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The interplay of sedimentation and crystallization in
hard-sphere suspensions

John Russo,*a Anthony C. Maggs,*b Daniel Bonn*c and Hajime Tanaka*a

We study crystal nucleation under the influence of sedimentation in a model of colloidal hard spheres via

Brownian dynamics simulations. We introduce two external fields acting on the colloidal fluid: a uniform

gravitational field (body force), and a surface field imposed by pinning a layer of equilibrium particles

(rough wall). We show that crystal nucleation is suppressed in proximity of the wall due to the slowing

down of the dynamics, and that the spatial range of this effect is governed by the static length scale of

bond orientational order. For distances from the wall larger than this length scale, the nucleation rate is

greatly enhanced by the process of sedimentation, since it leads to a higher volume fraction, or a higher

degree of supercooling, near the bottom. The nucleation stage is similar to the homogeneous case, with

nuclei being on average spherical and having crystalline planes randomly oriented in space. The growth

stage is instead greatly affected by the symmetry breaking introduced by the gravitation field, with a

slowing down of the attachment rate due to density gradients, which in turn cause nuclei to grow faster

laterally. Our findings suggest that the increase of crystal nucleation in higher density regions might be

the cause of the large discrepancy in the crystal nucleation rate of hard spheres between experiments and

simulations, on noting that the gravitational effects in previous experiments are not negligible.
1 Introduction

Crystal nucleation is a fundamental physical process whose
understanding has far-reaching consequences in many techno-
logical and industrial products, like pharmaceuticals, enzymes
and foods.1–7 The simplest crystallization process is the homo-
geneous nucleation case, in which solid clusters spontaneously
form from the melt throughout the system. The opposite case is
instead the heterogeneous nucleation process, where nuclei of
the solid phase form preferentially around external surfaces, like
containers walls or impurities present in the melt.8,9 But the
crystallization processes in practical systems are oen very far
from these idealized cases, for example when multiple elds
concurrently affect the crystallization behaviour, making it diffi-
cult to match theoretical expectations with experimental
outcomes. Quoting the famous words of Oxtoby,10 “nucleation
theory is one of the few areas of science in which agreement of
predicted and measured rates to within several orders of
magnitude is considered a major success”. The most idiomatic
example comes from the simplest crystallization process, the
homogeneous crystallization of hard spheres, where the
discrepancy between predicted nucleation rates and
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experimental measurements stretches as far as 10 orders of
magnitude. In particular, numerical simulations using a variety
of techniques (Brownian dynamics, biased Monte Carlo, and
rare-events methods) found that the nucleation rate increases
dramatically with the colloid volume fraction f, growing by more
than 15 orders of magnitude from f ¼ 0.52 to f ¼ 0.56, where it
has a maximum.11–18 On the other side, experiments found the
nucleation rate to be much less sensitive on the volume frac-
tion.19–23 This is probably the second worst prediction in physics,
the rst being the 100 orders of magnitude difference between
the cosmological constant predicted from the energy of the
vacuum and that measured from astronomical data.24

In the present work we address a very important factor
affecting the crystallization process, which oen occurs in real
experiments of colloidal suspensions but has been ignored in
most simulations: how the crystallization process is affected by
the sedimentation of particles. We perform Brownian dynamics
simulations of a model of colloidal hard spheres, and induce
sedimentation by introducing both a gravitational force G and
rough walls which conne the system along the direction of
gravity. The effects of rough walls on both the static and
dynamic properties of the colloidal uid are analyzed in detail.
In particular we will show that there is strong slowing down of
the dynamics close to the walls, and that this effect has a static
origin. Correspondingly, the crystallization process is strongly
suppressed in proximity of the walls, which allow us to study the
nucleation process under gravity without interference from the
walls. We will show in fact that both the nucleation rates, crystal
Soft Matter, 2013, 9, 7369–7383 | 7369
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shape and the orientation of crystalline planes are similar to
what observed at bulk conditions. On the other hand, the
gravitation eld strongly affects the growth stage, and we will
show that nuclei grow more slowly across a density gradient,
and thus prefer to grow laterally. This indicates that not only
local density but also its gradient affect the crystallization
behavior.

We also provide new insights on the debated origin of the
discrepancy between theoretical predictions and experimental
measurements of nucleation rates in hard spheres. We rst note
that the experiments measuring the nucleation rates in hard
spheres are usually characterized by rather short gravitational
lengths (and quite marked sedimentation effects have indeed
been reported19,25). We will then present some arguments to
show that sedimentation should have a rather big effect in these
experiments, especially at lower volume fractions, where the
discrepancy is much more signicant.

The paper is organized as follows. In Section 2 we describe
the methods employed in our study and the choice of the state
points considered. Section 3 presents the results of the study,
logically divided in ve parts. Section 3.1 examines the effects of
gravity on the nucleation rates measured by simulation. Section
3.2 deals with the effects of gravity on the static properties of the
suspension. Section 3.3 investigates the effects of the walls,
both on the dynamics and the statics. Section 3.4 considers
instead the growth of the nuclei as affected by gravity. Section
3.5 compares our results with previous experimental investiga-
tion of the crystallization in hard-sphere colloidal systems. We
conclude in Section 4.
2 Methods

We perform Brownian Dynamics (BD) simulations of spherical
particles interacting through the Weeks–Andersen–Chandler
(WCA) potential26

bUðrÞ ¼

8>><
>>:
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��s
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where s is the length scale, 3 is the energy scale and b ¼ 1/kBT
(kBT: the thermal energy). In the following we set the
energy scale to 3 ¼ 1. The WCA potential is a purely repulsive
short-range potential. The value of b xes the hardness of the
interaction, and we choose b ¼ 40 for which a mapping to the
hard-sphere phase diagram is known. In particular in ref. 16
the freezing density was located at rF ¼ 0.712, which can be
compared to the volume fraction of hard spheres at the freezing
transition (fF¼ 0.492) to dene an effective hard-sphere volume
(veff) for WCA particles, rFveff ¼ fF. The mapping of the WCA
system onto the HS phase diagram is then simply given by the
relation

rWCAveff ¼ fHS. (1)

The effective hard-sphere diameter d of our particles is then
given by d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6fHS=prWCA
3
p � 1:097s.
7370 | Soft Matter, 2013, 9, 7369–7383
In BD the equation of motion of particle i is

dri
dt

¼ D

kBT
f i þ hiðtÞ;

where t is the time, ri is the position of particle i, D is the bare
diffusion coefficient, fi is the systematic force acting on particle i
and hi is the noise term describing the effective stochastic force
exerted by the solvent on particle i and obeying the uctuation–
dissipation relation hhi(t)$hj(t0)i ¼ 6Ddijd(t � t0). In the following
we set D/kBT ¼ 1 and integrate the equations of motion by the
standard Ermak integrator27 with a time step of Dt ¼ 10�5s2/D.
The Brownian time sB ¼ d2/D is the time it takes for a colloid to
diffuse a distance equal to its diameter in a dilute suspension.

The systematic force acting on particle i has two terms

fi ¼ �ViU + fB

where the rst term accounts for the conservative forces
between the particles, and the second term is the body force,
given by the difference between the gravitational force and the
buoyancy force

fB ¼ veff(rf � rP)ẑ h �Gẑ,

where rf is the density of the implicit solvent into which the
particles are suspended, rP is the density of the colloidal
particles, G is the modulus of the total body force, and ẑ is the
unit vector opposite to the direction of gravity.

The gravitational force, breaking the translational symmetry
in the z direction, produces a z-dependent density prole,
also called barometric law r(z).28 This density prole can be
calculated from the pressure difference between two altitudes zi
and zj as

pðziÞ � p
�
zj
� ¼ �G

ðzi
zj

rðzÞdz; (2)

by inserting the appropriate equation of state, p(r), on the le
hand side. We use the Carnahan–Starling equation of state

bp ¼ r
�
1þ fþ f2 � f3

�
ð1� fÞ3 ;

where f ¼ rveff is the volume fraction. Eqn (2) can then be
rewritten as an integral equation whose solution is given in an
implicit form by the roots of the following equation

log fþ 1

ðf� 1Þ2 �
2

ðf� 1Þ3 ¼ �bGzþ K ; (3)

where K is a constant xed by the following normalization
condition

ðh
0

fðz;KÞdz ¼ hfavg; (4)

where h is the height of the simulation box (in the direction of
the gravitational eld) and favg is the volume fraction averaged
over the total volume occupied by the particles in the simulation
box. The theoretical determination of the density prole inside
This journal is ª The Royal Society of Chemistry 2013
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the simulation box thus requires xing the eld G, the height h,
the average volume fraction favg occupied by the particles in the
simulation box, and solving numerically eqn (3) and (4).

Before applying the external force we need to bound the
system with walls in the direction perpendicular to the external
eld. Choosing at walls would induce heterogeneous nucle-
ation, whereas we want to study the homogeneous process
which happens in the bulk in the presence of the external eld.
We then choose to conne our systems with rough walls,
obtained by freezing the positions of particles in equilibrated
uid congurations. We will show in Section 3.3, that rough
walls indeed disfavour nucleation in their proximity and are
thus the appropriate choice for our investigation. It is also well
known that rough walls do not induce layering effects, as the
uid's density remains unperturbed in their proximity.29,30

Ideally we wish thus to prepare the walls at the same state point
of the layer of uid in contact with the wall. Since the external
eld will induce a density gradient in the system we thus need
to predict the density of the uid at z ¼ 0 and z ¼ h (h being the
height of the box, see Fig. 1).

A representation of the simulation box is depicted in Fig. 1.
The protocol for the simulations is as follows.

Prole prediction: given G, h and favg we solve eqn (3) and (4)
to obtain the density prole r(z).

Wall preparation: two independent BD simulations are run
respectively at r(0) and r(h) in the absence of the external eld.
Since the predicted r(0) is oen very high, nucleation could
occur at this stage, so we add a biasing potential Ubias which
prevents the systems from nucleating. The biasing potential has
the form of Ubias¼ kn2, where k is an harmonic constant and n is
the size of the largest crystal in the box at each time step.

Box setup: a slab of height hW is cut from each of the two
previous congurations. The slab at density r(0) is placed at
�hW < z < 0 of the new simulation box, whereas the slab at
density r(h) is placed between h < z < h + hW. N uid particles are
placed randomly between 0 < z < h at the volume fraction favg,
and then equilibrated with the external eld switched off. A
typical simulation box is depicted in Fig. 1.
Fig. 1 Simulation box configuration. The fluid is confined between z¼ 0 and z¼
h by two rough walls of height hW each. The external force (with body force of G)
acts in the negative ẑ direction. Wall particles are depicted by dark (gray) spheres,
while fluid particles are depicted by light (blue) spheres. We choose hW ¼ 3s and
the box length along x (and y) equal to h.

This journal is ª The Royal Society of Chemistry 2013
Simulation run: at t ¼ 0 the eld G is switched on and
simulations are run until the size of the largest nucleus reaches
nmax ¼ 500. The position of wall particles is kept xed.

We set N ¼ 20 000 uid particles (not including wall parti-
cles), with the height h equal to the box dimensions in both the
x and y directions, for which periodic boundary conditions are
imposed.

2.1 Identication of crystal particles

To identify crystal particles we use the local bond-order analysis
introduced by Steinhardt et al.,31 rst applied to study crystal
nucleation by Frenkel and Auer.32 A (2l + 1) dimensional
complex vector (ql) is dened for each particle i as

qlmðiÞ ¼ 1
NbðiÞ

XNbðiÞ
j¼1

Ylmðr̂ijÞ, where l is a free integer parameter,

and m is an integer that runs from m ¼ �l to m ¼ l. The func-
tions Ylm are the spherical harmonics and r̂ij is the vector from
particle i to particle j. The sum goes over all neighbouring
particles Nb(i) of particle i. Usually Nb(i) is dened by all parti-
cles within a cutoff distance, but in an inhomogeneous system
the cutoff distance would have to change according to the local
density. Instead we x Nb(i)¼ 12 which is the number of nearest
neighbours in close packed crystals (like hcp and fcc) which are
known to be the only relevant structures for hard spheres. If the
scalar product (q6(i)/|q6(i)|)$(q6( j)/|q6( j)|) between two neigh-
bours exceeds 0.7 then the two particles are deemed connected.
We then identify particle i as crystalline if it is connected with at
least 7 neighbours. A useful order parameter which is built from
the previous bond-order analysis is

Si ¼
XNbðiÞ

j¼0

q6ðiÞ$q6ð jÞ
jq6ðiÞjjq6ð jÞj

: (5)

It measures the coarse-grained bond orientational order of
particle i, which is a very effective order parameter to measure
the coherence of crystal-like bond orientational order. Hereaer
we call this “crystallinity”.33 However, we note that it is not a
direct indicator for the presence of crystals, but rather a
measure for a tendency to promote crystallization.

2.2 Gravitational length and time scales

The gravitational eld breaks the translational symmetry of the
system and introduces a characteristic length scale called
the gravitational length, lG. The gravitational length describes
the typical length scale over which the density prole decreases
in the z direction. For a dilute gas the density prole is given by
the barometric law f(z) � e�Gz/kBT, and thus

lG ¼ kBT

G
(6)

where G is the effective gravitational force. To compare to the
experiments, we report the adimensional length lG/d (see also
below), where d is the hard-sphere diameter of the particles.

In addition to the length scale, the gravitational eld denes
also a time scale, the sedimentation time sS, which is the time it
takes for a particle to move over the distance d due to the
gravitational pull. The velocity attained by a sphere pulled by
Soft Matter, 2013, 9, 7369–7383 | 7371

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c3sm50980j


Fig. 2 Theoretical volume fraction profiles calculated from eqn (3) and (4) for
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the gravity inside a uid is simply given by vdrag¼ G/z, where z is
the drag coefficient (which can be computed from the viscosity
of the solvent by using the Stokes law). The sedimentation time
is then given by sS ¼ dz/G. The Péclet number, Pe, is given by the
ratio of the diffusion time to the sedimentation time. The
Brownian time is simply sB ¼ d2/D ¼ d2z/kBT, and so

Pe ¼ sB
sS

¼ dG

kBT
¼ d

lG
: (7)

In our simulations lG > d and so we are working in the regime
of small Péclet numbers, which is the relevant regime for
colloidal dispersions used in estimating the nucleation rate (see
Table 2). All results reported in the following sections are taken
aer waiting for at least 3sS before acquiring data.
the state points of groups I, II and III, in Table 1. Group I state points are depicted
with continuous lines: they are characterized by f(z ¼ 0) � 0.570 and different
density gradients. Group II simulations are depicted with open symbols: they all
have the same gravitational length and accordingly the density profiles are
parallel. Group III simulations are depicted with dashed lines: their volume frac-
tion f < 0.54 and thus nucleation events are never observed during our obser-
vation time.
2.3 Choice of state points

The state points simulated in the present work are reported in
Table 1 (the volume comprised by the walls along z and the
periodic boundaries along x and y directions is cubic, and the
height h can be readily obtained from favg). The points are
divided into the following four groups.

(I) Once the prole is settled, these simulations have the
same average density at z ¼ 0 but differ for their gravitational
lengths lG. With these simulations we investigate the effect of
the strength of the density gradient produced by the gravita-
tional eld on the crystallization process.

(II) These simulations all have the same gravitational length
lG but differ for their average densities. With these simulations
we can investigate the effect of the walls on the nucleation
process.
Table 1 Simulated state points. Each state point is uniquely defined by the
definition of the gravitational length, lG, and the average volume fraction of
particles in the simulation box, favg. Simulations are divided into four groups. In
group I all simulations have approximately the same density at z¼ 0 but differ for
their gravitational lengths. In group II simulations have the same gravitational
length but differ for their densities at z ¼ 0. In group III the highest density is still
low enough to avoid crystallization during the simulation time. In group IV all
simulations have the same gravitational length, comparable to some colloidal
experiments.19,21 For simulations in group I, II and IV we report the effective
nucleation rate, kd5/D, and the average height where nucleation occurs, hzi

Group lG/d favg kd5/D hzi/d

I 2.07 0.530 9.5 � 10�6 5.6
1.90 0.525 6.5 � 10�6 5.2
1.75 0.520 5.7 � 10�6 4.9

II 1.75 0.540 1.7 � 10�5 7.2
1.75 0.520 5.7 � 10�6 4.9
1.75 0.510 2.9 � 10�6 4.0

III 7.59 0.530
5.70 0.525
4.56 0.520

IV 3.10 0.520 7.4 � 10�7 3.8
3.10 0.525 1.0 � 10�6 4.2
3.10 0.530 1.9 � 10�6 4.6
3.10 0.540 4.4 � 10�6 6.7
3.10 0.550 6.1 � 10�6 8.8
3.10 0.560 7.5 � 10�6 11.1

7372 | Soft Matter, 2013, 9, 7369–7383
(III) All simulations have a density low enough to avoid the
crystallization of the system, and are thus suited to study the
effect of the gravitational eld and of the walls on the dynamics
of the melt (or, supercooled liquid) prior to crystallization. With
these simulations we can investigate the effect of the walls on
the nucleation process.

(IV) These simulations have a gravitational length lG
comparable with that of several experiments in index matched
but not density matched solvents.19,21 This group is used to
study the effects of gravity on the nucleation rates.

We show the theoretical proles calculated from eqn (3) and
(4) for the state points in group I–III in Fig. 2. State points with
the same gravitational length are characterized by the same
density gradient across the box. Decreasing the gravitational
length increases the density gradient.

3 Results
3.1 Nucleation rates

We directly measure nucleation rates in our simulations by
running 50 independent simulations for each state point in
groups I, II and IV (see Table 1). In the absence of a gravitation
eld, the nucleation rate as calculated by simulations has a very
strong dependence on the density, growing by 15 orders of
magnitude by just going from f ¼ 0.52 to f ¼ 0.54 (ref. 34)
(see Fig. 14). The direct simulation of nucleation events
becomes unfeasible for f < 0.53 and one has to resort to rare-
events sampling techniques in order to extract the nucleation
rate.13,34 This is not the case in the presence of a gravitational
eld: most of our simulation state points are within favg < 0.53
but still we are able to observe directly nucleation events, for all
state points of groups I, II and IV. For the calculation of the
nucleation rate k we resort to the direct formula

k ¼ 1

htiV ; (8)
This journal is ª The Royal Society of Chemistry 2013
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where hti is the average time at which nucleation events occur,
and V is the system's volume. The nucleation rate of course
depends sensibly on the denition of the nucleation time. We
dene the nucleation time as the time it takes for the largest
nucleus in the system to reach size 100 particles. This size is
bigger than the critical nucleus size, as all nuclei that reach this
size always keep growing. For the volume V we use the volume
available to the uid, even if (as we will see later) nucleation
events do not occur in the whole volume. Despite the fact that
both the choice of the critical size and of V are very conservative,
potentially leading to lower nucleation rates than actually
observed, the nucleation rates reported in Table 1 are very high,
comparable to the nucleation rates which homogeneous
systems have around the nucleation rate maximum, at f� 0.56.
A great enhancement of the nucleation rates is indeed observed
in our systems. In the following section we will address the
origin of this enhancement, and whether the nucleation stage is
really akin to a homogeneous nucleation process.
3.2 Static properties

Previous studies have addressed the crystallization of hard
spheres in gravity by conning the system with at walls.35–40 In
this case the high nucleation rates were due to heterogeneous
nucleation on the walls. In order to prevent heterogeneous
nucleation, we conne our system with rough walls, i.e. walls
that are obtained by freezing a zone of colloidal particles,
occupying positions that are characteristic of the bulk liquid. It
Fig. 3 Nucleation snapshots for simulations of group II, at favg ¼ 0.510 (top row)
crystalline particles are shown and coloured according to the cluster they belong to.
that the colouring of the clusters should remain consistent across the time frames. F
t0 ¼ 3sS to ensure the settling of the profile. For favg ¼ 0.510 snapshots are taken at
from pre-critical to post-critical sizes.

This journal is ª The Royal Society of Chemistry 2013
is well known that such frozen walls do not induce the density
layering typical of at smooth walls.29,41 This is due to the fact
that the roughness leads to the lack of the phase coherence of
the density waves.

As a rst step to prove that walls are not enhancing our
nucleation rate, we run simulations of the WCA uid conned
by rough walls prepared at volume fraction of fw¼ 0.5657 in the
absence of gravity. The uid within the walls was prepared at
different volume fractions, from f ¼ 0.54 to f ¼ 0.57, and
nucleation events were seen to occur randomly in the simula-
tion box, without any apparent enhancement in the proximity of
the walls.

When a gravitational eld is turned on, a density prole is
induced in the simulation box. We rst start by visually locating
the nucleation events, as shown in Fig. 3. From these direct
observations we can already infer that the location of the
nucleation events depends sensibly on the local density. For
favg ¼ 0.510 (top row) nucleation occurs very close (but not in
contact) with the wall, while for favg ¼ 0.540 (bottom row) it is
located too far away to be due to wall effects. While always
distinct, many nucleation events can occur in the simulation
box, a consequence of the high nucleation rate, and in principle
interactions between the different nuclei will occur.

To study these events in detail we determine the average
location of the nucleation events, hzi, which is summarized also
in Table 1. To calculate hzi we rst detect all individual nuclei via
a cluster algorithm, and then calculate the average height of the
centers of mass as a function of the size of the nucleus n. The
and favg ¼ 0.540 (bottom row). Wall particles are coloured in grey, whereas only
An algorithm is used to identify particles belonging to the same cluster in time, so
or favg ¼ 0.510 snapshots are taken at a time interval of Dt ¼ 3sB after waiting for
a time interval of Dt ¼ 1.5sB after waiting for t0 ¼ sS. The snapshots span clusters
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Fig. 4 Average height of the centers of mass of nuclei as a function of their size,
for all state points of group I (closed symbols) and group II (open symbols).
Averages are done separately for each nucleus size, and then sizes within the
same histogram bin (in logarithmic scale) are averaged together. The average
height displays a clear plateau at intermediate sizes, which corresponds to the
average height hzi of nucleation events and is reported in Table 1.

Fig. 5 Volume fraction profiles f(z) for group I (a) and group II (b) simulations,
obtained by means of Voronoi diagrams. The simulated profiles are represented
by symbols, while dashed lines are theoretical predictions based on eqn (3) and
(4). The vertical dotted lines show the average height of nucleation as determined
from the plateaus in Fig. 4. The coloured horizontal band in both figures repre-
sents the f region where average nucleation events occur, as determined by the
intersection of the density profiles with the vertical dotted lines. Simulation
profiles are calculated by averaging configurations with the biggest nucleus
having size between 50 and 60 particles, and by dividing the z dimension into
bins of size Dz ¼ s.
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results are reported in Fig. 4. For each state point, the average
height of the centers of mass has a characteristic dependence on
the size of the nucleus. For very small nuclei (n( 10) the height
of the center of mass decreases with n: this is due to the fact that
small nuclei randomly form in a large portion of the simulation
box, so that their average height is high, while growing nuclei
form preferentially at the bottom of the simulation box. With
increasing n, hzi reaches a plateau which encompasses the crit-
ical nucleus size and can thus be considered as the average
height at which nucleation events occur. The average nucleation
height is clearly correlated with the density prole of each state
point, as we will see shortly. Interestingly, for nT 60 the average
height increases again, which means that the growth of nuclei
occurs on average more in the positive z direction, thus opposite
to the direction of gravity.

Fig. 5 plots the volume fraction prole f(z) for group I ((a) top
panel) and group II ((b) bottom panel) state points. The
measured prole (symbols) is obtained by averaging over
congurations where the biggest nucleus is of size between
50 and 60 particles, thus capturing the prole just before the
growth stage. The measured prole (symbols) can be compared
with the expected equilibrium proles, calculated from eqn (3)
and (4), and plotted in Fig. 5 as dashed lines. For all state points
we note that the actual prole at the time of nucleation is in very
good agreement with the equilibrium one for distances not too
close to the wall (z ¼ 0). Next to the walls, instead the density
saturates to a constant value. Density proles are practically
unchanged also at later times, when nuclei have started lling
the system. In Fig. 5 we also report as dotted vertical lines the
average height of nucleation events, as determined in Fig. 4. By
intersecting these lines with the corresponding density proles
we note that all nucleation events (irrespective of favg and
gravitational length) occur in regions where 0.55( f(z)( 0.56.
This interval is exactly the volume fraction where the nucleation
rate in bulk has a maximum. It is thus clear that the origin of
the high nucleation rates, and the localization of the nucleation
7374 | Soft Matter, 2013, 9, 7369–7383
events, corresponds to homogeneous nucleation occurring in
regions characterized by a local volume fraction of 0.55 (

f(z) ( 0.56. In the next section we will provide an explanation
for the saturation of the density prole close to the walls, but in
the meanwhile we emphasize that nucleation events occur in
regions of the simulation box where density has relaxed.

By looking at the density proles it is difficult to detect the
presence of the growing nuclei, since the density change
between the small nuclei and the uid phase is very small.
Moreover, growing nuclei are known to have a density closer to
the melt than to the bulk crystal up to sizes many times larger
than the critical nucleus size.33 Growing crystals are more easily
detected by bond orientational order parameters, such as the
one introduced in eqn (5) which we refer to as crystallinity order
parameter.33,42 A plot of the prole for this order parameter is
shown in Fig. 6 for the state point of group I with lG ¼ 1.9. The
different curves show the average prole for congurations with
embedded nuclei of different size n (we take n as the size of the
largest nucleus in each conguration). As the size of the nucleus
n grows, the crystallinity rapidly increases. The average mean
position of the crystalline peak is in good agreement with the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 Average crystallinity order parameter, as defined by eqn (5), for the state
point of group I and lG ¼ 1.9. The different curves are averages of the crystallinity
for configurations with nuclei of size n � 5, for the following values of n ¼ 25, 55,
105, 155, 205, 355, and 405 (the order is specified by the arrow). The crystallinity
profile increases rapidly with the size of the growing nuclei.

Fig. 7 Lateral mean square displacement ((a) top panel) and intermediate
scattering function ((b) bottom panel) as a function of the distance z from the
wall, for the state point of group III and favg ¼ 0.53. We divide the systems into
slabs of Dz ¼ s and calculate the mean square displacement (a) and the inter-
mediate scattering function (b) for those trajectories which do not leave the slab.
The different lines correspond to the following values z/s ¼ 1, 2, 3, 4, 5, 7, 9, 11,
13, and 15 and the order is given by the arrow. The inset in panel (a) shows the
lateral mean square displacement (hDrk2i/2 – continuous lines) and the perpen-
dicular mean square displacement (hDrz2i – dashed lines) for those trajectories
starting at z ¼ 0 (black lines) and z ¼ 4s (red lines). Unlike the main panel (a),
these trajectories are allowed to leave the slab.
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one extracted from Fig. 4. Also we note that the average peak
position shis to higher values of z as the size of the nuclei
grow, as was also observed in Fig. 4. We thus once again conrm
that, along the z direction, the growth of the nuclei occurs
preferentially opposite to the gravitational force.

We conclude this section by raising two questions. The rst
one is why the density does not relax to its equilibrium value
close to the walls, even long aer nucleation has started. A
second question, possibly related to the rst one, is why
nucleation never occurs close to the wall. As for this last ques-
tion, let us take as an example the state point of group II and
favg ¼ 0.510. As can be seen from Fig. 5(b) the nucleation starts
on average at a distances around 4s from the wall, despite the
fact that the density approaches f ¼ 0.56 going closer to the
wall, where the nucleation rate should have its maximum. To
answer these questions, in the next section we study the effects
of rough walls on the static and dynamical properties of the
uid.
3.3 Wall effects

The effects of walls on the static and dynamical properties of
uids is of great interest, and many studies have been devoted
to this problem.29,30,41,43 To study the combined effects of gravity
and rough walls we use state points of group III in Table 1,
where nucleation events do not occur within the simulated
time.

We start by looking at the dynamics. In Fig. 7(a) we plot the
lateral mean square displacement for trajectories belonging to
parallel slabs at distance z from the wall. We compute the lateral
mean square displacement according to the following formula44D

Drk
2ðtÞ

E
z
¼ 1

NzðtÞ
X

z\zi\zþs

ðxiðtÞ � xið0ÞÞ2 þ ðyiðtÞ � yið0ÞÞ2;

where Nz(t) is the number of particles which are in the slab
[z,z + s] at time t. The gure clearly shows that the lateral motion
of the particles is slower as we approach the wall. For z( 3s the
mean square displacement does not reach the diffusive regime,
This journal is ª The Royal Society of Chemistry 2013
hDrk2(t)i � t, and for the slab at z ¼ 0 the motion is still sub-
diffusive even aer 100 Brownian times. For z T 4s the mean
square displacement eventually reaches the diffusive regime,
with a diffusion constant which grows as z increases. The
increase of diffusivity as a function of z is clearly due to the
decrease of density with z. Since the growth of nuclei is
controlled by diffusion, which determines the rate at which
particles attach to the crystalline seed, we can rmly predict that
the growth of nuclei will be faster on the side of the nucleus far
from the wall. This is exactly what we saw in Fig. 4 and 6, where
the centers of mass of the nuclei moves toward higher z as they
grow. The inset in Fig. 7(a) compares the lateral mean square
displacement (continuous lines) to the one in the z direction
(dashed lines) for particles starting their trajectories in slabs at
z¼ 0 (black lines) and z¼ 4s (red lines). Whereas for the slab at
z ¼ 4s the mean square displacement is isotropic in all direc-
tions, for the z ¼ 0 slab the diffusivity in the z direction is lower
than the lateral one. Close to the wall (z ( 3s) the diffusion
tensor has different components in the (x, y) and z directions,
whereas isotropy is recovered for z T 4s.
Soft Matter, 2013, 9, 7369–7383 | 7375

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c3sm50980j


Fig. 9 Crystallinity (solid lines, left axis scale) and volume fraction (dashed lines,
right axis scale) profiles for state points of group III. Results are averaged by taking
slabs with Dz ¼ s.
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In Fig. 7(b) we plot the intermediate scattering function for
density uctuations in the (x, y) plane with a wave number q¼ |q|
corresponding to the rst peak in the structure factor, calculated
according to the following formula:

fsðq; tÞ ¼
*

1

NzðtÞ
X

z\zi\zþ1

e
�iq$

�
xiðtÞ�xið0Þ
yiðtÞ�yið0Þ

�+
:

The different curves correspond to slabs at different heights.
Again, for z( 3s we can see that the self scattering function has
still not decayed to zero, meaning that density uctuations are
not able to relax in the observed time window. Near the walls the
dynamics slows considerably, and this is at the origin of the
non-equilibrium prole observed in the previous section (Fig. 5)
for slabs close to the wall.

We can investigate the range of the wall effects by comparing
the dynamics between simulations with different gravitational
lengths. In Fig. 8 we plot the dynamics of slabs located at different
distances from the wall but with the same local volume fraction.
The main panel shows the volume fraction proles f(z) for the
group III state points. For each of the state points, the dynamics of
slabs having the average density of f ¼ 0.54 (le inset) and f ¼
0.537 are then compared. In the right inset all slabs are at distance
z$ 4s and they display the same dynamics. Thus the dynamics is
bulk-like for z T 4s, and independent of the local density
gradient. For f ¼ 0.54 (le inset), the dynamics of the slabs
located at z ¼ 1s is much slower than the dynamics at z¼ 3s. We
can again conclude that for z ( 3s there are strong wall effects.

We now proceed to study the effects of the walls on the static
properties of the uid. We consider positional order (as
expressed by the local density) and bond orientational order
(expressed by the crystallinity order parameter dened in eqn
(5)), both depicted in Fig. 9. Both translational and bond
orientational order grow as z decreases, but their behavior in
the proximity of wall is very different. While density is almost
unperturbed on approaching the wall, crystallinity is instead
strongly suppressed. The range of this suppression coincides
Fig. 8 Volume fraction profile f (z) for state points of group III, and comparison
of the lateral mean square displacement for slabs at f ¼ 0.54 (left inset) and at
f¼ 0.537 (right inset). Choices of colours and symbols are consistent between the
volume fraction profiles in the main panel and the lateral mean square
displacements in the two insets.

7376 | Soft Matter, 2013, 9, 7369–7383
well with the region where deviations from bulk dynamics were
observed. A link between static and dynamic properties under
connement was recently proposed in ref. 41, and it is
compatible with our ndings. Moreover it was recently argued
that crystallization is driven by bond orientational order and
not by positional order,33 and this is clearly shown in our
results: while density is rather unperturbed on approaching the
wall, bond orientational order is strongly suppressed and in fact
we do not nd any nucleation events happening in close prox-
imity to the walls. As a rst approximation, density can be used
as a measure of positional order, but more rigorous denitions
are also possible.33,45 The range of the perturbation induced by
the rough wall is governed by the correlation length of bond
orientational order in the bulk phase. It is well known that such
structural correlation lengths increase as the density is
increased, but its absolute value is always very small (no static
correlation length has been found that exceeds a few particles
diameters43,45–48), thus the value of the crossover is rather
insensitive of the state point considered. We can thus conclude
that the perturbation induced by the walls in our system extends
roughly only for distances up to z( 3s, and what we observe are
genuine homogeneous nucleation events.
3.4 Gravity effects on crystal growth

In this section we address the question of how nuclei grow in
the presence of a gravitational eld. We already observed in
previous sections that the average position of the centers of
mass of nuclei shis to higher z as the nuclei grow. We also
argued that this is due to the differences in the dynamics of the
uid particles on the two sides of the growing nuclei. The side
with higher z is characterized by a faster dynamics and conse-
quently a faster crystal growth.

Fig. 10 plots the mean rst passage time for simulations of
group I. The mean rst passage time htfp(n)i is dened as the
average time elapsed until the appearance of a nucleus of size n
in the system. For homogeneous systems it was shown that the
following expression applies49

	
tfpðnÞ


 ¼ 1

2kV
f1þ erf ½cðn� ncÞ�g; (9)
This journal is ª The Royal Society of Chemistry 2013
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where k is the nucleation rate, nc is the critical nucleus size, erf
is the error function, and c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DF 00ðncÞ=kBT
p

. Here DF0 0(nc) is
the second derivative of the nucleation barrier DF(n) at its
maximum and thus c characterizes the curvature at the top of
the nucleation barrier prole. A direct t is attempted for n <
120 and represented as continuous lines in Fig. 10. We limit the
t to small nuclei, since as the nucleus grows it likely feels the
effects of the density gradient, which eqn (9) does not take into
account. Moreover the growth of the nucleus is also affected by
the presence of surrounding smaller nuclei, as described in ref.
18. The t gives us nucleation times in good agreement with the
one reported in Table 1 and a critical nucleus size of approxi-
mately 50 particles for all state points. The coincidence of the
critical nucleus size is not surprising, as we have shown that
nucleation occurs for all state points in regions with similar
volume fractions. Note the relation between the mean rst
passage time and the gravitational length: longer gravitational
lengths correspond to shorter mean rst passage times, i.e.
faster growth. This relationship is much deeper: in the right
inset of Fig. 10 we show that it is possible to collapse all mean
rst passage times by just rescaling the time unit with a scaling
factor a. This rescaling can be explained in the context of mean
rst passage theory of activated processes, as developed in ref.
49 (we follow here its notation). One rst introduces the auxil-
iary function

BðnÞ ¼ 1

PstðnÞ

2
4ðb

n

Pstðn0Þdn0 �
	
tfpðbÞ


� 	
tfpðnÞ


	
tfpðbÞ



3
5;

where Pst(n) is the stationary time-independent probability of
nding a nucleus of size n and b is the size at which simulations
are stopped (b ¼ 480 in our case). First we note that Pst(n) is the
same for all state points reported in Fig. 10 (group I), since Pst(n)
depends on the density accessible to the system, and not on the
density gradient. This is seen in the right inset of Fig. 10 which
Fig. 10 Mean first passage time as a function of the nucleus size n for state
points of group I. Symbols are measured mean first passage times, whereas
continuous lines are fits to eqn (9) up to n ¼ 120. The left inset shows that
by scaling the times all curve at different field strengths collapse on the same
curve. The right inset shows the average distribution of crystal sizes P(n) for all
configurations in which the biggest cluster has size smaller than 400 particles.
The dashed line represents a power-law crystal size distribution with Fisher
exponent, s ¼ 1.9.

This journal is ª The Royal Society of Chemistry 2013
shows that even the full crystal size distribution P(n), which
includes both stationary and non-stationary states with clusters
bigger than the critical size, is unchanged for all state points.
The decay of P(n) is slow, and for the limited sizes available to
our study, it resembles a power law with Fisher exponent s x
1.9. As we will see soon, the growth of the nucleus occurs faster
laterally, and this exponent can suggest a similarity with a two-
dimensional percolation process (where s ¼ 187/91), in which
the largest nucleus grows by merging with smaller nuclei. A
consequence of the observed scaling of htfp(n)i is that all state
points of group I are characterized by the same function B(n).
Once the function B(n) is known, one can reconstruct the free
energy landscape from the expression49

bDFðnÞ ¼ log BðnÞ �
ð

dn0

Bðn0Þ þ C:

This means that the simulations with different gradients
share the same free energy landscape, as already noted with the
equivalence of the critical nucleus sizes. B(n) enters also into the
denition of the generalized diffusion coefficient D(n),
which expresses the rate of attachment of particles to a nucleus
of size n:49

DðnÞ ¼ BðnÞ
,

v
	
tfp



vn
:

The above theory provides a basis for understanding the
effects of density gradient on the initial processes of crystal-
lization shown in Fig. 10. Since we have established that B(n) is
the same for all simulations of group I, we conclude that the
growth of the nuclei, as expressed by the mean rst passage
time, is simply inversely proportional to the generalized
diffusion D(n). We observed in Fig. 10 that shorter gravita-
tional lengths are accompanied by slower growth, which is a
consequence of smaller D(n). Physically this corresponds to a
more difficult growth of interfaces when the density gradient is
stronger. On noting that D(n) is the rate of attachment of
particles to a nucleus of size n, we speculate there are two
origins behind the gradient-induced slowing down of crystal
growth: a dynamical and a thermodynamic origin. First we
consider the dynamical origin. The diffusion constant is a very
strong decreasing function of f near fg. Thus the density
gradient has a nonlinearly amplied strong perturbation on
the dynamics. This should lead to a signicant slowing down
of particle diffusion on the high density side of a nucleus. On
the other hand, the thermodynamic origin may play an
important role in the slowing down of the growth on the
opposite side (the low density side). The thermodynamic
driving force decreases dramatically when the liquid density
decreases toward the melting volume fraction, where the
crystal and the liquid have the same free energy. Thus, we
expect that the lower density of the liquid surrounding a
crystal leads to the weaker driving force for crystal growth and
thus to the slower growth.

We conclude this section by looking at the effects of the
gravitational eld on the shape and the orientation of the
Soft Matter, 2013, 9, 7369–7383 | 7377
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Fig. 12 Probability distribution, in spherical coordinates (q, j), for the orienta-
tion of the hexagonal plane of crystals formed at the state point with lG ¼ 1.75
and favg ¼ 0.520. q is the angle between the vector perpendicular to the plane
and the z-axis (along which gravity is directed). j is the angle between the
projection on the (x, y) plane of the vector perpendicular to the plane and the x
axis. Note that we consider weighted averages, where each nucleus enters in the
definition of P(q, j) with a weight equal to its size (similar results are obtained
with unweighted averages).
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growing nuclei. The shape can be determined by calculating
the inertia tensor of nuclei

Ilm ¼
Xn

i¼1

���~ri���2dlm � ri;l ri;m; (10)

where~ri is the vector from particle i to the center of mass of a
nucleus, l and m are its vector components, and d is the Kro-
necker delta. The eigenvalues of the inertia tensor represent the
inertia moments along the principal axis of inertia, given by the
corresponding eigenvectors. The ratio between the maximum
eigenvalue and the minimum eigenvalue describes the
asphericity of the crystalline nucleus. In Fig. 11 we report the
values of this ratio as a function of the size of the nuclei for two
different types of averages. The rst one is simply the average of
the ratio lmax/lmin for individual nuclei, and is reported in the
square (red) symbols. It clearly shows that individual nuclei are
always very aspherical. This comes not as a surprise, since the
volume fraction at which the nuclei are forming is always rather
high, and deviations from the spherical shape have already
been reported at these volume fractions.18,50 We observe that
despite the aspherical shape, nuclei are always clearly distinct
from each other: we are still far from a spinodal type of nucle-
ation. The second type of average is reported with the round
(black) circles in Fig. 11, and it is the ratio lmax/lmin for the
average inertia tensor. Averaging the inertia tensor of different
nuclei corresponds to looking at the convolution of their
shapes. If nuclei are aspherical but randomly oriented, their
convoluted shape will still be spherical. This is exactly what we
observe for small nuclei in Fig. 11, where the ratio lmax/lmin � 1
for small n. As the nuclei grow the ratio increases steadily, and
this is due to an asymmetric growth induced by gravity. In the
inset of Fig. 11 we report the components of the principal axis of
inertia (corresponding to the maximum eigenvalue) of the
convoluted shape. Clearly this inertia axis is oriented along the z
Fig. 11 Shape of nuclei as a function of size n for the state point of group II and
favg ¼ 0.520. The shape is expressed as the ratio between the maximum and
minimum eigenvalue of the inertia tensor matrix. Two different types of averages
are considered. The first one is just the simple average over the eigenvalues of
individual nuclei, and is represented by the square (red) symbols. With the round
(black) symbols we represent instead the ratio between the maximum and
minimum eigenvalue of the averaged inertia tensor. The inset shows the x (black),
y (red) and z (green) components of the eigenvector corresponding to the
maximum eigenvalue of the averaged inertia tensor.

7378 | Soft Matter, 2013, 9, 7369–7383
direction, i.e., along the gravity eld. This means that the nuclei
grow as ellipsoids with the two major axes laying in the (x, y)
plane. A process which contributes to this result is probably also
the merging of different nuclei in the x, y directions, as we have
already shown that many nuclei form in a rather narrow z
strip.

In Fig. 12 we consider the orientation of crystal planes for the
state point with lG ¼ 1.75 and favg ¼ 0.520. It is well known that
for hard potentials the relevant crystal polymorphs are either fcc
or hcp (and rhcp which is given by randomly stacking fcc and
hcp planes).33 Both polymorphs are characterized by hexagonal
planes. For fcc the hexagonal plane is written as (1,1,1) in Miller
indices (due to the C4 symmetry of cubic crystals, there are
actually 4 planes differing for a p/2 rotation along any of the
unit cell vectors). For hcp the hexagonal plane is written as
(0,0,0,1) in Miller–Bravais indices. For each crystalline particle
in a nucleus we detect the direction of the hexagonal plane (the
vector perpendicular to the plane) and plot its probability
distribution in spherical coordinates, according to the usual
transformations: r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

, q ¼ cos�1(z/r) and j ¼
tan�1( y/x) (z is the direction of gravity). The probability to
nd a crystalline particle with hexagonal planes pointing in the
(q + dq, j + dj) direction is then given by P(q, j)sin qdqdj. We
have approximately 50 independent trajectories, and for each
we analyse the orientation of crystal particles belonging only to
the largest cluster in the system, and only if the cluster has size
bigger than 20 particles (to avoid the contribution from meta-
stable nuclei). In Fig. 12 the peaks corresponding to the orien-
tation of the individual crystals are still visible, but it is already
clear that P(q, j) has no sensible j dependence.

To examine the q dependence, in Fig. 13 we plot the reduced
probability distribution P(q) ¼ Ð

P(q, j)dj. This plot shows that,
for all state points in groups I and II, there is no noticeable q
This journal is ª The Royal Society of Chemistry 2013
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Fig. 13 Probability distribution function P(q) for all state points of group I and II
(continuous lines with symbols), scaled so that P(q) ¼ 1 represents a uniform
distribution. The dashed line shows the probability distribution for a bulk fcc
crystal with lattice vectors oriented along the (x, y, z) directions and at volume
fraction f ¼ 0.535 (the distribution function is scaled to improve readability). The
inset shows a snapshot from a nucleation event at lG ¼ 1.75 and favg ¼ 0.520: the
continuous lines are traced along the hexagonal planes while the dashed line
gives the plane orientation. The q angle of the nucleus in the inset is shown as the
dashed-dotted line in the main panel.

Fig. 14 Adimensional crystal nucleation rates estimated from simulations
(dashed red lines) and from experiments (black symbols). The legends have the
following correspondence: Filion et al. (1) is ref. 13, Filion et al. (2) is ref. 16,
Kawasaki et al. is ref. 14, Schätzel and Ackerson is ref. 19 (lG ¼ 2.9d), Harland and
Van Megen is ref. 20 (lG ¼ 138d), Sinn et al. is ref. 21 (lG ¼ 4.1 d) and Iacopini et al.
is ref. 22 (lG ¼ 80d). Nucleation rates for the simulations of group IV and the two-
state model fit are reported as continuous green lines. This figure is drawn
starting from Fig. 6 of ref. 16 and Fig. 12 of ref. 20.
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dependence for the orientation of the crystalline planes. This
means that the nucleation stage occurs homogeneously, with
nuclei having no preferred orientation. Since the rotational
diffusion of nuclei is much slower than the growth process, the
nuclei retain their random orientation even when the average
shape of the nuclei becomes asymmetric (Fig. 11). One example
of crystal orientation and of its inclination q is shown in the
inset of Fig. 13 (the same value of q is indicated in the main
panel as a dashed-dotted line). In Fig. 13 we note that for the
state point where the average nucleation event is closest to the
wall (lG ¼ 1.75 and favg ¼ 0.510), there is a small probability
excess close to q ¼ cos�1ð1= ffiffiffi

3
p Þ. This orientation corresponds

to a cubic crystal oriented with its lattice vectors along the
(x, y, z) directions, as shown in the dashed curve for a thermal
fcc crystal. We can speculate that, for nucleation events occur-
ring very close to the wall (low values of favg and high G values)
the orientation of crystals could become anisotropic, but a
conrmation of this effect needs more statistical signicance.
Table 2 Comparison of colloidal diameter d, colloidal type and density rP, solvent ty
should be noted that the determination of gravitational lengths in experiments is s
difficult, and some estimates indicate that the error is of the order of 3–6% (ref. 51

Experiment Colloids

Schätzel et al.19 PMMA
rP ¼ 1.19 g cm�3

Harland and van
Megen20

PMMA
rP ¼ 1.19 g cm�3

Sinn et al.21 PMMA
rP ¼ 1.19 g cm�3

Iacopini et al.22 Polystyrene microgel
Franke et al.23 rP ¼ 1.01 g cm�3

This journal is ª The Royal Society of Chemistry 2013
3.5 Comparison with experiments

We now address the question whether a gravitational eld can
enhance the crystallization rate in a colloidal suspension of
hard spheres. We rst report in Table 2 some experimental
parameters relevant to our study. The experiments can be
clearly distinguished according to their gravitational lengths lG.
Experiments in ref. 19 and 21 involve colloidal particles sus-
pended in an index-matched solvent but not in a density
matched one, resulting in very short gravitational lengths.
Experiments in ref. 20, 22 and 23 instead improve considerably
the density matching by either employing small particles, or by
using swelling microgels whose density is very close to the
density of the solvent. In Fig. 14 we compare the adimensional
nucleation rates as a function of volume fraction calculated in
these experiments (all experimental results are plotted with
black symbols). Experiments with shorter gravitational lengths
(plus symbols21 and stars19) are characterized by higher nucle-
ation rates when compared to experiments with longer gravi-
tational lengths (crosses20 and diamonds22). This shows that a
reduction of the gravitational effects goes indeed in the right
pe and density rf, and gravitational lengths lG for the experiments in ref. 19–23. It
ubject to high uncertainty. The determination of the size of particles is especially
)

d Solvent lG/d

1 mm Decalin/tetralin 2.9
rf ¼ 0.92 g cm�3

0.40 mm Decalin/CS2 138
rf ¼ 0.97 g cm�3

0.89 mm Decalin/tetralin 4.1
rf ¼ 0.92 g cm�3

0.86 mm 2-Ethyl-naphthalene 80
rf ¼ 0.992 g cm�3

Soft Matter, 2013, 9, 7369–7383 | 7379
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Fig. 15 Volume fraction profiles f(z) (full lines) and crystallinity profiles S(z)
(dashed lines) for state points in group IV. The f scale and the S scale are reported
respectively on the left and right axis. The nearly horizontal dashed-dotted line
marks the value f ¼ 0.525, separating the region of crystal formation from the
metastable region. Profiles are obtained by averaging all configurations in which
the biggest nucleus size is between 20 and 30 particles, and by dividing the z
dimension into bins of size Dz ¼ s.
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direction of explaining the discrepancy between experiments
and simulations.

To assess the importance of gravitational effects in the
crystallization of hard spheres we dene the following quantity:
Q(l)¼ ss/sx, where ss is the average time for a colloid to move the
distance l due to the gravity eld, and sx is the average time for a
nucleation event to occur in the volume l3. Q(l) is thus an adi-
mensional number which quanties the relative importance of
the sedimentation timescale with respect to the crystallization
timescale, at any particular length scale l. For Q(l) [ 1 we
expect gravitational effects to be negligible, and the observed
nucleation rate in experiments to be the same as in gravity-free
simulations. On the other hand, for Q(l) � 1 gravitational
effects cannot be ignored as they become signicant on time-
scales much shorter than the average nucleation time. The most
relevant length scale l in this problem is the size of the critical
nucleus Rc, since below that size, l < Rc, nuclei can convert back
into themetastable melt. We will thus focus onQ(Rc) at ordinary
experimental conditions. Table 2 reports some experimental
parameters relevant to the determination of Q(Rc), namely, the
diameter of the colloids d, the density of the solvent rf, and the
gravitational length lG, and the density of a colloidal particle rP.
The details of the calculations are given in the Appendix. We
nd that the condition Q(Rc) � 1 is realized in a small windows
of |Dm| (the chemical potential difference between the solid and
uid phase), b|Dm|� 0.38, and f� 0.525, for the experiments in
ref. 19 and 21. These values are slightly less (as expected) for the
experiments with a longer gravitational length, ref. 20 and 22,
i.e. b|Dm| � 0.36 and f � 0.522. Thus, for f T 0.525, we nd
Q(Rc)[ 1 and gravitational effects can be ignored. But for f(

0.525 the converse is true, and gravitational effects become
increasingly important. Thus, for f signicantly larger than
0.525 we expect that experiments without density matching (ref.
19 and 21) and gravity-free simulations will measure similar
nucleation rates, whereas a big discrepancy, due to gravitational
effects, should emerge at f ( 0.525. This can be conrmed by
looking at the nucleation rates in Fig. 14 where experiments are
plotted with (black) symbols, while simulations without gravity
as (red) lines and symbols, conrming that the value obtained
from our simple dimensional analysis, f � 0.525, is indeed
between these two regimes.

The same behaviour is seen within our simulations. In
Fig. 15 we plot the z proles of both volume fraction, f, and
crystallinity, S, for the state points in group IV. The proles are
taken by averaging all congurations in which the largest
nucleus has a size comprised between 20 and 30 particles, in
order to have a picture of the nucleation process in its early
stage. The gure reveals that, at the beginning of the nucleation
events, a z-dependent prole has developed both for f and S.
While f has a smooth monotonic behavior, apparently unaf-
fected by the ongoing crystallization process, the crystallinity
order parameter S reveals that the location of the nucleation
events is in the density enhanced regions. The extent of these
regions depends on the average volume fraction, favg. This is
shown by the dashed-dotted line in Fig. 15 which clearly sepa-
rates two regimes: for f( 0.525 the f and S proles display the
same z dependence, while fT 0.525marks the beginning of the
7380 | Soft Matter, 2013, 9, 7369–7383
nucleation events. We recall from our previous adimensional
analysis that Q(f ¼ 0.525) � 1, again conrming that for f T

0.525 nucleation events are bulk-like and the same as in a
gravity-free environment, whereas for f ( 0.525 sedimentation
can occur on shorter time-scales than nucleation, and signi-
cant deviations are to be expected with respect to the zero
gravity case. The nucleation process under gravity is inevitably
out of equilibrium and even hydrodynamics should play an
important role eventually. However, we argue that within the
incubation time (at most � 102 Brownian times) there may be
no macroscopic processes involved and gravity-induced density
uctuations via diffusion may be a major process. This is
indirectly shown by the experiments in ref. 19 which report that
the rst indication of crystallization could be observed on
timescale of 103 s with a solvent viscosity of 2.37 � 10�3 Pa s.
This corresponds to incubation times of the order of 102

Brownian times, which is the same range measured in our
simulations. Despite having similar incubation times, experi-
ments in non-density matched solvents and simulations differ
for their nucleation rates, as can be seen in Fig. 14, where the
nucleation rates of simulations in group IV are reported as
(green) squares. But this difference is trivially due to the
different volumes accessible in simulations and experiments
(the nucleation rate is obtained by dividing the average incu-
bation time by the total volume of the system). Simulations
measure nucleation events in strips of height z, while experi-
ments measure nucleation events in regions of height �104z
(the section of the laser beam), so that the difference in nucle-
ation rates between experiments and simulations at the lowest
volume fraction is expected to be of the order of 104, provided
that the experiments are sensitive enough to detect the forma-
tion of only a few nuclei. This estimation well matches with the
ratio in the nucleation rate between the experiment and our
simulation observed at f ¼ 0.52, as shown in Fig. 14. The
physical picture which emerges is thus that, at low volume
fraction, the nucleation rate is controlled by small density
inhomogeneities induced by gravity. On small scales these
This journal is ª The Royal Society of Chemistry 2013
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inhomogeneities should resemble the ones obtained in
simulations.

Given the previous physical picture, we can easily build a
model to connect the results at high f (where bulk crystalliza-
tion dominates) and low f (where sedimentation dominates).
We adopt a simple two-state model, with high-density regions
(f > f* and with nucleation rates similar to the ones extracted
from our simulations) coexisting with low-density regions (f <
f*, and with nucleation rates similar to the bulk behavior in
absence of gravity). Due to the steep increase in nucleation rates
we can take the value f* as the density of the nucleation rate
maximum, f* � 0.56. The nucleation rate in the sample can
thus be written as k ¼ kSx + kH(1 � x), where kS is the rate
extracted from our simulations, kH is the rate obtained without
gravity, and x is the fraction of the volume in the sample with
f > f* due to gravity (and not thermal uctuations). We model
the f dependence of x by a Fermi function to account for the
constraint on x from the conservation of the total volume
fraction f: x(f) ¼ 1/(1 + exp{k(f � f*)/G}), so that at G ¼
0 density inhomogeneities are null, while for G > 0 the extent of
the uctuations is proportional to exp(f � f*). k � 1.5 is xed
from the equivalence of nucleation rates at f ¼ 0.52, as previ-
ously discussed. The results of the model are depicted in Fig. 14
as a dashed line for the experiments in ref. 19 and 21. As
expected, for f > 0.525 the nucleation rate gradually recovers its
gravity free value with an increase in f. The good agreement
shows that, at least in principle, nucleation enhanced by gravity-
induced density uctuations is a viable mechanism to explain
the discrepancy between experimental and theoretical results.
4 Conclusion

In the previous sections we have considered the interplay
between sedimentation and crystallization in a model of
colloidal hard spheres. Gravity is a very important factor that
determines the crystallization behaviour in many experimental
situations:52 as we have shown, even density-matched suspen-
sions are characterized by rather small gravitational lengths
(see Table 2).

The rst noticeable effect of gravity is the strong enhance-
ment of nucleation rates, which is due to the increase of the
local density in proximity of the walls. Nucleation events occur
preferentially in regions where, due to sedimentation, the
volume fraction is approximately 55–56%, in correspondence of
the nucleation rate maximum in bulk hard spheres. In this
respect, the nucleation process is similar to a homogeneous
nucleation event, with similar nucleation rates, and with pre-
critical nuclei which are on average spherical and have crystal
planes randomly oriented with respect to the direction of
gravity. The symmetry breaking induced by the gravitational
eld is seen in the growth stage, where a steeper density prole
(shorter gravitational length) slows down the dynamics of the
growth process, as seen by the reduction of the generalized
diffusion coefficient D(n). The bottom side of the nucleus is in
contact with a slowly relaxing uid, while on the opposite side
the dynamics is much faster, leading to an increase of the
average height of the center of mass position as the nuclei grow.
This journal is ª The Royal Society of Chemistry 2013
But the faster dynamics on the top side of the nucleus is even-
tually compensated by a smaller thermodynamic driving force
to crystallization, due to the decrease of density along the z
direction. On average thus the nuclei will grow faster laterally,
as shown by the study of the average inertia tensor. As the nuclei
grow, they become on average more asymmetric, with their
principal axis of inertia located along the z axis, which again
signals a faster growth on the x, y plane. An important contri-
bution to crystal growth is also the merging of different nuclei
along the x, y plane, as revealed by the distribution of crystal
sizes. The orientation of crystalline planes remains isotropic
also in the growth stage, as the rotational diffusion of nuclei is a
slower process compared to their growth.

We devoted special attention to the study of the effects of
rough walls. By predicting the density prole from the equation
of state, we were able to prepare walls at thermodynamic
conditions close to the nearby uid, thus minimizing the
disturbance introduced by the walls on the liquid structure.
First we determined that the effects of the walls on the dynamic
properties of the uid vanish on a length scale comparable to
the static correlation length in the bulk uid. Close to the walls
the dynamics is greatly slowed down, and a decoupling of lateral
and perpendicular diffusion occurs. These dynamic anomalies
are accompanied by a suppression of bond orientational order.
This is the structural origin of the suppression of crystallization
close to the walls, and conrms previous simulations where it
was shown that nucleation is mainly controlled by the devel-
opment of bond orientational order.33 Positional order, i.e.
density, is instead almost unaffected by the presence of the
walls, providing a clean example where slowness is linked to
many-body correlators (like bond-orientational order) and not
to two-body quantities (like density).45

Finally we looked at the experimental results on the crystal-
lization of hard sphere suspensions in the light of the gravita-
tional effects, which we believe do play a major role in non-
density matched samples. We rst identied the regime where
sedimentation is possibly controlling the crystallization
behaviour, and showed that density inhomogeneities induced
by the gravitational eld are indeed capable of enhancing the
nucleation rate up to the values reported in the literature.
However, there are other non-ideal features in experiments,
such as the presence of effects of shear ow or other hydrody-
namic effects, which our simulations do not take into account.
In order to single out unambiguously the mechanism respon-
sible for the discrepancy between simulations and experiments,
experiments with improved density matching should be carried
out, possibly showing a signicant decrease in the nucleation
rates. Already the results of some experiments20,22,23,53 suggest
that this might be a promising mechanism, and we hope that
the present work will stimulate more efforts towards this
direction.
Appendix: calculation of Q(l)

For hard spheres Q(l) can be immediately calculated as follows.
ss is given by the Richardson–Zaki expression54 for hindered
settling at low Reynolds numbers: ss ¼ lX/G(1 � f)4.65, where X
Soft Matter, 2013, 9, 7369–7383 | 7381
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is the Stokes drag coefficient and G is the gravitational pull on
the colloids. To obtain sx we need an estimate of the nucleation
rate k in hard-spheres. This can be calculated within the
framework of Classical Nucleation Theory (CNT), where the
nucleation rate k is simply the product of a kinetic term K and a
thermodynamic term U, the former expressing the mobility of
the uid–solid interface, and the latter accounting for the free
energy barrier of formation of a crystal nucleus. For the kinetic
term we use the expression K ¼ rfZf

+
c , where rf is the density of

the suspending uid, Z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjDmj=6pnc

p
is the Zeldovich factor,

and f +c is the attachment rate of particles to the critical cluster
containing nc particles, usually written as f +c ¼ 24Dnc

2/3/l. In the
previous expressions |Dm| is the chemical potential difference
between the solid and uid phase, D is the short-time diffusion
coefficient, l is the typical distance over which diffusing parti-
cles attach to the interface (which we set as a fraction of the
particle's diameter l ¼ 0.4d as was determined in ref. 55), and b

¼ 1/kBT. The thermodynamic term of the nucleation rate is
simply given by the free energy barrier of formation of the
critical nucleus, U¼ exp(�bDGc). Wemodel the free energy with
the CNT expression, corrected with a radius (R) dependent
interfacial free energy g(R), namely DG ¼ 4pR2~g(1 � ~3/R2) �
4pR3rs|Dm|/3, where ~g and ~3 are model-dependent constants,
and rs is the density of the solid phase. In ref. 56, the values
b~gd2 ¼ 0.741 and ~3/d2 ¼ �0.279 were shown to describe
very accurately the hard-spheres case. Combining the
above expressions for ss and sx we obtain Q(l) as a function of f
and |Dm|, which can be further simplied by using an equation
of state |Dm|(f), which we derived by a t to simulation results13

in the f-range of interest.
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