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Optimised determination of viscoelastic properties
using compliant measurement systemst

James W. Andrews,*® James Bowen? and David Cheneler®

An analysis of a novel indentation model has been implemented to obtain master curves describing
the optimal experimental parameters necessary to achieve the highest possible accuracy in the
determination of viscoelastic properties of soft materials. The indentation model is a rigid indenter
driven by a compliant measurement system, such as an atomic force microscope or optical tweezers,
into a viscoelastic half space. The viscoelastic material is described as a multiple relaxation Prony series.
The results have been extended via an application of a viscoelastic equivalence principle to other
physical models such as poroelasticity. Optimisation of the indentation parameters has been conducted
over many orders of magnitude of the velocity, viscoelastic moduli, spring stiffness, relaxation times and
the duration of indentation resulting in a characteristic master curve. It is shown that using sub-optimal
conditions gives the appearance of a more elastic material than is actually the case. For a two term
Prony series the ideal ramp duration was found to be approximately one eighth of the relaxation. Also
the ideal ramp duration for a three term Prony series was determined and shown to guarantee distinct
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1 Introduction

Currently, indentation is a popular method of determining
the properties of soft viscoelastic materials such as biological
tissues’ and polymers.> In particular, determination of the
properties of individual cells® has applications in cancer
detection,*® optimal design of cell separators,” mechano-
transduction® and actin remodelling.> Hydrogels are soft
materials which can be biocompatible®* allowing stem cell
seeded hydrogel scaffolds to culture cells for biomedical
applications," further the mechanotransduction networks of
the cells are dependent on the mechanical properties of the
hydrogel in which they are grown and can affect the differen-
tiation of the cells.

An understanding of the mechanical properties from a
micro- to macroscopic length scale'>*® is of interest to under-
stand the microstructure of hydrogels. For cases such as these,
compared to other techniques like tensile** and bending tests,*
indentation can be advantageous as it allows for the consistent
application of loads, the simple acquisition of transient data'”
and the sample can be tested in the most convenient environ-
ment, be it aqueous or otherwise."® However the usefulness of
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relaxation times under specific conditions.

this technique at small length scales is limited by the compli-
ance of the measurement equipment,” which is inherent in
many highly accurate systems such as atomic force microscopy
(AFM) and optical tweezers (OT). Further the relaxation to
the equilibrium state proceeds more rapidly at small length
scales.?

Typically, in order to measure transient data, two techniques
are employed: creep testing and stress relaxation.”* In these
cases, the force applied or indentation depth of the probe is
increased to a set value and then held constant whilst the other
parameter, depth or force respectively, is monitored. Classi-
cally, these techniques in general demand that the maximum
force or indentation depth is attained instantaneously in order
to allow for simple mathematical analysis using step func-
tions.” This condition is an idealised situation unattainable
experimentally, due to finite acceleration, resulting in experi-
ments where the analysis can only ever be approximate as
relaxations in the material that occur during the instrument
ramp in force or displacement are neglected.>*** The appro-
priateness of the idealised models is diminished further when
the compliance of the indentation device is considered. All
instruments incorporate an element of compliance, which is
usually an inherent property of the measurement system. When
indentation is performed using compliant systems, the fixed
end of the compliant component is controlled. If possible, this
‘fixed end’ can be driven so that the deflection of the beam is
maintained, via feedback control, such that the force applied to
the sample increases linearly to a set value and then held so that
it resembles a classic creep test.>®> However, force control can be
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difficult to achieve for highly compliant systems. In contrast, a
prescribed fixed end motion is experimentally achievable but
precludes simple analysis.

The analysis is based on the theory derived for the case of the
indentation of a rigid sphere into a planar elastic half space,
considered first by Hertz*® and subsequently the indentation of a
rigid sphere into a planar viscoelastic half space as considered by
Lee and Radok.”” While Lee and Radok*” considered the response
of a Maxwell fluid, Yang®® extended the theory to a standard linear
solid (SLS) indenting under its own weight. It should be noted
that the theoretical analysis of Lee and Yang does not describe the
response of the material when the sphere is retracted from the
viscoelastic half space. Removing the sphere requires additional
constraints to ensure that the stress and strain fields are contin-
uous in time; Ting*>*** developed an approach to deal with this
case, but this approach will not be developed further here. The
next major development in the theory of creep testing considered
the effect of increasing the force to a maximum value in a finite
time before it is held constant.* Incorporating the effect of
system compliance has been considered in certain situations,
especially for the AFM, yet these solutions are few and involve
solving the full beam equation for an oscillating cantilever;*>**
they do not apply for a cantilever which is not oscillating.

Here the indentation of a viscoelastic material by a rigid
sphere attached to a compliant indentation system is consid-
ered. In order to ensure the mathematics describes the most
convenient experimental set-up whereby force feedback is not
necessary, nor are instantaneously applied loads, the model
assumes the sphere is driven into the material via a compliant
element. Furthermore, it is assumed that the fixed end is driven
with a constant velocity to a specified distance and held
constant; an experimental set-up that is easy to create accu-
rately. The equipment that is frequently used to indent mate-
rials is investigated along with an example of each of the four
major classes of materials of interest in the literature. This
explains why the subsequent developments are necessary to
improve the accuracy of measurement of viscoelastic properties.
It is shown that the indentation depth and the measured force
are coupled in a complex manner that can be described exactly
by non-linear Volterra equations. These equations include the
effects of the finite time of the ramp, the compliance of the
system and the effects of the pre-load which is often unavoid-
able during experimentation. For the case where the compli-
ance tends to infinity, the exact equations are solved
asymptotically. The exact equations do not have an analytical
solution and need to be solved numerically. The method for
doing so is explained in the ESI [Section 2].T

Analyses of the exact equations show that there are values of
the experimental parameters that lead to less than ideal inden-
tation conditions that will result in low accuracy measurements.
It is shown that there are ideal experimental parameters that
ensure maximum possible accuracy. The procedure for deducing
the optimal experiment for a range of machines and materials is
presented. Also discussed are the implications of the assump-
tions used in the derivation of the model, including the
assumption of affine deformations implicit in assuming the
material is a linear viscoelastic material.

5582 | Soft Matter, 2013, 9, 5581-5593

View Article Online

2 Experimental considerations

Here we introduce a range of instruments that are commonly
used to measure the viscoelastic properties of a material via an
indentation experiment, and present a schematic which incor-
porates the elements common to each instrument. We outline
the range of experimental parameters associated with each
instrument and the types of materials which can be tested.

2.1 Instruments

There are four main types of instrument that can be used for
indentation: AFM, nanoindenter (NI), mechanical tester (MT)
and optical tweezers (OT). Other instruments exist, but they are
commonly comparable in essence to these instruments. These
instruments share a common mode of operation during
indentation testing, although the full range of measurements
possible with each type of instrument is vast. Fig. 1 shows the
standard elements present in a measurement performed using
one of these instruments. These include:

(i) the fixed end, which is usually a motorised, piezoelectri-
cally, or magnetically controlled displacement stage;

(ii) the compliant element or spring, which is frequently the
load measuring element ie. the AFM cantilever or a force
transducer, of each device;

(iii) the free end, which is a probe of specific geometry, is
attached at the end of the compliant spring and is the element
which makes contact with the surface being indented;

(iv) the viscoelastic material being measured.

In the example case of an AFM, the compliant spring is the
cantilever beam and the free end is either a pyramidal tip with a
sphericonical apex of radius approximately 10 nm, or a spherical
colloid probe of radius in the range 0.5-10 um. For a nano-
indenter the compliant spring is often a ceramic pendulum or
some kind of high stiffness element, and the free end is a pyra-
midal, spherical, or sphericonical diamond-coated probe with
dimensions on the micron scale or larger. The compliant spring
of a mechanical tester consists of a load cell, which is typically
piezoelectric or capacitive in design, whilst the probe is a
spherical or hemispherical probe typically of radius greater than
1 mm. For optical tweezers the compliant spring is the effective
stiffness of the beam of light used to trap a nanoparticle.>**

Drive velocity

Fixed end

/

Compliant spring \ /
/ Indenter shape

Free end
Spherical apex

Viscoelastic material

Indented surface

Fig. 1 Standard elements present during an indentation measurement.
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Fig. 2 Examples of indentation equipment: (a) AFM cantilever with colloid probe; (b) mechanical tester with spherical indenter.

Fig. 2(a) is a scanning electron microscopy image of a rect-
angular AFM cantilever with attached colloid probe, with the
free end, fixed end, and compliant spring elements labelled.
Similarly, Fig. 2(b) is a photograph of a mechanical tester with
attached spherical indenter, in which the free end and
compliant spring elements are labelled; the spring is attached
to the main body of the instrument, to which the load cell is
attached.

Calculation of viscoelastic moduli using instruments such as
these is normally achieved by fitting a pertinent theory to the
measured force and indentation depth data. In the cases where
either the force or probe displacement can be controlled directly
via feedback control, the classical creep or stress relaxation
theories are appropriate. However, it is usually the case that the
force is measured directly whilst the displacement is given by
the assumed or measured response of the actuator to a specified
input. This means the indentation depth is not monitored
directly but rather assumed to be equal to the displacement of
the fixed end. The inherent compliance of the system results in
the indentation depth actually being unknown. This is a source
of error in indentation measurements. In a typical mechanical
tester for instance, the force transducer, to which the probe is
attached, is suspended from the centre of a cross-head bar
which is driven via a lead-screw attached to the ends of the bar
to which the displacement sensors are attached. The displace-
ment of the probe is therefore assumed to be the same as the
cross-head. As the force transducer is compliant, the true
displacement of the probe is not recorded.

2.2 Experimental parameters

Typically the measurement length scale, time scale, and mate-
rial hardness dictate the displacement resolution, force reso-
lution, and indenter geometry required, and therefore the type
of instrument used for the indentation of a specific material.
This affords the user the opportunity to design an experiment
suitable for the measurement of viscoelastic moduli of the
indented material. It can be seen in Table 1 that the ranges of
variable experimental parameters for the four main types of
indentation equipment detailed in Section 2.1 can be over many
orders of magnitude. Likewise the viscoelastic properties of
typical materials that are commonly tested via indentation as
given in Table 2 also vary over a wide range, it should be noted
that these have been simplified as ‘real’ materials typically
exhibit multiple relaxations and not the single relaxation
considered in this table. Typically a Prony series®*** is required
to treat a ‘real’ material and examples include; Lim (2006) for
cells* and Ahearne (2005) for hydrogels.*' It is obvious that not
all experimental set-ups will be adequate for the indentation of
all materials. For instance glassy polymers are far too stiff to be
indented by an accurately measurable amount with optical
tweezers and single cells are far too small to be indented
sufficiently accurately using a mechanical tester. In order to
ascertain which materials can be indented adequately given an
experimental set-up the appropriate theory will first be devel-
oped in Section 3. Preliminary experiments to indicate approx-
imate parameters are possible via rheology**** for hydrogels,

Table 1

Commonly encountered experimental parameters for commercially available optical tweezers, AFMs, nanoindenters and mechanical testers. It should be

noted that specialist machines could be designed with performance ranges outside of the limits presented here

Indenter radius (m) Drive velocity (m s™') Indentation time (s)

Method Force range (N) Spring constant (N m™")
Optical tweezers (OT) 10" t010 " 10 °to10?

Atomic force microscopy (AFM) 10 ' to 10™® 102 to 10?
Nanoindenter (NI) 10~* to 10° 10" to 10°

Mechanical tester (MT) 1077 to 10* 10° to 10°

This journal is © The Royal Society of Chemistry 2013

10 %to 1077 10 °to 1077 10 *to10 "
107°to 107° 10~°to 1074 103 to 10°
10 °to 1073 10 %to 107° 1072 to 10?
10"* to 107" 107° to 107> 1072 to 10*
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Table 2 Ranges of material properties which can be measured by the inden-
tation method; the viscoelastic moduli are generally comparable for a given
viscoelastic material. For all of these materials, the Poisson's ratio is 0.5 by
assumption. Here it is assumed that the materials may be described to leading
order by a two term Prony series, this is in reality rarely the case but is assumed for
convenience. It should be noted that materials with properties outside of the
limits presented here may exist

Viscoelastic moduli Viscoelastic relaxation

Material (MPa) (s)

Glassy polymer 10° to 10° 10 *to 1072
Elastomer 10° to 10” 10" to 10"
Hydrogel 103 to 10 10° to 10?
Cells 10 % to 107" 10° to 10>

elastomers and glassy polymers but are not suitable for cells.
Determination of material parameters for cells can be obtained
by micro-pipetting.**

3 Theory

In this section a theory will be developed which includes the
compliance of the measurement system and allows the optimi-
sation of experimental parameters for the indentation of a given
material. For instance, the selection of a suitable AFM cantilever
for an indentation measurement requires consideration of the
cantilever spring constant, the radius of the spherical indenter at
the free end, the indentation velocity into the substrate, and the
duration of the indentation process. Similar consideration
should be given to indentation measurements performed with
any of the instruments discussed in this work.

3.1 Assumptions

Following the work of Hertz** and Lee and Radok,” the
following assumptions are made throughout this paper:

e The sphere is rigid in comparison to the viscoelastic
material.

e The viscoelastic material presents a flat, planar surface,
and can be considered to be an isotropic, semi-infinite half-
space.

e The viscoelastic material can be described using a gener-
alised Prony series model.

e The sphere approaches normal to the surface.

e The radius of the sphere is sufficiently large compared to
the indentation depth that the probe geometry can be given by
the parabolic approximation.

e The contact between the indenter and the viscoelastic
material is frictionless.

e There is no adhesion between the indenter and the visco-
elastic material.

e The compliant element is a linear spring, described by a
single spring constant.

3.2 Problem formulation

Fig. 3 shows the geometry under consideration during the
derivation of the model. It can be seen that the four types of
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Fig.3 Geometry under consideration for spherical indentation into a viscoelastic
material.

indentation equipment idealised in Fig. 1 can all be described
by this geometry. With regards to the discussion in Section 2,
the system under consideration is the indentation of a linear
viscoelastic solid by a rigid sphere, of radius R, attached to the
free end of a compliant element, such as a spring or cantilever
of spring constant &, and driven by controlling the position of
the fixed end. Briefly, the fixed end is driven at constant velocity,
V, towards the viscoelastic material for a period of time, v, after
which time the position of the fixed end is held constant.
Therefore the position, x, of the fixed end takes this form:

Vt:0=t=+~ ramp phase (RP) i
x(t) =
Vy:t>y  hold phase (HP)

where t is the time since first contact with the viscoelastic
material. Hooke's law®® produces the following applied force,
F(t), on the spherical sphere,

[ k(Vt—h(r)):0=t=y RP
F(t)—{ K(Vy—h(0)>y  HP @

where k is the spring stiffness and 4(¢) is the indentation depth.
Analogous to the indentation of an elastic half space, Lee and
Radok* derived the following equation for a linear viscoelastic
solid,

t
B0 = 4 [0 (dfl(g))dg )
) 3
where J(t) is the creep compliance function, A = 3 (1 —») /(8V/R)
with Poisson's ratio, », which has previously been assumed to be
0.5, and £ is the dummy time variable required for the
integration.

3.3 Viscoelastic model

In this paper, it will be assumed that the viscoelastic behaviour
of the material being indented is well described by a generalised
Prony series model. The generalised Prony model is a
phenomenological model represented by a linear combination
of springs and dashpots, as shown in Fig. 4. The model can

This journal is © The Royal Society of Chemistry 2013
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Fig. 4 Schematic of standard linear solid model. 5, is the viscosity of the damping
component (dashpot), G;, and G,, are the elastic moduli of the restorative force
components (springs), o and A are the stress and strain applied to the element
respectively.

describe both creep and relaxation processes. The springs and
dashpots are linear and are described by Hooke's law and
Newton's law of fluid flow respectively and can be fully char-
acterised by a constant coefficient. Where 7, is the viscosity of
the ith damping component (dashpot) and each of the G;'s are
the elastic moduli of the restorative force components (springs).

The constitutive equation that describes the behaviour of the
SLS model is

MGrih + Gi,Griih = (Gi, + Gue)a + 1,0, n = 1..N

where ¢ is the stress and A is the strain applied to the SLS
element. The dot denotes differentiation with respect to time.
Assuming the stress takes the form of a step input, or Heaviside
function, and solving using a Laplace transform,* the creep
modulus of the element can be shown to be

N ¢
J(0) :GLIJF;é(l —e’Z) )

where 7 is the creep time constant given by t; = 1,_4/G;. The
constant term can be given as:

1oy )
G~ %G,

i=1

When there is only one relaxation time 7 = 1,. For a two term
Prony series the elastic Hertzian case is obtained with the
following substitution, G; = E and G, — o, where E is the shear
modulus of the elastic medium, further t = 7, = 0 and the creep
modulus is given by, j(¢) = 1/E, which is a constant. The visco-
elastic Maxwell fluid is obtained by the following substitution,
G, = Gy and G, = 0, where Gy is the Maxwell viscoelastic
modulus, and the creep modulus is given by, J(¢) = 1/Gy + t/7.

3.4 Exact solution for final indentation depth

Combining eqn (2)-(4) and integrating by parts, the following
non-linear Volterra equations*® of the second kind are derived,

1 N £t
n al(t)—g'h(g)gaie wdf:0=<¢=<y RP
h(t) (a-ﬁ-hl/z(l)) = T
a(f) = [h(E) Y e d&ir >y HP
0 i
(6)
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where «; = Ak/(G;T)),

i

Ny =t = h(0) =
e (e i —e') +Ter (6b)

The introduction of an initial indentation depth, #(0),
results in an initial preload of F(0) = —kk(0) although this force
requires a reference force as only relative forces are measured.
Although the initial indentation will be considered in the
derivation it will be set to 0 for all results obtained. This preload
prior to the start of the experiment is generally unavoidable
during real experimentation as it is necessary to first ensure
contact with the material. The limit of eqn (6) may be obtained
ast — o to obtain the final indentation depth, (%), by a direct
application of L'hopital's rule.*” In this way the following poly-
nomial is obtained:

Yo

he (Ak (GLIJF 2;5> +hw‘/2> = Ak(Gi]+ ié) (Vy + h(0))

solving this cubic equation for the square root of .. and hence
obtaining; /. simplifying with the following parameters:

@ = AKI(G(Vy)"?)
I'=d(1+p)

6 = I'(1 + h(0)/Vy)

]
(=)
7

o
=]

®

@
=)

)
=)

N
=)

N
=)

Maximum indentation depth, h (nm)

o2
IS
w
%

1 2 3 4
10,,(1)=10g.4(G,/G,)

Fig.5 Variations in the maximum indentation depth provided by eqn (7) as G, is
varied for a Prony series with N = 2. Low u values correspond to the elastic limit
and high u values correspond to the Maxwell limit. The material parameters G,
and t are given in Table 4 and the system parameters are supplied in Table 5.
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1/3
v= [108@ 81+ 12V/810% — 12@r3]

the final indentation depth is given by,

he = V«/Re{f—i-——f

6 3y 3 @

where Re represents the real part, the imaginary part has no
physical meaning for this system. The variation in the
maximum indentation depth as y is varied for a two term Prony
series is shown in Fig. 5.

3.5 Numerical solution

A numerical procedure has been developed to solve eqn (6)
directly, by evaluating the integral using the NAG library algo-
rithm DO5BA. Since the NAG routine requires a licence for the
NAG library an alternative is provided in the ESI [Section 2],T
however greater computational effort is required to obtain
satisfactory results.

4 Results

Results presented here will focus on a two term Prony series
(N = 2) and the deviations for a three term Prony series (N = 3)
are discussed. The results and discussions will be split into two
sections; the first considers a simple comparison of the
asymptotic and numerical models for relatively stiff springs and
the second considers the optimal values of the experimental
parameters. To assist in the presentation and discussion of
results the non-dimensionalisations defined in Table 3 are
considered. For the remainder of this paper the preload and
hence initial indentation distance is assumed to be 0.

4.1 Comparisons between numerics and asymptotics

Asymptotic results for stiff springs have been derived and may
be found in the ESI [Section 1, eqn (1.6); this equation will be
referred to as S1.6].7 Fig. 6 indicates the relative success of the
asymptotic model when compared to the analytic result of eqn
(6) as E.. is varied by changing the values of G, (10° to 10"° Pa),
G, (10°t0 10" Pa), V(10 °to 10’ ms™ %), v (10 * to 10*s), R (10*
to 10 m), and k (10~ to 10° N m ™), further the value of 7 (10>
to 10" s). The extremes are removed from Fig. 6 to ensure that
the most applicable range is considered. The error is obtained

Table 3 Nondimensional parameters

Parameter Definition

t/‘fi
‘C[/’Y
hi(vy)
k/(VyG,)

N1
925G
FI(v7)*Gy)
AKI(G,(V7)'"?)
(V)2 /(AK(1 + )

T A M

o

8
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Fig.6 Errors of the asymptotic results compared to egn (6) and (S1.6) in the ESI, T
E.. is varied by varying the values of G; (10° to 10'° Pa), G, (10° to 10'° Pa), V
(10710 10" ms™"), v (107310 10%s), R (10~*t0 10° m), k (10*to 10° N m~") and
7(1073t0 10" 5). The dashed (---) and the dot dashed (---) lines correspond to an
error of 1% and 10% respectively and data below these lines are considered
acceptable within that error.

by taking the final indentation depth provided by eqn (7) and
comparing this with the final indentation depth given by,

(ho(1) — Ea(1))

li
m V’Y

t— o

=1-E,. ®)

The dashed (---) and the dot dashed (-:-) lines correspond to
an error of 1% and 10% respectively and data below these lines
are considered acceptable within that error. Generally the error
scales with log;(E«), and the trend shown in Fig. 6 shows two
of the three important features the ideal curves must possess.
There is initially a decrease in the error with decreasing E ., until
the asymptotic solution crosses the analytic solution and the
error begins to increase again, and finally the error must tend to
0 as E, tends to 0. The value of E ., which corresponds to the (---)
line is 0.0846, and for the (---) line 0.2808. Below this value the
asymptotic method produces an acceptable solution, in this
limit the compliance of the spring may be ignored.

As a demonstration of the model developed earlier, using the
typical material parameters in Table 4 and the system param-
eters from Table 5 the following values for E. are obtained in
each case; cells, 0.1193 (below 10% error), hydrogel, 1.5901

Table 4 Representative viscoelastic parameters for four different model
materials

Material G, (MPa) G, (MPa) 7 (s)
Glassy polymer 9 x 10° 10* 1073
Elastomer 7 10" 10°
Hydrogel 5x 10" 10° 10
Cells 5x107° 5x 1072 10"
Table 5 Example system parameters for Section 4

Parameter Symbol Value
Radius of sphere R 8 pm
Spring/cantilever stiffness k 1Nm*'
Duration of ramp b 017
Velocity of fixed end during ramp phase %4 100 nm s~ "
Time step h 107*s

This journal is © The Royal Society of Chemistry 2013
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represented by the dashed line (---) were obtained by the numerical code, the
solid grey line (—) is the asymptotic fit to eqn (S1.6); the grey dotted line (...) is the
hydrogel and the grey dot dashed line (-:-) is the elastomer obtained numerically.
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Fig. 8 Comparison of the indentation force as a function of time for the various
materials; the cells represented by the grey dashed line (---) were obtained by the
numerical code, the solid grey line (—) is the asymptotic fit to eqn (S1.6); the grey
dotted line (...) is the hydrogel and the grey dot dashed line (-:-) is the elastomer
obtained numerically.

(above 10% error) and elastomers, 6.2114 (above 10% error).
Fig. 7 and 8 demonstrate the indentation curves and force
curves for the numerical case detailed above with the asymp-
totic results for the cells included for comparisons, the
asymptotic solution for the cells case is also displayed as it is
below 10% error for the indentation depth for the final inden-
tation depth (1.30%), the largest error occurs at %(y) and has a
relative error 8.88%.

However the error in the force corresponding to this is 54.7%
at h(y) and 11.9% for the final indentation depth, this demon-
strates that even if the indentation depth is well predicted a
greater relative error in the force is possible. The relative error in
the force () may be determined from the relative error in the
indentation depth (%),

(B0 _

o (i) = o
(/)
(i) o

this form is discussed in more detail in the ESI [Section 3].T The
relative error is a maximum at time y and this implies that if
h(v)/(Vy) < 1/2, as would be expected for a soft spring, the
relative error in the force is less than the relative error in the
indentation depth. Should A(y)/(Vy) = 1/2 the relative error in
the indentation depth is equal to the relative error in the force
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and if A(vy)/(Vy) > 1/2 the relative error in the force is greater than
the relative error in the indentation depth.

5 Discussion
5.1 Optimal experimental parameters

Naturally the experimentalist needs to design the experiment
with a view of maximising sensitivity and accuracy. This has to be
done without knowing the exact properties of the material being
indented a priori. However, sensible decisions can be based on
approximate figures for the properties which can be estimated
given rheometry (hydrogels, elastomers and glassy polymers) or
micro-pipetting (cells). Determination of the ideal parameters
for indentation of a viscoelastic material is presented here,
however no comparisons may be made with other recommen-
dations as none have been reported. The determination of the
optimal spring constant is similar to that proposed by Nikonov*®
(2005) for the compression of a viscoelastic cylinder.

5.1.1 Maximum relative relaxation depth. Maximum
sensitivity occurs when the difference between the indentation
depths at the end of the ramp phase and hold phase is maxi-
mised. This corresponds to a maximum change in the force
during the hold phase. The experimental parameters that result
in this situation are characterised by an optimal value of E.,, E.

As an example, E,, was calculated for the typical hydrogel
properties given in Table 4 and system parameters found in
Table 5, except the spring stiffness, which is varied and with v =
0.1 s. The results of this calculation are shown in Fig. 9. As can
be seen, a peak value of E, is observed and this corresponds to
the optimal value E, . The peak value, E.,, may be sought for all
parameters, however such a simple parameter can never
capture the full complexity of the problem, as it is independent
of 7 and fails to capture the effects of v on /(). See Section 5.1.2
for further discussion.

A further result may be obtained by noting the following
condition,

he —h(7)

= h* = constant
Vo

(10)

where 7* is the relative relaxation divided by the total driven
fixed end motion at optimum, with the further condition that

(h-hty))/(Vy)
o
&

0.03- 1

Fig. 9 Determination of optimality Es.: for the typical hydrogel properties
obtained from Table 4 and the system parameters in Table 5 except y = 0.1 s and
the spring stiffness which is varied. The grey dashed line (---) represents the
optimal £, = 0.916 corresponding to a spring stiffness of 0.549 N m~" and the
maximum relative relaxation depth, h* = 0.0807.
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the material must remain the same and the ramp duration is
constant. Hence from a single optimisation the parameter A(y)
can be easily evaluated as /.. is provided by eqn (7). Eqn (7) at
the optimal conditions has the special property that it is linearly
dependent on V since ® = 1/(E%(1 + u)).

5.1.2 Parameter optimisation for a given material and
ramp duration. When E, is known for a given material, the
optimal experimental parameters for that material can be
found. For instance, given a material with known G, G, and 1
and for a given ramp duration, vy, a simple equation to deter-
mine the optimal spring constant for any V and R may be
obtained once the appropriate E, is known. Having obtained
E., and h* values for the hydrogel as described in Section 5.1.1
the following equation enables the optimal to be obtained for
cells provided the ramp duration is constant,

e _ JORVY)'? 1

3 E, X
>

x (11)

()

Eqn (10) describes the optimal parameters for maximum
relative relaxation depth. A significant weakness of eqn (11) is
that should vy be varied, A(y) will vary disproportionately and
hence E., and h* will also vary.

5.1.3 Master curve for optimal parameters. In Section 5.1.1
the optimisation parameters £, and h* for a particular material
and a set of experimental parameters was found for a range of
stiffnesses. Then in Section 5.1.2 the optimisation was extended
for any V and R. Here the analysis is extended to all materials
and ramp durations. A master curve describing the optimal
parameters (in the sense of Section 5.1.2) is required to resolve
the limitations of eqn (8) and effectively E-, is obtained for any
material or ramp duration, justification for the mathematical
form is provided in the ESI [Section 1].t

The axes in Fig. 10 are,

p(Gy, v, V, R k) AR P* (12)
LY, VKK, = an
Gl(V’)’)l/z
N G
8(Gr, G, o, Gy, 7,71) = D= B (13)

i=2

It has been found that a master curve to indicate optimal
parameters is possible and is provided by the following equation,

10g,(P(G, Gyt V. R K)

5 0 5 10
log,4(9(G,.G, t.v.V.R k)

Fig. 10 Master curve governing the optimal conditions, the axes are provided by
egn (12)-(15) for a single relaxation, although results are equivalent for Prony
series with additional relaxation times.
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1 Ak* N_0.74G, / G;8;*
* = 2= Z 3 21/ o (14)
E.(1+w) G (vy)? 4w +1273
and,
N 241G, /GiB;
h* = Z—‘/ﬁ” (15)
~24.1+ G, /Gg,"

This expression gives the experimentalist the optimum
experimental parameters for any material in terms of the
remaining parameters. Using this will ensure the relaxation is
maximised and ensure that the best possible accuracy is ach-
ieved during the indentation experiment. ESIf [Section 4]
details the construction of the functional forms found in eqn
(14) and (15) for a two term Prony series. For a two term Prony
series a natural consequence of this analysis has been the
identification of the ideal ramp duration, y* = /8.

5.2 Ideal ramp duration for a three term Prony series

Results and discussions above have focused on a two term
Prony series despite the optimisation parameters remaining in
a general form. In this section the ideal ramp duration for a
three term Prony series is considered.

When there are two relaxation elements in the Prony series
the determination of the ramp duration is further complicated.
For convenience we shall consider the mean frequency and
the frequency difference to present results; f= (1/t, + 1/7,)/2 and
Af=(1/74 — 1/1,)/2, where both are greater than or equal to zero,
hence Af can at most equal f and it is assumed that 7, = 7,. A
plot of the optimal ramp duration as a function of the frequency
ratio Af]f is presented in Fig. 11. Eqn (10) will have one
maximum value with respect to the ramp duration if Af =
0 since this corresponds to a single relaxation time, however as
the frequency difference increases there is a region where there
may be at most three local maxima until the frequencies are
sufficiently separated to represent only two local maxima
located at the isolated local maxima, however since this
happens when Af]f = 1 this corresponds to a single relaxation
time again. Determination of a Prony series requires each
modulus to be positive*® and this imposes restrictions on the
frequency difference which may be observed. When the moduli
are equal the restriction is Af/f = 9/11 and 9/11 corresponds to

0.2 T T T T T T T T T
/’f’
%
el Optimal
_»*" ramp duration
0.15-- el fast relaxation 4

fy*

0.1

Optimal
ramp duration
0.05 | . slow relaxation
0 01 02 03 04 05 06 07 08 09 1

Fig. 11 Optimal ramp duration as a function of the normalised frequency
difference is represented by the solid markers. The solid line represents the
optimal ramp duration for the slow relaxation time, t1. The dashed line (---)
represents the optimal time for the fast relaxation, 5.
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the position of the discontinuity in the optimal ramp duration
observed in Fig. 11. During small frequency shifts Af/f < 9/11 at
optimality, the mean of the frequency is observed and the
material may be well approximated by a single relaxation time at
1/f. For frequency shifts larger than this there is a sudden shift
in the position of the optimum and the optimal ramp duration
is moved significantly towards the optimal of the isolated larger
relaxation time. Further the material requires two relaxation
times to be described well until Af/f is sufficiently close to 1 to
prevent detection of the smaller relaxation time.

When the conditions for the Prony series to provide positive
moduli are not satisfied at a separation of t; = 101, (y* = 9/11),
the location of the discontinuous jump occurs at the time sepa-
ration predicted in Gradowczyk®® (1969), Soussou®” (1970), Park®®
(1999) and Park® (1999). The connection between this approach
and that of Gradowcezyk® (1969) is expected since the approach
details the minimum theoretical differences in the relaxation
times for the determination of different relaxation times.

5.3 Ideal indentation parameters

In Section 5.1 the optimal parameters were determined;
however it has been demonstrated that there are an infinite
number of optimal parameters for any experimental case.
Additional limitations are required to narrow the range of
experimental parameters and suggest which experimental
method is recommended for given material parameters. There
are a host of limitations that prevent accurate indentation
measurements. These include low noise to signal ratios,
maximum permissible indentation depth and the operating
parameter ranges for each of the indentation machines. By
combining these limitations, it can be shown that there are well
defined regions in the range of the experimental parameters
that lead to permissible, i.e. accurate indentation experiments.

To deduce the effect of the signal to noise ratio, it is neces-
sary to assume a maximum working indentation depth of 7,,y.
In this case, the maximum velocity for the ramp phase is
provided by,

Ninax
2
v 21 T
Rel|lZ+— __
Y e{6+31// 3

Vmax = (16)

which is independent of R and is unique. By ensuring the
indentation depth is less than the maximum working indenta-
tion depth, h, < Ay it is possible to determine a minimum
ramp velocity ViaiP by assuming that the value of A(y) must be
at least twice the Rose criterion® (i.e. 10 times the signal to

noise ratio),

) __ Jy% p/ramp
10 = hmm (/Y) — (hw h me ,Y)

Ah Ah

(17

where 7,in(v) is the minimum indentation depth at the end of
the ramp phase, A/ is the maximum noise in the indentation
depth and as before there is a unique Vi which corresponds
to this and it is independent of R. If ViainP > V. a greater
maximum indentation depth is required to measure the

indentation, this will often correspond to moving down the

This journal is © The Royal Society of Chemistry 2013

View Article Online

methods listed in Table 2, for instance AFM to nanoindenter,
etc. All measurable indentation depths must be driven between
these limiting velocities, Viiin? = V = Vipax

The ideal drive velocity to maximise for the relaxation phase
is provided by the same maximum drive velocity as the ramp
phase, Viax. The minimum drive velocity required for the
relaxation phase to be observable, vEelax i obtained in a similar
manner and is provided by,

h* Vrelax,Y

10 = min

Ah 1%

relax

and is independent of the radius, R. If Vi > Vimax @ greater
maximum indentation depth is required to measure the
indentation, this will often correspond to moving down the
methods listed in Table 2, for instance AFM to nanoindenter,
etc. All measurable indentation depths must be driven between
these limiting velocities, yrelax < y <y . The minimum drive
velocity required to measure both the ramp and relaxation
phase is the maximum of VP and VI, this is denoted as
Viin = Vgclliix-

To demonstrate the use of eqn (10) and (11) the maximum
indentation depth permissible for an indentation method is
required, a simple approximation for this is the limit of Hertz's>®
parabolic approximation #,.c = 0.1R, although the real
maximum is likely to be less than this due to physical limitations
of the instrument construction. The maximum noise needs to be
estimated for each of the indentation methods and will be taken
simply as the following values: AFM/OT, Ah = 0.1 nm,NIAh =1
nm and for the MT Az = 2 pm. This information has been
combined to generate Fig. 12a and b and highlight the methods
and parameters which are required permissible for determina-
tion of viscoelastic parameters for the hydrogel discussed above
and in greater detailed in the ESI [Section 5].T The white regions
in Fig. 12 may be split into two; above the black line the inden-
tation depth is greater than the maximum permitted by the
parabolic approximation, while below the black line the signal to
noise ratio is too low and hence is not discernible from the noise,
ensuring the indentation is considered not measurable. The
permissible region highlighted in grey indicates that for the
hydrogel considered and the ramp duration, only AFM can
produce optimal indentations. Further the ideal parameters
(optimal parameters for the optimal indentation) are obtained
from the permissible region with the greatest velocity. The axis
on the right corresponds to the logarithm of the spring constant
calibrated to be read from the optimal indentation conditions
line, to obtain the optimal spring constant at any given point the
lines of constant k (---), are used to project the point onto the
optimal indentation conditions line and hence may be read from
the axis on the right. Fig. 12a does not have the force limits of the
method included; the limitations of the radius, velocity and
spring constant are included. Fig. 12b is restricted to the case of
indentation by AFM, however the force limits are added and in
this case the permissible region is diminished as a result. Further
in Fig. 12b the (---) lines are lines of constant force and corre-
spond to the maximum and minimum permissible forces for
AFM. The permissible regions are obtained from the intersection
of inequality constraints with the following objective function,
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Fig. 12 The permissible indentation regions for the hydrogel provided in Table 4 and the system parameters in Table 5 except ¥y = 0.1 s and k* is provided by egn (11).
The white regions are not possible either due to over indentation or due to low signal to noise ratio. The grey represents regions where it is possible to indent and obtain

meaningful results. The dark grey regions represent regions where it is not possibl

e to indent as the parameter range of the method is not available. The black line

represents the optimal indentation parameters and this corresponds to the maximum permissible indentation. Lines of constant spring constant are indicated by (---)
and lines of constant force by (---). (a) The force limits have not been considered in this particular figure. (b) For the AFM case highlighted as permissible, the force limits
have been added to indicate the permissible region with the force limits included. AFM: Atomic Force Microscopy, OT: optical tweezers, NI: nanoindentation and MT:

mechanical tester.

& = Vyh* (19)

The set of parameters which satisfy the constraints are high-
lighted grey in Fig. 12b for the hydrogel example. The particular
set of parameters which maximise the objective function are
called the ideal parameters and may not be unique, for the
hydrogel case in Fig. 12b the ideal parameters are unique (V =
17 um s, R = 10 pm and k = 8 N m™'). Since the constraints
imposed by each method, the limits of the velocity, radius, spring
constant, force and the signal to noise ratio are not linear it is not
possible to directly apply a linear programming optimisation*® to
obtain the ideal parameters but this is simply resolved by taking
the logarithm of all constraints and the objective function. Refer
to the ESI for details [Sections 5 and 6].f

5.4 Sub-optimal indentation

In Section 5.1 the optimal parameters were determined and
from these the ideal parameters were determined in Section 5.3;
yet it is possible to indent using sub-optimal parameters.

5590 | Soft Matter, 2013, 9, 5581-5593

However, this may have ramifications for the perceived prop-
erties of the material. Fig. 13 indicates for the hydrogel example
that varying the spring constant can have a significant effect on
the ramp and relaxation phases; but there are more important
implications than the magnitude of the indentation depth.
When a greater than ideal spring constant is used the parabolic
approximation will no longer be valid as the ideal parameters
were on the boundary of validity. A smaller spring constant than
ideal may have the effect that the relaxation phase may not be
distinguishable from the noise in the system. Currently there
are no simple approaches other than to run the indentation
code discussed earlier to evaluate how far away from optimal
the experiment can be before meaningful results are limited.
Sub-optimal indentation may also appear elastic when the
material is viscoelastic as the relaxation phase may be
unperceivable.

5.5 Implications of the assumptions made in Section 3.1

The assumption of viscoelasticity and negligible adhesion
require special attention and are considered separately in the

This journal is © The Royal Society of Chemistry 2013
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Fig. 13 Indentation curves for the hydrogel with a ramp duration of 0.1 s and

the following ideal parameters V = 17 ym s~', R = 10 um and k* = 8 N m~’,
where the spring constant is altered as specified for the sub-optimal cases.

following sections. The implications of the
assumptions are discussed here.

The sphere is rigid requires that a spherical indenter is
available which is effectively rigid compared to the viscoelastic
material and it must be attachable for indentation to the
method of choice. This assumption is easily satisfied, especially
for the materials described in Table 2, as there are many dia-
mond, ceramic, metallic probes and indenters available that are
order of magnitudes stiffer than the materials to be tested.

It is assumed that the viscoelastic material presents a flat,
planar surface; the viscous nature of the material should always
allow this to be achieved given a sufficiently long settling time
given appropriate sample preparation, however should the
material be curved the reduced radius should be used. Ensuring
the sphere approaches normal to the surface is achievable by
adequate experimental design. If this assumption is not satis-
fied a result equivalent to that of Mindlin and Deresiewicz* is
required, but for viscoelastic materials this does not currently
exist. The material is assumed to be isotropic; this is a more
problematic issue which is related to the assumption that the
material undergoes affine deformations. An extension of this
theory for viscoelastic fluid behaviour was introduced by John-
son and Segalman® and is required to consider non-affine
deformations. This is another consideration that can be
negated with good sample preparation. The viscoelastic mate-
rial is assumed to be a semi-infinite half-space. In practice this
is only ever approximately satisfied as the sample will always
have a finite thickness. If the thickness is insufficient, the stress
field could interact with the supporting boundary affecting the
measured modulus of the material. A rule of thumb is that
the material should have a greater thickness than 10 times the
maximum indentation depth (/).

The parabolic approximation is assumed to be valid when
the indentation depth is 0.1R and is based on the assumption
used in the original works of Hertz.>® However; techniques exist
to extend the analysis beyond this limit.>***

The contact between the indenter and the viscoelastic

remaining

material is frictionless, and this will cause the indentation to be
greater than for the frictional case; at present the equivalent of
the Coulomb friction for viscoelastic materials does not exist.
The indenting object be it a spring, a cantilever, etc. may be
treated as a linear spring only under certain conditions, usually
under the assumption of small deflections, and these depend
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strongly on the specific geometry of the compliant element. As
such this limit is not pursued here but should be considered for
the specific case of interest.

5.6 Implication of assuming viscoelasticity

Assuming the material is well described by a linear viscoelastic
material has certain advantages and limitations, these include
the ability to fit almost any experimental data with realistic
discrete decay modes** but the physics of the problem could be
masked by such a description. However it is noted that the
techniques implemented to obtain solutions to the underlying
physical descriptions, result in equations which may be repre-
sents as an equivalent viscoelastic material. Linear poroelas-
ticity*** has been found to describe the behaviour of cells for a
limited set of indentation data.®® The generalised Prony series
for instance is able to describe the effects of a linear poroelastic
indentation; the solution to a one dimensional indentation of a
linear poroelastic material produces a well-defined infinite
series of exponentials which can be equated to an equivalent
linear viscoelastic series, there is then a one-to-one correspon-
dence between coefficients. The equivalent viscoelastic
response will then have the usual response of a poroelastic
material [ESI, Section 7 and 81]. This physical approach differs
from the fitting of a Prony series®® and has the advantage that
the results discussed here may be directly applied to such
physical models. Plasticity®>®* which is rarely discussed for soft
materials since it is difficult to determine with certainty as the
relaxation process may take many months or years;* plasticity
may never be treated by an equivalent linear viscoelastic mate-
rial. However, the initial response which is considered the
duration of the experiment may be well approximated by an
infinite series of exponentials and as such can be described over
the duration of the experiment by an equivalent linear visco-
elastic response. Provided preliminary tests, for instance
rheology*>** can be used to determine parameter values and
appropriate theories are implemented to provide the corre-
spondence to an equivalent linear viscoelastic material all of the
results obtained here can be applied to any system.

5.7 Implication of assuming negligible adhesion

The previous section details how a solution to a physical model
may be equated to an equivalent viscoelastic material in the
absence of adhesion, here it is noted that when adhesion
cannot be neglected an equivalent approach is possible using
solutions available in the literature.

The assumption of negligible considered
throughout this work is only valid for certain systems and
should be verified for each case. The adhesive force depends on
the area of contact for a viscoelastic material;*® techniques exist
in the literature for determining such dependence on contact
area but are usually implemented to detect a poroelastic
response.”® Adhesion differs significantly from a poroelastic
response as an adhesive instability is observed as the probe
approaches a surface, or ‘jump to’*® occurs. Elimination of
adhesion is possible under liquid conditions but can rarely be
ignored for dry contact,* indeed this is crucial for fouling and

adhesion
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in particular biofouling.®* For small length scales adhesion
however small can represent a significant contribution to the
net force on the spherical indenter, liquid contact with appro-
priately selected or modified probes; despite this the indenta-
tion of cells have been shown many times to be treated well by
neglecting adhesion.*****%%¢¢-73 Hydrogels typically being stiffer
than cells are even less prone to adhesion effects as the length
scale is typically larger than for cells and this has been
demonstrated many times.**"**7*”> The general treatment of
adhesion in a linear viscoelastic material was considered for
monotonic indentation by Hui et al” (1998) and has subse-
quently been extended to include retraction and further
indentations.”” An approximation to adhesion in elastomers has
been considered for a three element Prony series’ and this
solution allows a three element Prony series to be fitted to the
data and the effects of adhesion obtained as well as the non-
adhesive three element Prony series, this analysis is not limited
to elastomers. Hence the results here can be converted into
results for adhesive contact once the appropriate conversion of
the n'™ term Prony series has been established.”

6 Conclusions

A model has been developed and implemented to describe the
indentation of a rigid indenter driven by a compliant
measurement system into a viscoelastic half space. Further an
application of a viscoelastic equivalence principle to physical
models, including poroelasticity and adhesion, enables the
results obtained in this work to be applied to such materials.
The elastic Hertzian and Maxwell fluid are recovered as special
cases of the standard linear solid model described by a two term
Prony series.

Optimisation of the indentation parameters for this model
over many orders of magnitude of the velocity, viscoelastic
moduli, spring stiffness, relaxation times and the duration of
indentation results in a characteristic master curve which
enables rapid determination of optimal measurement condi-
tions. Analysis of simulated indentation measurements shows
that using sub-optimal conditions generates data in which the
resolution of the relaxation region is significantly compro-
mised. This gives the appearance of a more elastic material than
is actually the case.

For a two term Prony series the ideal ramp duration was
found to be =1/8. Also the ideal ramp duration for a three term
Prony series was determined. It was observed that during small
frequency shifts Af]f < 9/11 at optimality, the mean of the
frequency is observed and the material may be well approxi-
mated by a single relaxation time at 1/f. When Af/f = 9/11 this
corresponds to the position of the discontinuity in the optimal
ramp duration time. The location of this discontinuity occurs at
the same frequency shift observed by Gradowczyk and Moa-
venzadeh®® (1969) to guarantee distinct relaxation times.

Asymptotic results help to elucidate the behaviour of short
duration and/or stiff indentation experiments. The results pre-
sented here have implications for researchers using measure-
ment techniques such as atomic force microscopy and optical
tweezers.
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