret coef-
cient increases with increasing Debye length and slightly
drops at large Debye lengths, of the order of the core-radius of
the colloids. For all investigated concentrations at room
temperature, a negative Soret coefficient has been observed for
this system.2 Another study reveals an increasing linear
dependence of the Soret coefficient with the Debye length for
carboxyl-modied polystyrene beads.5 Here, the Debye length is
always very small as compared to the particle radius. Apart from
colloids, a study of micellar solutions with the ionic surfactant
sodium dedecyl sulphate also shows that raising the Debye
length leads to an increase of the Soret coefficient.7

To gain a better understanding of the microscopic mecha-
nism of the thermal diffusion process of macromolecules,
several theoretical approaches have been developed. The rst
theory was published by Ruckenstein in 1981,9 where a
connection between thermophoresis of solid colloidal particles
and the Marangoni effect is made. Later, models for single
spherical particles have been derived in terms of surface
potential, independently by Morozov and Piazza.6,10 A few years
later, Bringuier and Bourdon proposed an expression for ST in
terms of the total internal energy of a particle, based on the
kinetic theory of Brownian motion.11 Independently, Fayolle
et al.12 and later Duhr and Braun13 derived an expression for the
Soret coefficient for charged colloids with thin double layers,
Soft Matter, 2013, 9, 8697–8704 | 8697
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which was subsequently generalized by Dhont and Briels14 to
arbitrary Debye lengths. All these theoretical approaches apply
only to spherical colloids, while little is known about non-
spherical colloids. The present paper is devoted to thermal
diffusion of very long and thin, charged colloidal rods.

Fd-virus suspensions are widely used as model systems for
colloidal rods. Suspensions of fd-virus particles have been
shown to exhibit several liquid-crystalline phases (for an over-
view see ref. 15), and have been used for studies on the response
of rod-like colloids to shear ow16,17 and electric elds.18 Their
suspensions are stable up to 65 �C,19 and are highly mono-
disperse. The wild type fd-virus has a molecular weight of 1.64�
107 g mol�1, a contour length L of 880 nm, a radius a of 3.4 nm,
and a persistence length LP of 2.2 mm. The ratio of the persis-
tence length to contour length LP/L ¼ 2.5 indicates that these
rods are semi-exible, which leads to a deviation of isotropic–
nematic coexistence concentrations as predicted by Onsager for
stiff rods.15,20 Above pH 4 these particles are negatively charged
and interact via a combination of electrostatic repulsion and
hard-core interactions. The net surface charge can be increased
or decreased by increasing or decreasing the solution pH,
respectively.21

In the present paper we use fd-virus suspensions to investi-
gate the thermal diffusion behaviour of very long and thin,
charged colloidal rods. The paper is structured as follows. First,
we describe the experimental details. In the subsequent section
we extend the Dhont–Briels model14 for spherical colloids to
rod-shaped particles. In the results and discussion section we
present experimental results for thermal diffusion coefficients
and mass diffusion coefficient, where both the ionic strength
and concentration are independently and systematically varied.
The experimental results are compared to our theory and other
theories, and also to former experimental results for spherical
colloids. The main conclusions and remarks with respect to
possible future work close the paper.
2 Experimental details
2.1 Sample preparation and characterization

The fd-virus was prepared following a standard biological
protocol using the XL1-Blue strain of E. coli as the host bacteria.22

The obtained virus was puried by repetitive centrifugation
(108 000g) and then re-dispersed in the chosen buffers. Tris(hy-
droxymethyl)aminomethane (Tris) with concentrations of 82.15,
15.09, 6.11, 3.29, and 2.05 mM was used as buffer solution. The
pHs of all buffer solutions were adjusted to 8.2 by adding
concentratedHCl solution. Finally the virus was dialyzed in each
chosen buffer and used as stock solutions to prepare the further
concentration series for the measurements. The ve concentra-
tions of Tris are chosen such that the resulting Debye lengths are
variedwith equal increments. The studied fd-virus concentration
is 1 mg ml�1 for the xed-concentration measurements,
and in the range of 0.4–1.8 mgml�1 and 0.6–2.2 mgml�1 for the
xed-buffer concentration and the xed-volume fraction
measurements, respectively. Concentrations were determined
by UV absorption (NanoDrop ND-1000, Peqlab). All measure-
ments were performed at 20 �C.
8698 | Soft Matter, 2013, 9, 8697–8704
2.2 Infrared thermal diffusion forced Rayleigh scattering
(IR-TDFRS)

A detailed description of the recently modied IR-TDFRS can
be found in the paper by Blanco et al.3 This setup is optimized
for aqueous systems and has been used to study the
transport properties in different aqueous systems of non-ionic
surfactants,2 saccharide solutions23 and anisotropic bio-
colloids.3

The normalized heterodyne scattered intensity zthhet(t),
assuming an ideal excitation with a step function, is given by,

zthhetðtÞ ¼ 1� exp

�
� t

sth

�
� Aðs� sthÞ�1

�
s
h
1� exp

�
� t

s

�i
� sth

�
1� exp

�
� t

sth

��	 (1)

with the steady state amplitude A equal to

A ¼
�
vn

vc

�
p;T

�
vn

vT

��1

p;c

STcð1� cÞ (2)

where c is the mass fraction, cfd in our particular case, sth is the
heat diffusion time, s is the equilibration time of the mass
diffusion, (vn/vc)p,T and (vn/vT)p,c are refractive index contrast
factors with respect to mass concentration at constant pressure
and temperature, and with respect to temperature at constant
pressure and mass concentration, respectively. The refractive
index contrast factors are measured independently from the
TDFRS measurements. The details about measurement of
refractive index contrast factors are described in another paper.4

Note that the diffusion coefficient can be derived from the
equilibration time D ¼ (sq2)�1 with the magnitude of the scat-
tering vector q, while ST can be calculated from amplitude A
(cf. eqn (2)).
3 Theoretical description

The force on a charged colloidal particle due to the presence
of an electric double layer has been shown in ref. 14 to be
mainly due to the change of the internal energy of the electric
double layer as the ambient temperature changes on moving
the colloid. The additional forces due to the temperature-
gradient induced deformation of the double layer are relatively
small in polar solvents like water.14 Let FW denote the force
acting on the colloid due to the temperature dependence of
the internal energy of the double layer. This force is connected
to the work dW to reversibly pull the colloid from a box with
temperature T over a distance dz to a box with temperature
T + dT, by the relation FWdz ¼ �dW (see Fig. 1). The work dW
can be calculated, as far as the contribution from the electric
double layer is concerned, by considering the alternative path
as depicted in Fig. 1. First the surface of the colloid is
reversibly de-charged. The work involved in de-charging the
colloid is �W(dl)(T), that is, W(dl)(T) is the reversible work to
charge-up the colloidal particle. Then the un-charged colloid
is pulled from the box with temperature T to the box with
temperature T + dT. As far as the double layer is concerned,
there is no work involved, simply because the double layer is
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 The alternative path to move the colloid from a box with temperature T
over a distance dz to the neighbouring box with temperature T + dT. W(dl)(T) is
the reversible work that is required to charge the colloid. The colloid is the blue
rod, while the red dashed lines are used to indicate the presence of the
double layer.
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no longer present for the neutral colloid. Then the colloid is
re-charged, which requires the work +W(dl)(T + dT). Hence,
dW ¼ W(dl)(T + dT) � W(dl)(T) ¼ dTdW(dl)(T)/dT. It follows that
the force is equal to FW ¼ �(dT/dz)(dW(dl)/dT). The connection
of the force to the thermal diffusion coefficient is found from
force balance on the diffusive time scale, that is, once the
colloid is moving, the friction force Ffr ¼ �gv with the solvent
balances with FW, where g is the friction coefficient and v is
the velocity of the colloid. The thermal-gradient induced
velocity of the colloid is thus equal to v ¼ FW/g. Substitution
of this expression for the velocity into the continuity equation
vr/vt ¼ �d(vr)/dz (where r is the number density of the
colloids) and expansion with respect to gradients in temper-
ature and deviations of the temperature from the ambient
temperature then lead to vr/vt ¼ DTd

2T/dz2, where the thermal
diffusion coefficient is equal to14,24

DT ¼ D0rb
dW ðdlÞðTÞ

dT
; (3)

where D0 ¼ kBT/g is Einstein's mass diffusion coefficient and
b ¼ 1/kBT (where kB is Boltzmann's constant).

For the calculation of the temperature derivative of the
reversible energy to charge the colloidal particle, analytical
results can be obtained within the Debye–Hückel approxima-
tion. The work required to add a charge dq to the surface of the
colloid, homogeneously distributed over its surface, is equal to
Js(q)dq, where Js(q) is the potential at the surface of the
colloid with the total charge equal to q. Since within the
Debye–Hückel approximation the surface potential is propor-
tional to the charge, the work to charge the colloid up to a total
charge equal to Q is given by
This journal is ª The Royal Society of Chemistry 2013
W ðdlÞ ¼
ðQ
0

dqJsðqÞ ¼ 1

2
QJsðQÞ: (4)

This result is valid for arbitrary double-layer thickness.25 The
relationship between the surface potential and the total charge
for a spherical colloid reads

JðsphereÞ
s ¼ Q

4p3a

1

1þ ka
; (5)

where a is the radius of the sphere, 3 is the dielectric constant of
the solvent, and k is the inverse Debye length. Note that both 3

and k are temperature dependent quantities. For a cylindrical
colloid we have

JðrodÞ
s ðQÞ ¼ Q

2pacL3k

K0ðkacÞ
K1ðkacÞ; for kac T 1; (6)

where ac is the radius of the cylindrical core, L is the length of
the core, and K0,1 are modied Bessel functions of the second
kind of order 0 and 1. The analytical form in eqn (6) is based
on the solution of the linearized Poisson–Boltzmann equation
for an innitely long cylinder. For a cylinder of nite length,
the analytical form for the innitely long cylinder is kept here,
which amounts to the neglect of end-effects. For Debye
lengths that are much larger than the core radius, the
potential in eqn (6) varies like �kacln{kac}, and not like that
for a sphere. This is an artifact of the originally assumed
innite length of the cylindrical core. The relation (6) is
therefore only valid for sufficiently thin double layers, where
kac T 1.

Combining the above results it is found that the thermal
diffusion coefficient can be written in terms of the surface
charge density s and the Bjerrum length lB as

DT ¼ A
d ln 3

d ln T
þ B; (7)

where for a sphere,

AðsphereÞ ¼ �C
ka

ð1þ kaÞ2
�
1þ 2

ka

	
;

BðsphereÞ ¼ C
ka

ð1þ kaÞ2 ;
(8)

while for a rod,

AðrodÞ ¼ �C
L

kac2
K0ðkacÞ
K1ðkacÞ

�
1þ 1

2
kac

�
K0ðkacÞ
K1ðkacÞ �

K1ðkacÞ
K0ðkacÞ

�	
;

BðrodÞ ¼ C
L

2ac

�
1� K0

2ðkacÞ
K1

2ðkacÞ

�
; for kac T 1:

(9)

where for brevity the constant,

C ¼ 1

4
D0

r

T

�
4plB

2
s

e

�2�
a

lB

�3

; (10)

is introduced, with a ¼ ac in the case of a rod, and where D0 is
either the Einstein mass diffusion coefficient D(sphere)

0 of a
sphere or D(rod)

0 of a rod, while e > 0 is the elementary charge. We
expressed the total charge in terms of the surface charge density
s in order to simplify a comparison between spheres and
rods.
Soft Matter, 2013, 9, 8697–8704 | 8699
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Fig. 2 The dimensionless quantities ~A ¼ CA, ~B ¼ CB and ~DT ¼ CDT, where C ¼ T16p3a/bD0rQ
2 as a function of ka (with a ¼ ac for the rods), where Q is the monomer

charge.
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For the cylindrical colloid there are two limiting situations,
where either kac � 1 or kac [ 1. In the rst case of very thick
double layers compared to the cylindrical core radius, the core
of the rod may be considered as a string of L/2ac beads of radii
ac. The extended double layer structure of each bead is essen-
tially unaffected by the presence of the relatively small excluded
volume of the neighbouring beads, so that within the linearized
Poisson–Boltzmann approach the structure of the double layer
of the cylinder is well approximated by a sum of the spherical
double layers of the beads. Except for the diffusion coefficient
D0, which is different for a sphere and a rod, the thermal
diffusion coefficient of the rod is now a sum of the thermal
diffusion coefficients of the beads, that is,

AðrodÞ

D
ðrodÞ
0

¼ L

2ac

AðsphereÞða ¼ acÞ
D

ðsphereÞ
0

;

BðrodÞ

D
ðrodÞ
0

¼ L

2ac

BðsphereÞða ¼ acÞ
D

ðsphereÞ
0

; for kac ( 1:

(11)

The expression for the thermal diffusion coefficient in the
other limiting case of thin double layers is given by eqn (9).
May be surprisingly, this expression predicts, like for the thick
double layers, that the thermal diffusion coefficient of a rod is
simply a superposition of the thermal diffusion coefficients of
the beads (with radii ac). This can be analytically veried by
substitution of the two leading terms in an asymptotic
expansion of the two Bessel functions. Numerical results are
given in Fig. 2. Fig. 2a and b show that for kac T 2 the result in
eqn (9) is quite accurately approximated by a representation of
2ac/L beads with each having a thermal diffusion coefficient
given in eqn (8) with a ¼ ac, where there is an increasing
accuracy for thinner double layers. The thermal diffusion
coefficient DT in dimensionless form is plotted in Fig. 2c for a
cylinder and the corresponding bead model, with the value
d ln 3/d ln T ¼ �1.43 for water. As can be seen, the approxi-
mation of the thermal diffusion coefficient of a rod by that of a
string of spheres becomes more accurate on decreasing the
Debye length.
8700 | Soft Matter, 2013, 9, 8697–8704
The conclusion from the above analysis is that both for thick
and thin double layers, the thermal diffusion coefficient of a
rod-like colloid can be accurately approximated by L/2ac times
the thermal diffusion coefficient (7) and (8) of a spherical
colloid with radius a ¼ ac, with the same surface charge density
as the rod. From the above analysis we thus nd that the Soret
coefficient S(rod)T ¼ D(rod)/rD(rod)

0 is equal to

S
ðrodÞ
T ¼ 1

4T

L

2ac

�
4plB

2
s

e

�2�
ac

lB

�3
kac

ð1þ kacÞ2

�
�
1� d ln 3

d ln T

�
1þ 2

kac

	�
:

(12)

This superposition of thermal diffusion coefficients of
spherical beads to approximate the thermal diffusion coeffi-
cient of a rod is valid for arbitrary Debye lengths, and will be
used in the sequel for a comparison with experimental data for
the thermal diffusion coefficient of fd-viruses.

4 Experimental results

Measurements of the mass diffusion coefficient and the
thermal diffusion coefficient are performed, where the fd
number concentration (dened as the number of fd-virus
particles per unit volume) as well as the Debye length are
varied independently. The Debye length is tuned by adjusting
the concentration of the buffer Tris–HCl solution. Since the
acid dissociation constant pKa of Tris is 8.2 and the pH of all
the buffers are adjusted to 8.2, the ionic strength I is half the
value of the total molar concentration of Tris. The Debye
length k�1 can be calculated from (with NA Avogadro's
number)

k�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8plBNAI

s
: (13)

An effective volume fraction f can be dened, which charac-
terizes the importance of interactions between rods. The effec-
tive volume fraction depends on the fd number concentration
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 ST, D and DT as a function of the effective volume fraction. Solid squares
present measurements with fixed cfd ¼ 1 mg ml�1. Open squares illustrate
measurements with constant cbuffer ¼ 6.11 mM. The open triangle presents the
data of the bulk diffusion coefficient from the literature.26,27 The red line is a guide
to the eye.
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and the Debye length. Due to inter-particle charge–charge
interactions, the apparent radius of the core of the fd-virus
particles increases by an amount that is approximately given by
the Debye length. The effective volume fraction is dened as the
volume fraction of rods with a core radius of ac + k�1. Alterna-
tively the apparent radius can be calculated as suggested by
Onsager,20 based on equality of the second virial coefficient of
charged rods and the equivalent hard rods with the corre-
sponding apparent core radius. We shall be satised with the
former simple approximation, as it does not affect our
conclusions.

There are thus three parameters of interest: the number
concentration of fd viruses, the Debye length, and the effective
volume fraction. We therefore performed the following set of
experiments:

(a) The Debye length is varied with a constant number
concentration of fd-virus particles (of 1 mg ml�1).

(b) The number concentration of fd-virus particles is varied
with a xed Debye length (where the buffer concentration is
chosen equal to 6.11 mM).

(c) The effective volume fraction is xed to 0.0037 with
appropriate simultaneous variation of both the fd-virus
concentration and the Debye length.

These experimental paths are illustrated in Fig. 3a–c,
respectively. Although in our suspensions the state of the
system is always isotropic, the rods in these gures are sketched
with the same orientation for clarity.

The aim of this work is to probe the thermal diffusion
behaviour of single fd-virus particles as a function of the
Debye length, without the intervening effects of inter-particle
interactions. In order to probe whether inter-particle interac-
tions affect the measured mass diffusion and thermal diffu-
sion coefficients, we performed a series of experiments as a
Fig. 3 Illustration of the chosen experimental paths. The white rods present the
core of fd-viruses and the blue parts are used to indicate the extent of the electric
double layers. For clarity the rods have been drawn with the same orientation. In
the experiments, however, the systems are isotropic. (a) The number concentra-
tion of fd-viruses is constant while the Debye length is increased by decreasing the
buffer concentration. (b) The number concentration of fd viruses is increased at a
constant Debye length. (c) Both the number concentration of fd viruses and the
Debye length are changed in such a way that the effective volume fraction
remains constant.

This journal is ª The Royal Society of Chemistry 2013
function of the effective volume fraction. The open symbols in
Fig. 4 are experimental data for the Soret coefficient and the
mass- and thermal diffusion coefficient at a constant buffer
concentration, and thus a xed Debye length. The effective
volume fraction for this series of experiments is changed by
only changing the fd-virus concentration (path (b)). As can be
seen from the lower panel in Fig. 4 (the open symbols), the
thermal diffusion coefficient is insensitive to interactions, and
is essentially constant up to an effective volume fraction of
about 0.0065. The mass diffusion coefficient, however, signif-
icantly increases with increasing effective volume fraction, as
can be seen from the middle panel (again the open symbols).
The blue triangle at low concentration is taken from the
literature.26,27 On the other hand, when the effective volume
fraction is increased at a constant fd-virus number concen-
tration (1 mg ml�1) by increasing the Debye length (path (a)),
signicant changes are observed (see the lled symbols in
Fig. 4), also for the thermal diffusion coefficient. Since inter-
particle interactions are not signicant as far as the thermal
diffusion coefficient is concerned, its variation with the buffer
concentration must be due to the variation of the double-layer
thickness. In order to obtain experimental values for the
Soft Matter, 2013, 9, 8697–8704 | 8701
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single-particle Soret coefficient S0T, we will use the Debye-length
dependent thermal diffusion coefficient (lled symbols in the
bottom panel in Fig. 5) and the mass diffusion coefficient at
innite dilution D0 ¼ 2.3 � 10�8 cm2 s�1 from the litera-
ture.26,27 The upper panel in Fig. 5 shows Soret coefficients
obtained from the diffraction signal (cf. eqn (1) and (2)) cor-
responding to the ratio of the experimental values for the two
diffusion coefficients.

To further establish the Debye-length dependence of the
mass- and thermal diffusion coefficients, we performed
experiments at a xed effective volume fraction of 0.0037
(path (c)), by appropriate simultaneous variation of both the
fd number concentration and the Debye length. The Soret
coefficient and the mass- and thermal diffusion coefficients
along this path are plotted in Fig. 5 by the open (with center-
cross) symbols as a function of the Debye length. The lled
symbols in Fig. 5 refer to data obtained along path (a), where
the fd number concentration is xed to 1 mg ml�1, and the
Debye length is varied by changing the buffer concentration.
The two sets of data points in the lower panel for the thermal
diffusion coefficient coincide to within experimental error,
which again conrms the insignicant inter-particle
interactions.
Fig. 5 ST, D and DT as a function of the Debye length. Solid squares present
measurements with fixed cfd ¼ 1 mg ml�1. Empty with center cross-symbols are
measurements with constant f ¼ 0.0037.

8702 | Soft Matter, 2013, 9, 8697–8704
5 Comparison of experiments with theory

We compare the single-particle Soret coefficient S0T as a function
of the Debye length with the theory that has been developed in
Section 3. We note that the thermal diffusion coefficient is
sometimes dened differently from the theoretical expressions
given in Section 3. The denition of the thermal diffusion
coefficient Dexp

T in experimental work relates to DT used in most
of the theoretical studies (as in Section 3) through DT¼ rc(1� c)
Dexp
T , where r is the colloid number density and c is the volume

fraction of colloids.2

In order to asses the importance of the nite extent of the
electric double layer, we include a comparison to eqn (12) in the
asymptotic limit of very thin double layers, where kac /N. For
such thin double layers we have from eqn (12),

S
ðrodÞ
T ¼ 1

4T

L

2ac

�
4plB

2
s

e

�2
ac

2

klB
3
�
�
1� d ln 3

d ln T

�
: (14)

The corresponding expression for spherical particles
(without the factor L/2ac) has been derived independently by
Fayolle et al.12 and Duhr and Braun.13 There is so far no exten-
sion of Ruckenstein's theory9 to rod-like colloids. It is not
obvious that we can simply take Ruckenstein's expression for
the Soret coefficient for spheres and multiply that with the
number of beads to obtain the corresponding expression for
rods. We will therefore refrain from a comparison with any
possible extension of Ruckenstein's theory to rods.

The result in eqn (12) and the above expression account only
for the contribution of the electric double layer to the Soret
coefficient. There is an additional “ideal gas” contribution
equal to 1/T, and contributions due to thermal properties of, for
example, the solvation layer and the core of the colloids. These
contributions are insensitive to salt concentration, so that they
determine the “offset” in plots of the Soret coefficient as a
function of the Debye length. The offset and the surface charge
density s are used as tting parameters in a comparison of
experiments with theory. Fig. 6 shows the Soret coefficient
S0T ¼ DT/D0 determined from the measured thermal diffusion
coefficient DT and the diffusion at innite dilution D0 as a
function of the Debye length. The ts are plotted in Fig. 6, while
the offset and surface charge density for the best ts to various
theories are given in Table 1. The solid line (blue) is a t to
limiting expression (eqn (14)) for very thin double layers. The t
is slightly improved by accounting for the nite extent of the
electric double layer, as discussed in Section 3 (the dashed
green line). Similar results have been found for charged
spherical particles (Ludox silica particles),2,13 of which the
experimental data are presented in Fig. 6 as open circles, which
tted with the model described in Section 3 for spherical
colloids.

The question now is whether the surface charge density of
s ¼ (0.050 � 0.003) e nm�2 that is found from the t to our
theory is a reasonable value. Fd-virus consists of a DNA strand
that is covered by 2700 proteins, which carry a bare charge of
9.5 � 0.5 negative elementary charges per nm. According to a
calculation by Buitenhuis,28 about 90% of these groups at
pH ¼ 8.2 are dissociated, so that the total bare charge of an fd
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 The Soret coefficient ST as a function of the Debye length. In contrast to
Fig. 4 and 5 the open squares present the calculated S0T ¼ DT/D0 for the fd-virus
with an effective volume fraction of f ¼ 0.0037 and the open circles show ST of
Ludox silica particles. The data of the fd-virus are fitted by the two models
discussed in the main text. The data of Ludox particle are fitted by Dhont's
model for spheres.2

Table 1 Parameters obtained by fitting S0T as a function of the Debye length
using two models as in Fig. 6

Model s/e nm�2 Offset

Eqn (14) (based on ref. 12 and 13) 0.023 � 0.002 �0.74
Eqn (12) (this work) 0.050 � 0.003 �1.39
Calculated free surface charge 0.066
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particle is equal to N ¼ 7500 � 400 e. A large fraction of this
surface charge is neutralized by ion-condensation. According
to Manning's ion-condensation theory,29,30 the ratio b/lB < 1 of
the typical distance b ¼ L/N between the charges on a cylin-
drical rod and the Bjrerrum length lB is equal to the fraction of
bare charges that is not neutralized by condensed ions (for
monovalent ions). Since lB ¼ 0.71 nm for water at room
temperature, it is found that b/lB is equal to 0.16 � 0.01. The
total number of charges close to the surface of an fd particle
that determine the structure of the diffuse electric double layer
is thus equal to 1239 � 66, which corresponds to surface
charge densities of 0.066 � 0.004 e nm�2 (where the indicated
error is certainly much smaller than the actual error that are
implicit in the approximations made in the theory on which
this estimate is based). This value of the surface charge density
is in reasonable agreement with the experimentally found
This journal is ª The Royal Society of Chemistry 2013
surface charge density of 0.050 � 0.003. The surface charge
density obtained from a t to the same theory for very thin
double layers gives a signicantly lower surface charge density
(see Table 1).

Within Manning's ion-condensation theory, there is no
dependence of the number of condensed ions on the overall
ionic strength, which suggests that the contribution of the
condensed ions to the thermal diffusion coefficient is inde-
pendent of the Debye length. The contribution of the
condensed ions to DT is thus incorporated in the offset as
introduced earlier, while the Debye-length dependence of DT is
determined by the diffuse electric double layer.
6 Conclusion

In this work we explored the thermal diffusion behaviour of
lamentous wild type fd-virus. These virus particles are used
as a model system for very long and thin, and relatively stiff
rod-like colloids. A theory is proposed, which predicts that the
thermal diffusion coefficient of a rod is equal to that of a
spherical bead with a diameter equal to that of the rod-core,
and with the same surface charge density, multiplied by the
aspect ratio of the rod (which is equal to the number of
beads). Such a superposition of spherical beads to represent
the thermal diffusion coefficient of a rod is accurate for
arbitrary Debye lengths, including very thin double layers.
Thermal diffusion coefficients are measured with Thermal
Diffusion Forced Rayleigh Scattering (TDFRS), where an infra-
red laser is used to create a temperature grating through the
excitation of a vibrational mode of the water molecules. In a
series of experiments the fd concentration and the Debye
length were varied independently. We also performed experi-
ments where the fd number concentration and the ionic
strength are changed in combination, such that the effective
volume fraction is xed. Contrary to the mass diffusion coef-
cient, the thermal diffusion coefficient is found to be
essentially independent of the fd concentration. The measured
Soret coefficients are well described by the theory that we
developed in this paper. Comparing with experiments, there
are two adjustable parameters: the ionic-strength independent
contribution to the Soret coefficient and the surface charge
density. The surface charge density that we nd from the t
with theory compares reasonably well with the theoretically
predicted value.

Future developments related to charged colloids could
include (i) the extension of the theory beyond the Debye–Hückel
approximation and (ii) the thermal diffusion of other types of
non-spherical colloids, like disks, and of charged rods with
varying exibility.
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