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A microscopic view on the large scale chain dynamics in
nanocomposites with attractive interactions

Thomas Glomann,a Adrian Hamm,a Jürgen Allgaier,a Eike G. Hübner,d

Aurel Radulescu,b Bela Faragoc and Gerald J. Schneider*b

We use neutron spin-echo spectroscopy to investigate the large scale chain dynamics in unentangled

polymer nanocomposites where stable polymer layers around nanoparticles are dynamically formed due

to attractive segment–surface interactions. The work here focuses on the detailed microscopic

characterization of the dynamics within these layers of bound poly(ethylene glycol) (PEO) and

poly(butylene oxide) (PBO) chains at a fixed silica nanoparticle fraction of 15%. The substitution of

hydroxy by methoxy terminated chains thereby clearly evidences the importance of the chain end

chemistry in these systems as the layer structure and dynamics therein significantly depend on the

specific interaction mechanism. The experimental data reveal a densely packed thick shell of end-

attached chains in the case of hydroxy ends contrasted by a thin shell of laterally adsorbed chains with

multiple attachments in the methoxy case. In all cases a consistent quantitative modeling is presented

that evidences unchanged segmental dynamics within the bound layers. The obtained picture is further

validated on an independent model system based on PBO polymers which shows surprisingly similar

chain dynamics as for PEG in the nanocomposite pointing to a very generic dynamic scenario.
Introduction

Polymer nanocomposites (PNCs) promise substantially
improved material properties such as increased tensile
strength, abrasion resistance, conductivity and gas barrier
properties by adding small fractions of nano-sized particles.1 In
contrast to microcomposites with particle sizes or aggregates on
the micron scale, surface interactions between the particles and
polymer segments are non-negligible due to the large surface-
to-volume ratios and close inter-particle distances comparable
to the dimensions of the embedding polymer chains.

In poly(ethylene oxide)–silica nanocomposites it is well
known that the strong attractive interactions cause polymer
chains to adsorb onto the particle surface which can enhance
the colloidal stability against coagulation by steric repulsion
between adsorbed polymer layers but it can also lead to desta-
bilization by bridging occulation when the surface separation
distance is on the order of the chain end-to-end distance.2–9

Although extensive research in the eld of PNCs has led to
substantial progress toward the physical understanding of the
interrelation of polymer–ller affinity, the ller structure and
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rheological properties of lled polymer melts, the microscopic
dynamics of the underlying polymer phase and the interaction
mechanisms remain poorly understood. For instance the poly-
mer reference interaction site model (PRISM) is able to predict
equilibrium properties of the composite microstructure with
near-quantitative precision for low-molecular weight PEG
liquids.10 However, non-equilibrium chain adsorption was
found to occur if the molecular weight increases as reported
recently by Zukoski.11 The non-equilibrium adsorption leads to
a net attraction between particles that promotes particle gela-
tion as the polymer segment–particle surface energy 3pc effec-
tively decreases.11

Network formation and gelation by polymer bridges above a
certain particle fraction was also reported by Kim et al.12 using
NMR investigations on entangled PEO–silica nanocomposites.
They correlate the onset of polymer network formation with the
changes in the viscoelastic properties as reported by Anderson
and Zukoski13 that is found to coincide with ductile to brittle
transition.12

While there seems to be general agreement on the identica-
tion of polymer–particle networks as the microscopic origin of the
macroscopic reinforcement effect12,14–20 a full molecular under-
standing of the structural and in particular dynamical properties
within the adsorbed polymer layers is yet to be achieved as oen
apparently contradictory results are presented. Fully atomistic
molecular dynamics simulation by Barbier et al. highlights the
particular role of chain end groups in the interaction mechanism
by showing that hydrogen bonding interactions may be the
Soft Matter, 2013, 9, 10559–10571 | 10559
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strongest for hydroxy terminated ends.21 Recent NMR investiga-
tions of PEO–silica nanocomposites ascribed “glassy” (immobi-
lized) dynamics to a nanometer thick strongly adsorbed layer
around the particles that is independent of molecular weight and
chain end groups.12 Experimental investigations of the polymer
conformation using scattering techniques revealed a layer of
bound polymer with an altered segment density in agreement
with PRISM theory calculations.22–24 Computer simulations found
no change of the average Gaussian chain structure but show
effectively slowed Rouse dynamics and enhanced entanglement
density in the vicinity of the particles.25–27

In order to resolve these issues experimental techniques with
spatial and temporal resolution on the length and time scale of
the polymer chain relaxation are necessary. For instance, the
neutron spin-echo technique has been proven to yield detailed
insight into the dynamics of the polymer phase in nano-
composites as was shown earlier for a model system with
essentially repulsive polymer–particle interactions.28–30

Recently, high resolution neutron spectroscopic investigations
of attractively interacting PEG–silica nanocomposites revealed a
very rich dynamical picture.31 The polymer dynamics was
interpreted by a two-phase model assuming a free bulk phase
with suppressed translational diffusion and a layer of the
adsorbed polymer that, however, remains internally highly
mobile on the segmental scale.31 The large scale chain dynamics
was found to depend strongly on the chain end termination and
thus the interaction mechanisms.31

Here, we elaborate on the large scale chain dynamics of these
unentangled poly(ethylene glycol) (PEG) nanocomposites31 and
present a comprehensive model analysis in terms of the above
mentioned two-phase model.31 The high space and time reso-
lution of neutron spin-echo (NSE) spectroscopy is used to
resolve and distinguish the chain center-of-mass diffusion as
well as the internal polymer chain relaxation dynamics. The
interactionmechanisms between the polymer segments and the
particle surface are scrutinized by varying the chain termination
from hydroxy (OH) to methoxy (CH3) groups, leading to
substantial differences in the dynamics of the nanocomposites.
For both cases, a detailed model picture of the structure and
dynamics within the adsorbed layers is deduced and discussed
in detail.

In addition, we compare the results to dynamic data on a
further model nanocomposite based on poly(butylene oxide)
(PBO) that is expected to have comparable segment–surface
interaction strengths as the chemically similar PEG. It has the
unique advantage to allow future complementary rheology and
dielectric spectroscopy experiments which make PBO–silica an
ideal model system to bridge the gap between the investigations
on the microscopic and the macroscopic scale.
Theoretical background
Neutron scattering

Neutron scattering techniques reveal the spatially averaged
microscopic structure and dynamics of so matter materials
with a spatial and temporal resolution determined by the
momentum transfer ~Q ¼ ~ki � ~ks and energy transfer E ¼ ħu
10560 | Soft Matter, 2013, 9, 10559–10571
between the incident and scattered neutrons with wavelength l

¼ 2p/|~k|. The direction of the wave vector ~k points along the
ight path of the neutrons which scatter from the atomic nuclei
in the sample into the solid angle dU. The double differential
cross-section d2s/dUdE (scattering probability) can be
expressed in terms of the dynamic structure factor S(Q, u):

d2
s

dUdE
¼ ks

ki
N

�
scoh

4p
Scoh

~Q; u
� �

þ sinc

4p
Sinc

~Q; u
� ��

(1)

where N is the number of scatterers and scoh ¼ 4phbi2 respec-
tively sinc ¼ 4p(hb2i � hbi2) denote the coherent/incoherent
cross-sections given by the scattering lengths b of the nuclei,
which vary unsystematically with nuclei and isotopes. In
neutron scattering the difference in the scattering lengths of 1H
and 2H (¼ deuterium D) is exploited to tune the average scat-
tering length (scattering contrast) of the material by
substituting hydrogen with deuterium (isotopic labeling). This
technique therefore allows the observation of the single chain
polymer structure and dynamics in the melt by mixing
hydrogenous and deuterated chains.

The coherent and incoherent dynamic structure factors

Scoh=inc
~Q; u
� �

¼ 1

2ph-

ðN
�N

Scoh=inc
~Q; t
� �

expð�iutÞdt (2)

are given by the Fourier transform in time of the intermediate
scattering functions Scoh/inc(~Q, t), which express the response
functions as thermal averages of the time-dependent pair- and
self-correlation function of the position operators~ri(t) of the N
scattering centers (monomers)

Scoh
~Q; t
� �

¼ 1

N

XN
i;j

�
exp �i~Q$~rið0Þ
� �

exp i~Q$~rjðtÞ
� ��

(3)

Sinc
~Q; t
� �

¼ 1

N

XN
i

�
exp �i~Q$~rið0Þ
� �

exp i~Q$~riðtÞ
� ��

(4)

In that sense the double differential cross-section can be
seen as the linear response of the sample to the spectrum of
spontaneous microscopic uctuations as stated by the uctua-
tion–dissipation theorem.

The intermediate scattering function S(Q, t) is directly recorded
by the neutron spin-echo technique which exploits the precession
of the neutron spin in a magnetic eld to achieve the highest
energy resolution. As the incoherent scattering process ips the
spinwith a probability of 2/3 themeasured normalized S(Q, t)/S(Q)
function is given by

SðQ; tÞ
SðQÞ ¼

pcohSðQ; tÞcoh �
1

3
pincSðQ; tÞinc

pcoh � 1

3
pinc

(5)

where pcoh/inc denotes the relative fraction of the in-/coherent
scattering intensities.
Single particle form factor P(Q)

For elastic scattering (no energy transfer) the momentum
transfer Q ¼ 4p/l sin(Q/2) is related to the scattering angle Q
This journal is ª The Royal Society of Chemistry 2013
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and the wavelength l. The single particle form factor P(Q) for
homogeneous isotropic spheres with radius R is given by:

PðQÞ ¼
 
3
sinðQRÞ �QR cosðQRÞ

ðQRÞ3
!2

(6)

The nite size polydispersity of actual nanoparticles can be
described by integrating the monodisperse form factor P(Q)
over the log-normal distribution density function D(r, R, s) with
the median R and the width parameter s:

Dðr; R; sÞ ¼ 1ffiffiffiffiffiffi
2p

p
sr

exp

 
� lnðr=RÞ2

2s2

!
: (7)

The arithmetic mean or expected value hRi and the N-th
moment hRNi of the distribution are given by

	
RN

 ¼ RN exp

�
N2s2

2

�
: (8)

For a dilute suspension of polydisperse particles in a solvent
the absolute scattering intensity I(Q) depends on the particle
concentration fp, particle volume Vp and the scattering contrast
Dr ¼ rp � rs between the scattering length densities of the
particles rp and the solvent rs:

IðQÞ ¼ fpðDrÞ2
ð
drDðrÞVp

2ðrÞPðQ; rÞð
drDðrÞVpðrÞ

: (9)

Gaussian conformation – structure factor S(Q)

The conformation of polymer chains in themelt obeys Gaussian
statistics with the polymer radius of gyration being
Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb2=6

p
. The structure factor Sc(Q) for the nite-length

Gaussian chain is given by32

ScðQÞ ¼ 1

N2

XN
ij

exp

�
�Q2b2

6
ji � jj

�
(10)

where the sum runs over all N chain segments with statistical
segment size b. The absolute scattering intensity I(Q) depends
on the molecular mass Mw of the chains

IðQÞ ¼ fð1� fÞDr2 Mw

rNA

ScðQÞ (11)

with f being the volume fraction of labeled chains, Dr the
difference in the scattering length density of hydrogenous and
deuterated chains, r the polymer density and the Avogadro
constant NA ¼ 6.022 � 1023 mol�1.

Rouse model – intermediate scattering function S(Q, t)

The idealized Rouse model describes the dynamics of a
Gaussian chain in a heat bath with temperature T representing
the surroundingmelt chains. The chain is coarse-grained into N
Gaussian sub-segments of mean statistical segment size b with
temperature-dependent friction coefficient z. Entropic forces
originating from conformational uctuations and stochastic
frictional forces from the heat bath drive the dynamics. The
This journal is ª The Royal Society of Chemistry 2013
model's solutions are given by N internal chain relaxation
(Rouse) modes p with relaxation times sp ¼ sR/p

2 ¼ (zN2b2)/
(3p2kBTp

2) and by the translational chain center-of-mass diffu-
sion with diffusion coefficient DR. The Rouse time sR denotes
the longest relaxation time ( p ¼ 1) aer which all internal
modes of the chain have fully relaxed.

The Rouse dynamics in terms of the coherent intermediate
scattering function S(Q, t) is given by:33

SðQ; tÞcoh
SðQÞ ¼ 1

FN

XN
i;j

exp

(
�Q2DRt�Q2b2

6
ji � jj � 2Q2Ree

2

3p2

�
XN

p¼1þP

ApF

p2
cos

�
ppi

N

�
cos

�
ppj

N

��
1� exp

�
p2t

sR

��)

(12)

where Ree ¼ Nb2 is the chain end-to-end distance and W ¼
3kBT/(b

2z) denes the elementary Rouse rate from which all
other dynamic parameters are deduced: DR ¼ Wb4/(3Ree

2) and
sR ¼ N2/(p2W). We note that the expression factorizes into three
exponential functions describing rst the free translational
diffusion, second the static structure factor S(Q) given by eqn
(10) and third the internal chain relaxation modes (S(Q, t)modes).
The parameters F and P depend on the boundary conditions for
either free chains (p ¼ 0 and F ¼ 1) or chains with one end xed
(P ¼ �1/2 and F ¼ 1/2). Here, we introduced an additional
weighting factor Ap for the p-th relaxation mode that will be
discussed later (Ap ¼ 1, for free chains). The respective inco-
herent Rouse function reads:

SðQ; tÞinc
SðQÞ ¼ 1

FN

XN
i

exp

(
�Q2DRt� 2Q2Ree

2

3p2

�
XN
p¼1þP

ApF

p2

�
cos

�
ppi

N

��2�
1� exp

�
p2t

sR

��) (13)

Experimental
Materials and preparation

The experiments were performed on model nanocomposites
comprising monodisperse poly(ethylene glycol) (PEG) and poly-
(butylene oxide) (PBO) polymers and colloidal silica nano-
particles. Hydrogenous (h) and deuterated (d) polymers were
synthesized in our lab by anionic polymerization and charac-
terized by size exclusion chromatography. h-PEG–OH was
purchased from Merck. The polymers are below the entangle-
ment molecular weight with an average number n ¼ 45 � 4
monomers corresponding to MPEG

w ¼ 2 kg mol�1 and MPBO
w ¼

3 kg mol�1. The PEG chain contains either two hydroxy groups
(PEG–OH) or two methoxy groups (PEG–CH3). The PBO chains
contain at one end a hydroxy group and at the other chain end a
tert-butoxy group (OC4H9).

The detailed characterization of the polymers is summarized
in Table 1.

Charge stabilized silica nanoparticles in solution of either
water (SNOWTEX� ST-40 for PEGs) or isopropanol (ORGANO-
SILICASOL� Ipa-ST for PBOs) were obtained from Nissan
Chemical. The particle diameters and polydispersity were
Soft Matter, 2013, 9, 10559–10571 | 10561
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Table 1 Characteristics of the hydrogenous (h) and deuterated (d) polymers

Sample Mw [kg mol�1] PD n End-groups

h-PEG–OH 1.84 1.02 41 OH/OH
d-PEG–OH 1.97 1.02 41 OH/OH
h-PEG–CH3

a 2.32 1.05 49 CH3O/OCH3

d-PEG–CH3
b 2.09 1.03 42 CD3O/OCD3

h-PBO 3.40 1.03 45 OH/OC4H9

d-PBO 3.70 1.03 44 OH/OC4D9

a 2% of end-groups are OH. b 1% of end-groups are OH.

Table 2 Summary of all samples and their composition. The h/d fractions
denote the content of hydrogenous/deuterated polymers, hri the average scat-
tering length density of the polymer blend at a temperature of 413 K and f the
silica volume fraction

Sample h/d [vol%] hri [1010 cm�2] f [vol%]

PEG–OHa 47/53 3.45 0
PEG–OH-15 47/53 3.45 15.0
PEG–CH3

a 52/48 3.43 0
PEG–CH3-15 51/49 3.44 14.1
PBO 47/53 3.44 0
PBO-15 47/53 3.45 14.7

a Only for SANS characterization.
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determined by tting neutron small-angle scattering data of
diluted particle solution (0.05%) in respective deuterated
solvents with the single particle form factor given by eqn (6) as
shown in Fig. 1(a). The average diameter for both species yields
hDi ¼ 12.9 � 0.1 nm corresponding to a specic surface area of
about 200 m2 g�1. The width of the log-normal size distribution
(eqn (9)) is s ¼ 0.30 � 0.01. The neutron scattering length
densities rST-40 ¼ 3.69 � 1010 cm�2 and rIpa-ST ¼ 3.48 � 1010

cm�2 were obtained from the evaluation of the minimum FH,0

in the intensity of the respective contrast variation series in
solution as shown in Fig. 1(b).

The matrices and nanocomposites with about 15 vol% silica
fraction were prepared under the silica contrast matching
conditions by rst blending hydrogeneous and deuterated
polymers in solution and then adding the silica nanoparticle
solution. Immediate rapid shaking aer addition of the silica
yielded a homogenous transparent solution which was then
stirred for another 12–24 h. The solvent was removed by either
freeze-drying (PEG samples) or by rapid solvent removal by
blowing off isopropanol with an argon gas stream and subse-
quent drying in a vacuum oven at 60 �C (PBO samples).
The nanocomposites were then further dried under vacuum
(<10�4 mbar) until a constant sample weight was obtained. The
preparation of the PEG–OH sample was conducted under dilute
conditions with a solvent-to-PEG ratio of 16 : 1 while the PEG–
CH3 and PBO samples were mixed in the semi-dilute regime
with a 4 : 1 ratio. The details of the sample composition are
summarized in Table 2.
Fig. 1 (a) The superposition of the SANS data of the Ipa-ST and ST-40 particles
directly shows identical particles. The lines are fits with the spherical particle form
factor P(Q) with polydispersity. (b) The coherent scattering intensities of
both particle species were measured for various hydrogenous/deuterated water
(ST-40) and isopropanol (Ipa-ST) ratios. The minima of the parabolas (lines)
denote the zero average contrast condition in solution.

10562 | Soft Matter, 2013, 9, 10559–10571
Neutron spin-echo spectroscopy (NSE)

The large scale dynamics of the polymers was measured using
the IN15 spectrometer at the Institute Laue-Langevin in Gre-
noble, France. For the NSE experiments the samples were lled
into top-loading niobium containers with a sample thickness of
1 mm ensured by glass spacers. In order to prevent sample
degradation at the high temperatures of the measurement the
preparation was done in a glove box under an argon atmosphere
and the cells were tightly sealed by Teon strips. While the
amorphous liquid-like PBO samples required no special treat-
ment the crystalline PEG nanocomposites were premoulded to
the desired shape at about 80–100 �C in order to ll the
containers homogeneously.

The accessible time range from 0.1 to 220 ns was obtained by
measuring at two wavelengths l ¼ 8 and 16 Å. Momentum
transfers Q in the range from 0.05 to 0.2 Å�1 were measured at a
temperature of 413 K by installing the samples in an electrically
controlled and evacuated furnace with an equilibration time of
about 45–60 min to ensure a stable sample temperature (�1 K).
For the background corrections deuterated PEG and PBO
matrices, respectively were measured at the same temperature
and conguration as the samples. The resolution of the instru-
ment was measured by a thin block of graphite at room temper-
ature. The fraction of (in/)coherent scattering was obtained by the
polarization analysis of the scattered intensity under the
measurement conditions and are summarized in Table 3.
Small-angle neutron scattering (SANS)

Prior to the dynamics experiments a structural characterization
of the polymer matrices and nanocomposites by SANS was
performed at JCNS instruments KWS-1 and KWS-2 at the Heinz
Maier-Leibnitz Zentrum (MLZ) in Garching, Germany.34 The
PEG samples were moulded between two quartz discs sealed by
a Viton o-ring yielding an average sample thickness of 0.6 � 0.1
mm. The glass discs were xed in brass containers. The liquid-
like PBO samples were readily lled into Hellma glass cuvettes
of 1 mm thickness.

The samples were measured at the 2 and 8 m detector
distance at a wavelength of 4.5 or 7 Å and heated to the same
temperature as in the NSE experiment. The measured scattering
intensities were corrected for detector efficiency, normalized to
This journal is ª The Royal Society of Chemistry 2013
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Table 3 Relative fractions pcoh of the coherent scattering intensity

Sample

Q [Å�1]

0.05 0.096 0.15 0.20

PEG–OH-15 0.92 0.88 0.80 0.74
PEG–CH3-15 0.90 0.83 0.75 0.63
PBO/PBO-15 0.94 0.90 0.82 0.72
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absolute units by a plexiglass standard, corrected for incoherent
background scattering and normalized to the polymer volume
fraction.

Results
Structural characterization

In Fig. 2 the SANS data of the PEG (a) and PBO (b) nano-
composites (lled symbols) are compared to the respective pure
matrices (unlled symbols). For a direct comparison of the
PEG–OH-15 sample the intensity was additionally scaled by a
factor F ¼ 1.2 to yield good overlap in the asymptotic high-Q
regime (Q > 0.1 Å�1). The matrix data conform well to the
structure factor S(Q) (eqn (10)) for short Gaussian chains as
evidenced by the green lines. The tted value for the statistical
segment lengths is identical for all three polymers with b ¼
5.7 � 0.1 Å. Note that the Q�1.7 power law at high-Q is slightly
lower than the typical limiting power law for long chains
(Debye-limit I f Q�2) which is also reected in a lower char-
acteristic ratio CN ¼ 5.0 � 0.1 as compared to CN ¼ 5.5 for PEG
and PBO.35 The radius of gyration for the chains is 15.4 � 0.4 Å.
The good agreement of nanocomposite data at larger Q > 0.1 Å�1

with respect to the neat matrices indicates not only a good
contrast matching of the silica particles but also unperturbed
Gaussian chain statistics on the more local scale. On the large
length scales at Q ¼ 0.03 Å�1 an increase in the scattering
appears that is associated with heterogeneities and/or long-
range density uctuations.36 Since this regime is far outside of
the neutron spin-echo window as indicated by the gray area
(0.05 Å�1 < Q < 0.20 Å�1), it will not be discussed further here.
Fig. 2 Scattering intensities of the PEG (a) and PBO (b) matrices (open symbols)
and nanocomposites (filled symbols). The inset displays the relative excess
intensity of the PEG–OH-15 sample between Q ¼ 0.05 and 0.096 Å�1. The gray
area marks the Q-range of the NSE experiment.

This journal is ª The Royal Society of Chemistry 2013
However, in the PEG–OH-15 sample a further scattering inten-
sity appears in the intermediate Q range that overlaps with the
lowest Q value of the NSE measurement (Q ¼ 0.05 Å�1). The
inset in Fig. 2(a) shows the relative contribution of the excess
scattering with respect to the neat melt which drops off at large
Q by a Q�4 power law. It should be noted that the excess
intensity peaks at Q z 0.04 Å�1 correspond to the length scale
of the particle diameter (z2p/Q). It may be interpreted in terms
of polymer density uctuations induced by the silica particle
due to bound chains in qualitative agreements with experi-
mental results reported by Sen et al.23 There, liquid state theory
calculations conrmed unperturbed Gaussian chains, but more
importantly identied the correlation peak in the intermediate
region as a signature of an enhanced density close to the
nanoparticle. It is assumed that this correlation peak gives rise
to a superimposed elastic signal in the intermediate scattering
function of the NSE experiment that has to be subtracted from
the data.31 Therefore, we extracted the Q-dependent elastic
fractions s from the coherent SANS intensities (as indicated in
the inset) and re-normalized the coherent model function by a
xed elastic contribution s:

S(Q, t)model
coh ¼ (1 � s)S(Q, t)coh + s (14)

The elastic fractions s were evaluated as the relative ratio of
the SANS intensities of the PEG–OH-15 sample with respect to
the pure matrix. The extracted Q-dependent values are
summarized in Table 4. It should be noted that the contribution
is only signicant for the lowest Q-value of the PEG–OH-15
sample and is absent for all other samples.
Dynamics of the PEG/PBO matrices

At rst the dynamics of the pure matrices are analyzed in terms
of the Rouse model to provide the reference for the dynamics in
the nanocomposites. Fig. 3 displays the measured intermediate
scattering function S(Q, t)/S(Q) of the PEG–OH matrix (a) for
times up to 25 ns and (b) of the PBOmatrix for longer times. The
solid lines represent the full Rouse model description of the
datasets while the dashed lines single out the contribution of
the internal chain relaxation modes (S(Q, t)modes). The dynamic
parameters of the Rouse model ts are summarized in Table 5
for both matrices. We mention that the Rouse dynamics in the
pure PEG melt is independent of the choice of end groups.

For the sake of readability, the displayed Q values for the
PEG–OH sample have been limited to three selected certain
Table 4 The intermediate scattering functions of the samples were renormal-
ized by the relative elastic contribution s determined from the SANS intensities for
each sample and each Q

Sample

Q [Å�1]

0.05 0.096 0.2

PEG–OH-15 0.15 � 0.01 0.017 � 0.0003 0
PEG–CH3-15 0 0 0
PBO-15 0 0 0

Soft Matter, 2013, 9, 10559–10571 | 10563
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Fig. 3 Measured intermediate scattering functions of the PEG (a) and PBO (b)
matrices together with the Rouse model description (lines). The dashed lines in (a)
show the internal relaxation modes alone. The inset in (b) displays the mean-
square displacement of the PBO chains ((a) adapted from ref. 31).

Table 5 Rouse model parameters for the pure PEG–OH and PBO reference
matrices at 413 K

Sample Wb4 [nm4 ns�1] DR [Å2 ns�1] sR [ns] z0 [kg ns�1]

PEG–OH 1.9 � 0.1 4.7 9.7 2.9 � 10�21

PBOs 1.4 � 0.1 3.2 15.6 4.1 � 10�21

Fig. 4 Comparison of the dynamics of the PEG–OH (a) and PEG–CH3 (b) nano-
composites (symbols) to the pure melt. The inset compares the dynamics of the
pure melt (dots) and both PEG samples at short times below the Rouse time
(figure adapted from ref. 31).
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values to demonstrate how the NSE technique is able to
discriminate between different dynamic regimes: at the lowest
Q ¼ 0.05 Å�1 (largest length scale) no internal chain dynamics
are resolved (S(Q, t)modes ¼ 1) and the decay of the scattering
function is solely given by the translational diffusion of the
chain. In contrast, the experiment is primarily sensitive to the
internal chain relaxation at the highest Q ¼ 0.2 Å�1 (smallest
length scale) where the Rouse modes provide a signicant
contribution to t < sR as evidenced by the dashed red line. Note
that without the diffusion term the correlation function
assumes a nite plateau for t > sR.

The obtained Rouse diffusion coefficient DR and the Rouse
rate W for the PEG melt are about 20% lower than previous
values reported by Niedzwiedz et al.37 The discrepancy results
from the well-known sub-diffusive behavior with power-law
t0.8�0.04 as discussed by Brás et al.38 It results from a
10564 | Soft Matter, 2013, 9, 10559–10571
contribution of interchain interactions, not covered by the
diffusive Brownian motion underlying the Rouse model.

A more rigorous inspection of the sublinear diffusion could
be obtained in the case of the PBOmelt due to the availability of
dynamic data on one order of magnitude longer times. The
inset in Fig. 3(b) displays the center-of-mass mean-square
displacement of the PBO chains obtained from the Q¼ 0.05 Å�1

value by the general relationship derived from Fick's law
hrcm2i ¼ �6 ln[S(Q, t)/S(Q)]/Q2. At shorter times the dynamic
data clearly evidence sublinear diffusion with a power-law
behavior t0.8 as indicated by the dotted line. For times longer
than the so-called decorrelation time sdecorr ¼ Rg

2/D ¼ 77 ns a
transition to normal diffusion occurs where hrcm2i ¼ 6DRt holds
as predicted by the Rouse model. Therefore, we used the region
t > 100 ns to obtain the Rouse related diffusion leading to a
noticeable but expected discrepancy of the Rouse model (solid
lines) at shorter times. We note, a further discussion of the melt
dynamics of PBO polymers will be subject to future work.
Dynamics of the PEG nanocomposites

The results of the measurements of the PEG nanocomposites are
shown in Fig. 4 for the PEG–OH-15 (a, circles) and the PEG–CH3-
15 (b, squares) samples. The solid lines are the bestmodel ts that
This journal is ª The Royal Society of Chemistry 2013
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Fig. 5 Comparison of the PBO nanocomposite dynamics (symbols) to the pure
melt reference (dotted lined). The solid lines are model calculations (see text).
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will be discussed below and the dotted line represents the pure
PEG–OH melt in terms of the Rouse model calculations. The
chain dynamics of the nanocomposites is largely affected by the
nanoparticles. In comparison to the neat polymer, the decay of
the correlation function is generally retarded and levels off to
nite plateaus S0(Q) at long times. Note that the plateaus are
distinctly different in the PEG–OH and PEG–CH3 nanocomposites
with respect to the plateau level and the Q-dependence, which
unequivocally evidences that the chain end groups are of partic-
ular importance in these attractively interacting systems.

These results are remarkable in the sense that one can
already infer a rich picture of the dynamics in these systems. The
appearance of a plateau in S(Q, t) is ultimately related to the
existence of an elastic component and thus provides a strong
indication for conned motion on the time and length scale of
observation. As the translational diffusion is the only motion for
times longer than sR the emergence of an elastic plateau directly
evidences the fraction of chains that is xed on the silica parti-
cles and thus not participating in the diffusion. In a similar
fashion, the distinct Q-dependence of the plateaus can be
interpreted on a qualitative basis. In the PEG–OH case, the
clearly higher plateau at the highest Q immediately tells that the
apparently conned chains on the intermediate length scale
exhibit large-scale internal dynamics. The motions on a smaller
length scale, where the long wave-length Rouse modes are
observed (see Fig. 3(a)), account for the further decay at higherQ.

The picture however changes completely by substituting the
hydroxy ends by methoxy groups which do signicantly less
interact with the hydroxy groups on the silica surface. In the
PEG–CH3 case, the plateaus now assume a single level inde-
pendent of Q. So unlike in the previous case, the conned
fraction of chains appears to be immobile on all length scales of
observation. Besides the Q-independent nature it is also the
plateau level itself that changes by the substitution of the chain
ends. As the emergence of a plateau has been already correlated
with chain binding one can conclude that this fraction is about
three times lower in the case of the methoxy terminated chains
(SOH0 ¼ 0.2, SCH3

0 ¼ 0:07 for Q ¼ 0.1 Å�1).
In all cases, however, it must be noted that the underlying

relaxation rate W of the chain remains unaffected by the addi-
tion of the interacting silica nanoparticles as evidenced in the
inset in Fig. 4(b). At very short times the initial decay of the
intermediate scattering function, which is most sensitive to the
Rouse rateW, is identical for both nanocomposites and the pure
melt. The nding of unchanged local segmental dynamics was
also corroborated by neutron time-of-ight experiments on the
same PEG–silica nanocomposites.31 Therefore, it is concluded
that the adsorbed PEG–CH3 chains remain highly exible but
their dynamics is limited to at most small scale motions less
than 1 nm as estimated in analogy to the reptation connement
(S0(Q) ¼ 1 � exp(�Q2d2/36)) with d being the dynamic
connement length.31
Dynamics of the PBO nanocomposite

The dynamics of the PBO-15 nanocomposite sample is dis-
played in Fig. 5 (diamonds) and compared to the pure reference
This journal is ª The Royal Society of Chemistry 2013
melt (dotted line). The solid lines represent again the model
calculation as will be discussed below. The experimental results
in the PBO case here qualitatively agree with the ndings for the
hydroxy terminated PEG nanocomposite, however, the magni-
tude of the effects is much weaker.

The decay of the correlation function is again retarded as
observed in all previous cases and levels off to a constant
plateau for long times. Although the plateau is just about to be
established in the time frame of observation an explicit
Q-dependence is more than evident and well resolved up to Q ¼
0.115 Å�1. The levels of the plateaus have decreased to about
half the value as for PEG–OH-15 (S0(Q ¼ 0.1 Å�1) ¼ 0.1). From
this observation we conclude that only about half the fraction of
PBO polymers bind on the silica particles in comparison to the
PEG–OH case.
Modeling

The qualitative observations can be quantied by introducing a
simple two-phase model comprising a pinned chain fraction a

and a bulk-like fraction (1 � a) of free chains. The dynamics of
both fractions are governed by the bulk Rouse rate W of the
unlled melt. While the translational diffusion is taken to be
suppressed for the bound chains (Dads

R ¼ 0) we allow for a
possible reduction r of the diffusion constant for the bulk
fraction (Dbulk

R ¼ rDR) as found earlier.29,39 As the adsorption
density appears to be much higher for the OH terminated
chains we conclude that hydroxy ends provide a strong mech-
anism so that chains bind primarily at their end yielding a
brush or micelle-like structure similar to end-graed chains.
For these chains the internal dynamics are subject to the
different boundary conditions as reected by the parameters F
and P. For the methoxy terminated chains, no observable
internal chain dynamics is ascribed to the fraction of tethered
chains (S(Q, t)ads ¼ 1) by xing Ap ¼ 0. The model function for
the nanocomposites S(Q, t)NC is then composed of weighted
fractions

S(Q, t)NC ¼ aS(Q, t)ads + (1 � a)S(Q, t)free (15)
Soft Matter, 2013, 9, 10559–10571 | 10565
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where S(Q, t)ads/free are the weighted sums of the respective
coherent/incoherent model functions of the bound and free
chains according to eqn (5) and (12)–(14). In total, the model
involves three parameters: the bound fraction a, the reduction
factor of the diffusion r and the mode weighting factor Ap for
bound chains. The model ts were performed simultaneously
for all Q values.

The solid lines in Fig. 4 show the best model ts to eqn (15)
while the lines in Fig. 5 result from pure model calculations
using the same parameters obtained from the PEG–OH-15
sample except for the smaller a. All the model parameters are
summarized in Table 6. The values in italics were kept xed for
the tting/calculation.

For both the PEG and the PBO nanocomposites the simple
two-phase model yields a very good description of the nano-
composite dynamics over the full time and Q range. As expected
from the qualitative observation the bound fraction for the
hydroxy terminated PEG chains is about 4 times as large as for
the methoxy ones and twice as large as for the PBO chains. The
chain diffusion for the freely relaxing (non-bound) chains is
found to be reduced by 10–15%. This result is in good quanti-
tative agreement with the recent ndings reported for the case
of non-interacting nanocomposites with comparable silica
nanoparticles.29 There, NSE experiments in combination with
simulations revealed a systematic reduction of the center of
mass diffusion with increasing particle fraction due to obstacles
that slow down the chain diffusion. The cited work evidences
that the diffusion of non-interacting chains assumed in the
Rouse model is not affected. However, because the simulation
can include interchain interactions, a reduction of the center of
mass diffusion can be explained.

Furthermore, the modeling clearly evidences that the
internal chain relaxation dynamics fundamentally depends on
the interaction mechanism between the silica surface and the
polymer chains. If the hypothesized chain end attraction
mechanism is disabled by changing to methoxy groups the large
scale internal dynamics appears to be suppressed while in the
opposite case the chains remain fully relaxing albeit with on
average reduced motional amplitudes (Ap < 1).

This intriguing result is also fully mirrored even by changing
to another polymer species. The dynamics of the PBO nano-
composite shows exactly the same behavior as in the PEG–OH
case as evidenced by the model calculations in Fig. 5. Having
the same backbone chemistry as PEG, it is assumed that the
“bulkiness” of the alkyl side-chain of the PBO creates some
steric hindrance that lowers the adsorption density with respect
to the PEG–OH case. We want to note that such a lower
adsorption energy could also be related to the dispersion as
Table 6 Summary of the model parameters for all nanocomposites. The values
in italics were kept fixed

Sample a Ap r

PEG–OH-15 0.23 � 0.01 0.34 � 0.01 0.9
PEG–CH3-15 0.06 � 0.01 0 0.85 � 0.01
PBO-15 0.10 0.35 0.9

10566 | Soft Matter, 2013, 9, 10559–10571
revealed by Hall et al. in the case of a different polymer.40 In the
case of PBO we do not nd any experimental evidence of
aggregation. However, the interplay between the available
surface and adsorption strength deserves further attention in
future work.

Finally, it should be noted that the re-normalization due to
the elastic fraction s (eqn (14)) does not create some arbitrari-
ness in the data modeling as it affects merely the lowest Q value
and thus the reduced chain diffusion. The essential informa-
tion concerning the different behavior in the large scale internal
dynamics as seen at higher Q values remains untouched. This is
shown in Table 4, where the zero values show that there is no
correction.
Interpretation and discussion
Structure and interaction mechanisms

Now let us arrive at a physical interpretation of these results.
First of all, the adsorption density and a “dynamic” layer
thickness can be estimated from the obtained fractions a of
bound chains which can then be translated to a structural
picture of the bound polymer layers. The estimation assumes a
constant polymer density equal to the bulk value and a perfectly
homogeneous dispersion of the particles. As all volume frac-
tions are known the total number of chains can be related to the
available particle surface to yield an average “graing” density g
of chains per nm2 silica surface area. Likewise an average layer
thickness t is estimated by equating the bound volume fractions
with the volume of spherical shells of thickness t around the
particles. The effect of the particle size distribution was
included in the calculations but yielded only minor corrections
with respect to the monodisperse case. A considered volume of
1 cm3 contains about 3 � 1020 chains and 1.9 � 1017 particles
with a total surface of 7.2 � 1019 nm2. The results of the esti-
mation are summarized in Table 7.

The high adsorption fraction found for the PEG–OH nano-
composite translates to a very high graing density of 1 chain per
nm2. Such a high graing density can only be rationalized if the
chain is adsorbed/graed at its end. At this point, it is interesting
to mention that the SANS diagram of the composite in Fig. 2 is
unchanged at the Q values of the NSE experiment compared with
the pure polymer melt. This clearly indicates unperturbed
Gaussian chain statistics on the length-scale where the NSE
experiment is taken. However, this SANS result implies a chain
end-to-end distance Ree ¼

ffiffiffi
6

p
Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
61:54

p
nm ¼ 3:8 nm. In

other words the polymer coil needs almost a factor of 4 more
space than suggested by the graing density of 1 chain per nm2.
At this point, the reason cannot be revealed. We speculate, it may
be related to the curvature of the particle or mutually
Table 7 Estimation of the grafting density and layer thickness

Sample a g [chains per nm2] t [nm]

PEG–OH-15 0.23 0.96 2.0
PEG–CH3-15 0.06 0.28 0.7
PBO-15 0.10 0.20 1.1

This journal is ª The Royal Society of Chemistry 2013
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interpenetration of neighboring chains. The last argument would
imply a reduction of the mode amplitude compared with the
single chain, as further discussed below.

A visualization of the imagined model picture is presented
on the le half of the middle image of Fig. 6 showing the self-
assembly into micelle- or brush-like structures of densely pin-
ned chains around the spherical silica. The zoomed region on
the very le shows three exemplary chains in different colors to
highlight that the hydroxy chain-end is attached to the silica
surface. In the other case of the methoxy terminated chains, the
layer thickness yields a much smaller average size of 0.7 nm. It
is noteworthy that this thickness coincides well with dynamic
connement size d estimated above, for which an upper bound
of d ¼ 0.77 nm is deduced from the plateau level of the highest
Q ¼ 0.2 Å�1. As the polymer has all the same chain statistics as
the OH case that low number can only be understood if the
chains adopt a more stretched conformation in a parallel
direction that in turn covers more of the silica surface. The
assumed lateral adsorption along the chain backbone would be
realized by multiple attachments per chain as sketched on the
right of Fig. 6. A crude estimate in terms of Rg reveals that on
average only three anchoring points would be necessary to yield
a laterally attached chain comprising four virtual sub-chains as
visualized in the zoomed region on the very right of Fig. 6. The
Rg ¼ 0.7 nm of such a (Gaussian) sub-chain with 10 segments
equals just the estimated layer thickness.

Here it should be noted that the detailed structural picture
was not deduced from the SANS data of the nanocomposites.
The structural characterization presented above indicated
unperturbed chain statistics on the local scale. We conclude
that the polymer chains retain their internal Gaussian nature
consistent with unchanged segmental mobility.

These ndings on the layer structure for the CH3 polymers
are consistent with the recent NMR investigations on compa-
rable PEG–silica nanocomposites by Kim et al.,12 if their results
are extrapolated to 15% particle contents and the difference in
particle size (D ¼ 44 nm) is taken into account. Using a similar
estimation they arrive at a molecular weight independent
thickness of 0.8–1.0 nm from which they deduce that the chains
attach laterally as in the case here for the methoxy terminated
chains.12 However, they conclude that the chain termination
and in particular hydroxy ends do not play a role in the bound
layer structure.12
Fig. 6 Model picture of the nanocomposite systems with different chain end
groups.

This journal is ª The Royal Society of Chemistry 2013
In contrast, fully atomistic equilibrium MD simulations of
oligomeric PEG–silica nanocomposites by Barbier et al.21 clearly
pointed out that the chain end-functionalization has a drastic
effect on the interfacial structure and dynamics of the adsorbed
chains. The attractive interactions lead to densely packed
polymer shells around the particles where the alignment of the
PEGmolecules was found to depend strongly on the end groups
in full agreement with our results.21 Chains with two hydroxy
ends tended to position themselves rather perpendicularly with
respect to the silica surface while the one with methoxy ends
showed rather parallel preference.21 Furthermore, the cited
work highlights the major role of hydroxy ends in the PEG–silica
interfacial attraction where the hydroxy oxygens and the silanol
hydrogens form very strong hydrogen-bonding interactions
leading to a much higher affinity of OH end groups for the silica
than the backbone oxygens.21

The role of the chain termination in unentangled PEG–silica
nanocomposites was furthermore corroborated by Anderson
and Zukoski7 using rheology and small-angle X-ray scattering
experiments. They attribute the effective increase in the
hydrodynamic radius of the particles by adsorbed polymer
layers with a thickness that scales with Rg for the PEG–OH
chains but is invariant to the molecular weight in the PEG–CH3

case.6,7,13 Likewise, the particle microstructure shows similar
molecular weight independence for the latter chains in contrast
to the hydroxy case, where the polymer layers contribute to
effective hard-sphere particle interactions leading to a system
similar to a colloidal glass at high particle concentrations.6,7

The polymer reference site interaction model (PRISM) of
Schweizer and co-workers is able to describe the microstructure
of the nanocomposites for low molecular weight polymers24 but
does not provide the molecular weight dependence of the layer
thickness and composite structure.7,11 The discrepancy for
longer chains is ascribed to non-equilibrium adsorption
congurations associated with increased residence time of
polymer segments at the particle surface.7 Here, the stable
plateau in S(Q, t) as seen in the NSE experiments evidences a
minimum lifetime sads much longer than 200 ns. The strength
of the monomer–particle interactions can thereby be estimated
by a Boltzmann factor that describes the adsorption strength as
an activation energy Eads for the desorption process:

1

sads
¼ W0 exp

�
� Eads

kBT

�
: (16)

If the desorption rate W0 (attempt frequency) is taken as the
inverse Rouse rate of the monomer s0 ¼ sR/40

2 the adsorption
energy must be at least 10 kBT or 35 kJ mol�1. This high inter-
action energy thus supports our interpretation that hydroxy
end-groups provide a very strong mechanism for adsorption
which promotes preferential adsorption at the chain ends. In
the case of the PRISM theory a value of about 0.5 kBT (ref. 24) per
segment is calculated. When we multiply this value with the
number of PEG monomers, the total energy obtained by the
PRISM model is the same as in our experiments. However, we
would like to note that this is most likely a coincidence. The
analysis of the experimental data shows that the PEG is pref-
erentially adsorbed at the OH chain and, and thus the energy is
Soft Matter, 2013, 9, 10559–10571 | 10567
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Fig. 7 Calculated structures (DFT: LACVP*/BP86) of the hydrogen bonding
between (MeO)3Si–OH as a model for a silica surface and dimethoxyethane (a) as
a model for PEG–CH3 and methoxyethanol (b) as a model for PEG–OH.
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located in a single molecule. We note, it is not possible to
describe the experimental PEG–OH NSE data by a model
assuming laterally attached chains.

To estimate the inuence of hydrogen bonding from the
silica surface toward PEG, density functional theory (DFT)
calculations (basis set: LACVP*, DFT-functional: BP86) on
model compounds were performed. (MeO)3Si–OH was chosen
as a model for the silica surface and dimethoxyethane and
methoxyethanol asmodels for themethoxy-terminated PEG and
hydroxy-terminated PEG, respectively.41 To estimate the
hydrogen bond strength, the reaction energy dE as well as the
wavenumber of the corresponding SiO–H vibrational stretching
mode have been considered. A stronger shi of the IR vibration
to lower wave-numbers corresponds with a weakening of the
SiO–H bond and as a consequence indicates a stronger
hydrogen bond formed via the examined hydrogen atom. For
dimethoxyethane, an energy release of about 36 kJ mol�1 was
calculated, neglecting entropic effects for the small model
compound. The vibrational mode of the SiO–H bond has been
shied by 430 cm�1 upon formation of the hydrogen bond from
(MeO)3Si–OH to one of the oxygen atoms of dimethoxyethane
(Fig. 7). This is in well accordance with experimental results
known in the literature reporting a shi of the SiO–H stretching
vibration of silica in contact with diethylether, which is in
possession of a comparable oxygen atom, of about 450 cm�1.42

The energy release upon hydrogen bonding of the terminal
hydroxy group in methoxyethanol was calculated to be 55 kJ
mol�1. This result must be discussed with caution, since two
hydrogen bonds are formed in this case: one from the silica
surface toward the terminal hydroxy group and the other
formed from the alcoholic hydrogen PEG–OH back to the silica
surface (Fig. 7).

As expected, the shi of the PEG–O–H vibrational mode of
the hydroxy-endgroup of methoxyethanol, which is less acidic
than a SiO–H hydrogen atom, upon formation of the hydrogen
bond toward the silica surface is calculated lower to 260 cm�1.
The shi of the IR vibration of the SiO–H bond by 490 cm�1

upon hydrogen bonding toward the terminal hydroxy-group
indicates a stronger hydrogen bond from SiO–H toward
methoxyethanol compared to dimethoxyethane. Still, the
strength of the hydrogen bonding is not expected to differ too
much in the case of the two comparable hydrogen-bond
acceptors, in both cases an oxygen atom for PEG–OH and PEG–
CH3. Therefore, a second process should be considered and
may explain an immobilization of hydroxy-terminated PEG on
the silica surface. It is well known for the terminal hydroxy-
groups of PEG–OH to perform a condensation with Si–OH via
elimination of water and formation of a covalent SiO–R bond at
higher temperatures (Fig. 8).43

Although the graing process must be accepted to be
reversible in the presence of water, it may lead to covalently
attached and totally immobilized PEG–OH chains on the silica
surface on the timescale of the NSE experiments. From the
experiments reported here, it is not possible to nally distin-
guish which of these processes lead to the adherence of the
chain-ends of PEG–OH on the silica surface. This, is an inter-
esting subject for future work.
10568 | Soft Matter, 2013, 9, 10559–10571
Conned dynamics of PEG–OH

The chain relaxation dynamics within the adsorbed layers shall
now be inspected in greater detail and checked for consistency
with the presented model picture involving the specic
adsorption mechanisms.

At rst, the strong end adsorption behavior of the hydroxy
ends is discussed with respect to the introduced mode ampli-
tude weighting factor Ap and how the specic boundary condi-
tions are reected in the unaltered Rouse relaxation rate
W. Although the translational center-of-mass diffusion is sup-
pressed for an end-xed chain it can still freely rotate around
the anchoring point and thus explore all the surrounding space
by congurational reorientation of e.g. the end-to-end vector.
This motion naturally involves the longest wavelength Rouse
mode p ¼ 1 corresponding to the relaxation of the whole chain.
As depicted in the inset in Fig. 9(b), about half of the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 8 Reversible condensation reaction of terminal hydroxy-groups of PEG–OH
with silanol residues on a silica surface.
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surrounding space is however inaccessible due to the impene-
trable silica core. Consequently, the (dominant) rst Rouse
mode has to be restricted in some way.

In order to elucidate this point it is very instructive to look at
the mode contribution of the relaxation spectrum for the free
and the end-xed (Rouse) chain. Such comparison of the
internal relaxation modes (DR ¼ 0) is presented in Fig. 9 for Q ¼
0.2 Å�1. The direct comparison of the rst mode p ¼ 1 (black
color) clearly reveals that the end-xed chain (dashed line) has
apparently more “freedom” than the free Rouse chain (solid
line). The obtained mode amplitude from the tting brings up
the plateau in S(Q, t) much closer to the level of the free chain.
For the second mode p ¼ 2 the situation is similar but the
reduction appears to overcompensate the mode amplitude. One
might therefore assign a mode dependent reduction but
without any specic theory we keep the most simple approxi-
mation by a common factor.

From a theoretical point of view the relaxation mode
amplitudes should be reduced by a factor of 2 (Ap ¼ 0.5) to
account for the excluded half-space. However, as shown in
Fig. 9(b) a good tting of the data can only be yielded if the
amplitudes are additionally restricted resulting in the total
factor of 0.34. Considering the high graing density of 1 chain
per nm2 the experimental nding of an additional factor of 2/3
is attributed to the dense “crowding” on the silica surface that
we assume to provide another source for restricted mobility. It
should be added that the tting of Ap is most sensitive at the
highest Q and thus rather independent from the other model
parameters.31

Here, an important comment on the importance of the
different boundary conditions for the adsorbed chains has to be
made. Without showing we mention that we were able to obtain
Fig. 9 (a) The primary relaxation mode of the end-fixed chain (dashes) has greater f
Ap (dots) mocks a slowed Rouse rate (green line). (b) The model overestimates the m
their full weight (dashes).

This journal is ª The Royal Society of Chemistry 2013
equivalently good ts of the experimental PEG–OH-15 data by
assuming a slightly different model, where the special boundary
condition is dropped but an independent Rouse rate Wads for
the adsorbed chains is introduced instead. Fixing the diffusion
reduction to the previous value (r ¼ 0.9) yields essentially the
same adsorbed fraction a¼ 0.20� 0.01 but the freely varied rate
Wads ¼ 4.5� 0.5 ns�1 is found to be considerably lower than the
bulk value by a factor of 4.

Interestingly, a similar slowed-down Rouse dynamics was
also found by Dionne et al.25 using on-lattice Monte-Carlo
simulations for attractive interactions between llers and
polymers. The reported slowing down thereby affects all
subsections of the chain independent of how small they are. In
a mean-eld sense this is interpreted as an increased average
monomer friction.

Their ndings thus agree very well with the “simple” model
of a reduced Rouse rate within the adsorbed layer. The obvious
contradiction to our ndings can be explained by a comparison
of the rst mode contributions of the chain with Wads ¼ 1/4W
but normal mode counting and the end-xed chain with
modied mode counting but reduced amplitude. Note that in
Fig. 9(a) the rescaled mode by 0.34 (dotted black line) yields an
effectively slower decay of the correlation function which
perfectly superimposes with the rst mode of the Rouse chain
with a reduced Rouse rate (green line) as suggested by the
second model.

If we ignore that the equal initial decay of the intermediate
scattering functions of neat PEG and the composite suggests an
unchanged Rouse rate, obviously one can construct two con-
tradicting models of equal quality with respect to the descrip-
tion of the experimental data. However, our NSE experiments
show the same initial decay of neat PEG and the composite.
Furthermore, complementary neutron time-of-ight experi-
ments31 seem to support this. In theoretical work it was also
shown that a chain end-adsorbed on surfaces has a different
spectrum,44 although the Rouse rate is not changed.44 We
therefore conclude from our experiments that the reported
slowed dynamics originate from the misinterpretation of the
reedom than the free chain (lines). The initial decay with reducedmode amplitude
otional freedom of the adsorbed chains if the relaxation modes contribute with

Soft Matter, 2013, 9, 10559–10571 | 10569
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Rouse dynamics of the end-adsorbed chains for which a
different mode spectrum needs to be considered.

All in all, the dense packing and the restricted space of the
end-tethered chains is fully consistent with our model picture of
the description of the layer dynamics in terms of a modied
Rouse spectrum with unchanged bulk-like segment mobility.

Conned dynamics of PEG–CH3

For the chains with the methoxy ends we found an apparently
immobilized layer due to assumed lateral adsorption of the
chains along their backbone. Like before, we checked the
consistency of the adsorption behavior by taking the effect of
multiple adsorption sites on the internal dynamics into
account. If monomers are xed along the chain, one can
certainly assume that the long wavelength relaxation modes are
suppressed.45 The longest/rst Rouse mode p ¼ 1 involves the
motions of all monomers of the chain from one end to the
other. In total there are N modes so the number of monomers
involved in the p-th mode with wavelength lp is

lp ¼ N

p
: (17)

If multiple attachments occur then only Rouse modes with
index p$ pmin will be active thus excluding all lower modes. The
model can easily be checked by replacing the previous xed
relation S(Q, t)ads ¼ 1 with a regular Rouse function where Ap ¼
0 for p < pmin for the adsorbed chain fraction in addition to the
suppressed diffusion. These model calculations are presented
in Fig. 10. The measured Q-independent plateau is naturally
reproduced just by excluding the long wavelength modes.
Already at pmin ¼ 3 the shorter wavelength dynamics can no
longer be resolved at that Q. As expected, the lower Q values are
even less sensitive to the small scale motions. Already at Q ¼
0.096 Å�1 there is no more distinction between the longest and
shorter wavelength motion of the internal relaxation dynamics.

One has to recall here that of course only the resolvable
modes are contributing to the decay of S(Q, t). As the long(est)
modes are excluded, the apparent Q-independent plateau for
Fig. 10 The Q-independent plateau at long times results from the suppression
of wavelength Rouse motions with p # 4.

10570 | Soft Matter, 2013, 9, 10559–10571
Q¼ 0.2 Å�1 is merely a consequence from the inability to resolve
these small scale motions.

The successful modeling of the conned dynamics for the
PEG–CH3 polymers is again fully consistent with the assumed
interaction mechanism depending on the chain termination.
The chains obviously attach and multiply with on average at
least 2–3 graing points per chain. A similar observation of
internally highly mobile chain segments within the adsorbed/
conned layer was also found by Krutyeva et al. for PDMS chains
conned in anodized aluminum oxide nanopores.46 These
results match well with the theoretical work of Migliorini et al.
who demonstrated the freezing of modes by adsorption.45
Conclusion

In conclusion, we investigated the structure and in particular
large scale dynamics of the polymer phase in unentangled
model nanocomposites with attractive polymer–particle inter-
actions based on PEG and PBO chains. We thereby varied the
chemistry of the chain termination to investigate the role of
chain ends on the interaction mechanisms in these systems.
While the static characterization by neutron small-angle scat-
tering did not nd any apparent changes to the overall polymer
structure, the dynamic neutron spin-echo investigations on the
large scale dynamics of the chains revealed a detailed picture of
the structure and dynamics of adsorbed chains in the nano-
composite. One key result is that hydroxy chain-ends provide a
very strong mechanism for chain adsorption that can be
considered as irreversible on the time scale of observation.

Polymer chains with the hydroxy ends assemble into a
micelle-like corona extending away from the surface of the
particles. Although the motional amplitudes are somewhat
restricted due to the very dense packing of the adsorbed chains
the overall mobility remains as high as in the bulk.31 The
modeling clearly showed that there is no reduction of the basic
Rouse relaxation rate in the adsorbed layers, which implies to
apply the right boundary conditions for end-attached chains.
The interaction energy for the strong hydroxy bonded chain end
interactions was estimated to be higher than 10 kBT and thus
much higher than the interaction energies predicted by the
PRISM mean-eld theory.

If the strong mechanism of the chain-ends is deactivated by
changing to methoxy groups the mechanism of adsorption
changes completely. The chains adopt a presumably more at
conformation in the vicinity of the particles due to multiple
adsorptions per chain. In turn, the fraction of bound polymer
chains decreases considerably. As the segmental motions can
no longer be resolved by the NSE technique the polymer
dynamics appears to be immobile on the length scale of the
entire chain. However, earlier results on the local dynamics
evidenced that the molecular motion is essentially unperturbed
and as mobile as in the bulk.

The obtained model picture of the adsorption mechanism,
structure and dynamics was further successfully validated by
the modeling of the PBO nanocomposite. The chains with a
single hydroxy end showed the same dynamic behavior as the
corresponding PEG with two hydroxy ends. It was only the
This journal is ª The Royal Society of Chemistry 2013
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amount of adsorbed chains that was found to be lower by a
factor of two which may be explained by the rather bulky
structure due to the alkyl side-chain.
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