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Collective ordering of colloids in grafted polymer
layers†

Tine Curk,*a Francisco J. Martinez-Veracoechea,a Daan Frenkela and Jure Dobnikar*ab

We present Monte Carlo simulations of colloidal particles pulled into grafted polymer layers by an external

force. The insertion free energy for penetration of a single colloid into a polymer layer is qualitatively

different for surfaces with an ordered and a disordered distribution of grafting points and the tendency

of colloidal particles to traverse the grafting layer is strongly size dependent. In dense colloidal

suspensions, under the influence of sufficiently strong external forces, colloids penetrate and form

internally ordered, columnar structures spanning the polymer layer. The competition between the

tendency for macro-phase separation of colloids and polymers and the elastic-like penalty for deforming

the grafted layer results in the micro-phase separation, i.e. finite colloidal clusters characterized by a

well-defined length scale. Depending on the conditions, these clusters are isolated or laterally

percolating. The morphology of the observed patterns can be controlled by the external fields, which

opens up new routes for the design of thin structured films.
I Introduction

Graed polymer layers can prevent the deposition of colloidal
particles on solid surfaces, which is exploited in various
applications like colloidal stabilization, anti-fouling surfaces1

and in biomedicine.2 Biological surfaces such as the lining of
the intestine or the blood vessel walls are coated with polymers
that inhibit the absorption of too large particles. In several
other applications, the insertion of colloids or nano-particles
into polymer layers is exploited in order to fabricate functional
responsive materials.3 The physical properties of graed poly-
mer layers are governed by the congurational entropy of
tethered polymers and have been studied extensively for
different graing and solvent conditions.4–8 The penetration of
particles into polymer layers has been recently addressed in
theoretical and numerical studies.9–15 Colloids soluble in
polymers penetrate up to a depth determined by their size,16

while insoluble particles form aggregates, which are expelled
from the brush aer reaching a critical size.17 The polymer-
mediated colloidal interactions are typically of the order of
kBT15,18 (i.e., comparable to the entropic terms of the colloids),
therefore, the colloid–polymer mixtures are inherently disor-
dered. In order to exploit the weak polymer-induced interac-
tions for the assembly of ordered patterns, the colloidal
translational degrees of freedom need to be constrained, e.g. by
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applying external forces. However, little is known about
collective particle ordering in a brush under the inuence of a
constant force.10

Here we report Monte Carlo computer simulations of poly-
mer-insoluble particles in graed polymer layers. We demon-
strate that sufficiently strong external forces give rise to
collective ordering with a rich variety of morphologies. We
studied polymer layers under good solvent conditions between
the “mushroom” and the “brush” regime,10 with the mean
spacing between the graing points (i.e. the de Gennes blob
size4) being roughly similar to the radius of gyration of the
polymers and to the colloid diameter. The polymers generally
repel the particles from the surface. We nd that the repulsion
at a given graing density is largest when the distribution of the
graing points at the surface is ordered, while in the case of
disordered graing with large-enough monomer density uc-
tuations at the surface, the free energy prole resembles a
barrier and is attractive close to the surface. This enables
reversible adsorption of particles and their slow release. The
nature of the constant external force suitable for pulling the
colloids into the polymer layer depends on the particle size:
large micro-particles can sediment under the inuence of
gravity, which, however, plays no role in the case of polymers or
nanoparticles in aqueous solutions. An effect equivalent to
pulling by gravity would be obtained by placing the system in a
centrifuge.
II Model

The system comprises of polymer chains end-graed to a at
surface and hard-sphere colloids with a diameter s immersed in
Soft Matter, 2013, 9, 5565–5571 | 5565
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a neutral good solvent. For any pair of colloids the interaction
potential is given by:

bUcc ¼
�

0; r$ s

N; r\s

with b h 1/kBT being the inverse thermal energy and r is the
center-to-center distance of the particles. The particle diameter
s is taken as the unit of length in the simulations. Apart from
the hard-core, the colloids do not interact with each other
directly but via polymer-mediated interactions. The colloids are
additionally subject to a constant external force fg. Regardless of
the physical nature of the external force, its signicance is
measured by the ratio of potential versus thermal energy: g 0 ¼
fgs/kBT. In the case of gravity, g 0 ¼ mgs/kBT f s4, where s is the
diameter and m the effective mass of the colloids in the solvent.
Typical values, say for micron-size silica colloids in water, are
around g 0 z 2. Scaling down to 100 nm, g 0 z 10�4. For a single
colloid, the free energy prole F(z) is the sum of its potential
energy in the external eld and the insertion free energy penalty
Fp(z) for disturbing the polymer layer:

bFðzÞ ¼ g0
z

s
þ bFpðzÞ: (1)

The linear potential energy term decouples from the poly-
meric degrees of freedom, and Fp(z) holds the key to under-
standing the penetration of a single colloid into a polymer layer.

In a good solvent the polymers can be modelled as self-
avoiding random walks. We follow a coarse-grained model19

where the polymer chains are represented by so repulsive
blobs with a radius of gyration rb. Each chain is composed of lp
blobs, which are connected via harmonic springs:

bUch ¼ 0.534(r/rb � 0.730)2. (2)

Individual blobs repel each other via a Gaussian repulsion

bUbb ¼ 1:75e�0:80ðr=rbÞ2 (3)

and are repelled from the colloids and the at surface through
an exponential repulsive interaction

bUbc ¼ 3.20e�4.17(r/rb�0.50) (4)

due to the nite volume occupied by polymers. This specic
form of the interactions and the values of the constants
describing the self-avoiding chains have been derived in ref. 19.

The graing density ~r ¼ Np/Rg
2 determines whether the

polymer layer is in the dilute “mushroom” (~r < 1) or in the dense
“brush” scaling regime (~rT 3).20,21 The relevant physical length
scale in the mushroom regime is the radius of gyration Rg of the
chains, while in the brush regime it is the so-called de Gennes
blob: x f r�1/2.4 All our simulations are in the intermediate
regime where the two length-scales are similar x z Rg. In the
following, rather than per Rg

2, we will express the graing
density as the number of anchoring points per colloidal diam-
eter squared, therefore r ¼ ~rRg

2/s2. We will explore the regime
0.5 < r < 5, where the probability of inserting a colloid with s z
Rg is non-vanishing. We rst describe the model and
5566 | Soft Matter, 2013, 9, 5565–5571
simulations on single-colloid insertion, followed by a study of
collective ordering in dense colloidal systems.
III Single colloid insertion

We have used the coarse-grained model described above in
Monte Carlo simulations and evaluated the single-particle
insertion free energy proles Fp(z) for a wide range of parame-
ters lp and r by biasing the sampling in the z coordinate with the
Wang–Landau technique.22
A Ordered and disordered surfaces

It is important to realize that the insertion free energy for a
colloidal particle is determined by both the mean monomer
density and the monomer density uctuations: at surfaces with
signicant variations in the local anchoring density, large
regions void of polymers exist, which makes it easier to insert a
single colloid as compared to the uniformly anchored surfaces
with equal average graing density. We have investigated this
by computing Fp(z) for polymer layers with three different
spatial distributions of the graing points: “quenched
disorder” (random Poissonian process), “annealed disorder”
(random points, relaxed before the simulation), and “order”
(graing points on a square lattice). Quenched and annealed
distributions roughly correspond to the experimental condi-
tions: two main protocols for fabricating polymer brushes are
grow from and grow to the surface. In the grow from procedure,
the distribution of anchors is likely to be random, since it is
determined by the positions where the monomers rst adsor-
bed to the surface. In grow to methods the polymers are sepa-
rately prepared and then attached to the surface from the
solution. We argue that the arrangement of the anchoring
points in such a process is close to the annealed disorder.
However, with the current methods of brush fabrication, it is
difficult to realize an ordered arrangement of the anchors.

As demonstrated in Fig. 1(a), the free energy proles in the
three graing arrangements are qualitatively different: in the
ordered case the free energy monotonically decreases with
height,6,10 while in the disordered case it features a barrier (also
reported in ref. 9 and 12). In the inset, Fig. 1(b), we plot the 2D
distribution of the hole sizes23 for the three arrangements,
which clearly illustrate the above discussion. The difference
between the quenched and annealed disorder is rather small,
which is due to the fact that the anchoring points (monomers)
are vanishingly small compared to the polymer Rg and therefore
do not repel each other as the blobs do in our coarse-grained
model. Close to the graing surface the monomer uctuations
are “frozen” because the anchoring points are immobile, while
away from it they relax. Any effect of the surface-imposed
density uctuations should therefore vanish at a height roughly
equal to Rg – well conrmed in Fig. 1(a). In the experimentally
relevant situations (disordered graing), we therefore expect to
observe amaximum in the free energy prole around zz Rg and
a metastable minimum at the surface. A strong-enough external
force can transform the metastable local minimum at the
surface into a stable free-energy minimum.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Isolated colloids in polymer layers with grafting density r ¼ 1.0 and
number of blobs per chain lp ¼ 20. (a) The insertion free energy profile Fp(z) for
three realizations of the surface grafting: quenched disorder (black solid line),
square crystalline order (red solid line), and annealed disorder (green dashed line).
(b) The distribution of (2D) hole sizes for the three scenarios. The solid lines
represent the analytically derived expressions (see ESI†), symbols are numerically
determined. For both cases of disordered grafting there is an appreciable prob-
ability of finding large holes, while the ordered surfaces, characterized by small
density fluctuations, have a cut-off in the hole size.
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In Fig. 2(a) we present the insertion free energy proles for
various parameters in the case of disordered graing. We also
show (Fig. 2(b)) the matching monomer density proles, which
are monotonic (apart from the oscillating behavior very close to
the surface due to the nite size of the blobs). In Fig. 2(c)–(e) the
scaling of the position and height of the free energy maximum
are analyzed. The barrier height Fmax scales linearly with r and
with s2 (see also ESI†); in our system it is typically of the order of
10 kBT.
Fig. 2 (a) The insertion free energy profiles for disordered grafting. Each of the
three family of curves show insertion free energy for various r ¼ 0.5, 1, 2, 3, 4. (b)
The monomer (blob) vertical density profile for lp¼ 60 and r¼ 4 (bold green), r¼
1 (dashed green). The position of the free energy barrier (in the case of disordered
grafting) as a function of (c) polymer size and (d) colloid size is presented. (e)
shows the barrier height as a function of the grafting density for lp ¼ 10 (red) and
lp ¼ 60 (green).

This journal is ª The Royal Society of Chemistry 2013
B Reversible adsorption and particle sorting

The existence of the free energy maximum has important
consequences: it enables reversible adsorption and slow release
of the colloids, as well as particle sorting according to their size.
The adsorption and release can be controlled by varying either
the external potential or the graing density. Fig. 3(a) shows the
probability distributions for colloids pulled by a constant
external force g 0 ¼ 3 into polymer layers characterized by
disordered graing with varying graing densities r. In the
absence of the polymer layer a colloidal particle would sediment
under the constant force with the barometric height prole
(black solid line). At small graing densities the stable free
energy minimum is at the surface (red and green lines). Inter-
estingly, in such a case, the colloid is conned closer to the
surface than in the absence of the polymer layer24 (see the inset,
Fig. 3(b)). This can play an important role in systems with
diffusion-limited interactions: enhanced connement of parti-
cles increases their meeting probabilities and thus the reaction
rates. In ref. 12 the effect of a polymer brush on the protein
folding process has been reported, which can be quite well
understood in light of our ndings. For very dense graing
(orange solid line in Fig. 3), the particle cannot penetrate the
brush, while for the intermediate values we observed a bimodal
height distribution (blue solid line): the colloid abruptly
changes from the adsorbed to the released state and is not likely
to be found in the middle of the layer. Both the graing density
r and the magnitude of the external force can be manipulated
by varying the size of the colloids. In Fig. 4 we plot the total free
energy and height distribution for colloids of three different
sizes in the gravitational eld. The smallest particles gather on
top, the largest ones sediment, while the medium-size colloids
are distributed in a bi-modal way. This single-colloid picture
also governs the density proles in dilute systems as seen in the
simulation snapshots in Fig. 4(c). The results can therefore be
used to design a practical particle-size sorting application or to
prevent clustering in solutions.

The free energy barrier height scales with s2, while in the
case of gravity, the external force scales with the particle volume
Fig. 3 (a) Normalized probability distributions p(z) ¼ exp(�bF(z))/
Ð
exp(�bF(z))

dz for lp ¼ 40, g0 ¼ 3 and various grafting densities r ¼ {0, 1, 2, 3, 4}. (b) The mean
distance of the centre of the colloid from the surface z as a function of the grafting
density r at various parameters lp and g0 . Due to the hard-core of the colloids, the
lowest accessible distance is z ¼ 0.5. The dotted lines are guides for the eye.

Soft Matter, 2013, 9, 5565–5571 | 5567
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Fig. 4 (a) Total free energy of sedimenting colloidal particles obtained by simu-
lations at lp ¼ 40 and r ¼ 1.0 for silica colloids with three sizes: s1 ¼ 0.67 mm (red
line), s2¼ 1.00 mm (black line), and s3¼ 1.33 mm (green line). Respectively, g 0

2¼ 2.0
(corresponds to micrometer sized silica particles in water), g 0

1 ¼ 0.40 and g 0
3 ¼ 6.3

(the grafting density is equal in all three cases and defined as r ¼ Np/s2
2). The

dashed lines represent the insertion free energy Fp(z). (b) Normalised height
distribution P(z) f e�bF(z) for the same system. The histograms illustrate the prob-
ability of finding the colloids adsorbed to the surface or above the brush (left set of
histograms: z < Rg and right set: z > Rg). (c) Snapshots fromMonte Carlo simulations
of dilute colloidal suspensions under conditions corresponding to (a) and (b).
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(s3). Therefore, larger particles will preferentially sediment on
the surface. In case other types of external forces are applied
that do not depend on the particle size (this is the case for, e.g.,
osmotic gradients), the quadratic scaling Fmaxf s2 results in an
inverted size selectivity: at a given value of the pulling force, only
sufficiently small nano-particles will penetrate, a scenario
particularly important in biology. The size-selectivity for electric
eld driven insertion might be much less pronounced than in
the case of gravity, since the electric charge typically scales with
the particle surface (s2), which cancels out with the barrier
height scaling. It must be noted that electromagnetic forces
would also induce particle interactions, thus deviating from the
hard-sphere model used in this work.
Fig. 5 Cluster growth as a function of the number of colloids (chemical
potential) in the system. The sequence on ordered (left-hand side) and disordered
(right-hand side) surfaces is depicted. When the number of inserted colloids is
small, “pyramid” and “table-top” structures are formed on disordered and
ordered surfaces, respectively. Adding more particles, in both cases “critical”
clusters with uniform vertical profiles spanning the polymer layer are formed. The
number of blobs per chain is lp ¼ 40, the anchoring density r ¼ 4.0, g0 ¼ 6.0. The
chemical potentials (m) and number densities (per unit area) of colloidal particles
(n) corresponding to the three rows of snapshots are: (top) bm1 ¼ 41, ncolsq ¼ 0.54,
ncolrnd ¼ 0.82; (middle) bm2 ¼ 46, ncolsq ¼ 1.91, ncolrnd ¼ 1.98; (bottom) bm3 ¼ 51, ncolsq ¼
3.20, ncolrnd ¼ 3.23.
IV Insertion of multiple colloids

When many colloids are inserted, the polymers mediate effec-
tive many-body interactions among them and the insertion free
energy in general depends on the positions of all particles. To
explore such multi-particle systems we have performed Grand-
canonical Monte Carlo simulations with colloidal particles
coupled to a reservoir with a xed chemical potential m at
various polymer graing densities, chain lengths, particle
concentrations and external forces. We started with empty
polymer layers and slowly added particles from the reservoir.
The attempted insertions were at random positions. However,
most accepted insertions were on top of the brush and the
colloids later diffused into the layer. At large r the system is
frequently trapped in metastable states and the observed
5568 | Soft Matter, 2013, 9, 5565–5571
structures depend on the rate of the attempted insertions. At
high rate, colloids can form a layer on top – compressing the
polymer layer and creating large barriers for any colloid to
penetrate. For slow-enough insertion, the colloids inserted on
top have enough time to explore the free energy landscape and
the system can reach the thermal equilibrium.

At any given value of the external eld strength g 0 and
polymer size lp, there is a “critical” value of the graing density
r ¼ r0, at which the external pressure is balanced by the
repulsion of the polymers. The colloids can only penetrate the
polymer layers with small-enough graing densities r < r0. The
insertion of multiple colloids into a polymer layer is a many-
body problem: when one is inserted, it compresses the polymers
and increases their effective density that is felt by the next
colloid. In our simulations, m controls the equilibrium number
of colloids within the layer. Note that, due to a constant external
force, the chemical potential of inserted colloids depends
linearly on their height; we chose to dene the chemical
potential at the bottom surface (z ¼ 0). For small m, the pene-
trating particles form clusters at the bottom surface that ”grow”
towards the top of the brush as m increases. Fig. 5 compares
typical snapshots on disordered and ordered surfaces. At small
m there is a difference: the shape of the clusters above the
ordered surfaces is narrower at the bottom (resembling a table-
top) due to the strong repulsion of colloids from the surface,
while in the case of disordered graing the local free energy
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 Phase behavior as a function of the polymer grafting density and the
external pressure. Various lateral patterns are depicted by symbols: isolated
towers (blue circles), “walls” (blue triangles), percolating structures (red dia-
monds) and inverted towers (red squares). The black lines separating the phases
are lines of constant surface coverage h. The white lower region is “super-critical”:
no colloids penetrate the brush. The grey-shaded region depicts the regime
where the colloids do penetrate but the effective polymer density is too small to
induce particle ordering. The extent of the fluid region depends on the physical
parameters, especially on the colloidal excess density and size. Presented here is
the case of s ¼ 1 mm silica colloids in water; for smaller colloids the boundary of
the fluid region would shift upwards. Top-view snapshots from the simulations
displaying the lateral morphology are shown at the side and marked by the same
symbols. The critical density is r0 ¼ 6.0 with g0 ¼ 6.0, lp ¼ 40.
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minimum enables pyramid-like structures. In both cases,
however, similar structures emerge as m is increased: clusters
with a uniform vertical prole are formed – spanning the brush
from bottom to top resembling straight cylindrical towers. Once
such towers reach the critical conditions for fully loaded layers,
increasing the chemical potential further leads to accumulation
of colloids on top of the layer.

The maximum amount of colloids that can be inserted into a
layer depends on the graing density: it is zero at the r$ r0 and
grows linearly with decreasing density. Once the maximum load
is achieved, the average density of polymers in the space around
the colloids equals the critical value, regardless of the graing
density r. Consequently, the thickness of a fully loaded layer
should not depend on the graing density. Insertion free energy
scales approximately linearly with the brush graing density
(see Fig. 2 and a discussion in ESI†), so the polymer pressure
should also scale approximately linearly with the graing
density. External (hydrostatic-like) pressure scales linearly with
the strength of the force eld g 0 and brush height hb, the
balance of pressures gives

r0 ¼ khbg
0. (5)

The proportionality constant k in general depends on the
solvent properties and the polymer and colloidal interactions.
In our model, k is dened by the choice of the interaction
potentials, which represents hard-sphere colloids and self-
avoiding walk polymers. From the simulation data (see ESI†), we
obtain kSAW z 0.11. In experiments, as long as they are in the
good solvent regime and there are no specic colloid–colloid or
colloid–polymer interactions, the value of k should be similar.
For large-enough external forces, the value of the critical effec-
tive density is well in the brush scaling regime. Therefore, the
height of the fully loaded layer is expected to scale as hb f lpr0

n

with the exponent n ¼ 0.35 for self-avoiding chains.4 Using eqn
(5) this leads to an interesting scaling relationship for the fully
loaded brush height:

hbflp
1

1�nðg0Þ
n

1�n ¼ lp
1:54ðg0Þ0:54: (6)

From the simulations such scaling is roughly conrmed.
Insertion of colloids can thus potentially be used to control the
thickness of polymer brushes: experimentally, adding an
excessive amount of colloids and washing off the ones above the
brush could be attempted.

Given the uniform vertical proles observed in the colloidal
clusters (Fig. 5), the particle load is directly correlated with the
colloidal surface coverage h of the two-dimensional horizontal
cross-sections:

hhScol=S ¼ 1� r

r0
; (7)

where Scol/S is the fraction of the area on the snapshot (see, i.e.,
top-view snapshots in Fig. 6) covered by the (red) colloids. Once
we know the critical density r0¼ kg 0hb in the specic system, we
can predict the colloid surface coverage as a function of the
polymer graing density. This can be applied for surface char-
acterization in experiments where the polymer graing density
is difficult to determine.
This journal is ª The Royal Society of Chemistry 2013
V Lateral patterns

With the simple arguments presented above we can explain the
colloidal surface coverage for various parameters. In order to
discuss the lateral arrangement, however, we need to go beyond
the simple picture and consider two major physical mechanisms.
The rst mechanism is the polymer–colloid separation, which is
due to the entropic restriction on polymer congurations near
colloids, and favours the macro-phase separation. The separation
is spatially limited because of the xed graing points. The two
opposing mechanisms result in various nite-size lateral patterns
with a well-dened length scale. In Fig. 6 we present the phase
diagram as a function of the graing density r and the critical
density r0 f g 0hb. We have investigated both ordered and disor-
dered surfaces and observed no important differences in the
lateral morphology. Different structures observed in the simula-
tions are depicted by symbols and their phase boundaries are
approximately marked by the solid lines of constant colloidal
surface coverage h. At large graing density (low h), the colloidal
clusters are isolated circular towers, upon reducing r they elongate
into wall-like objects, percolating structures, and nally inverted
towers at very low r. The morphologies are quite robust. For
parameters in Fig. 6, the characteristic length-scale is L0 z 5s.
Interestingly, L0 does not depend on the graing density but scales
with lp and is roughly equal to half of the brush height, L0 z hb/2.

In order to theoretically understand the micro-phase separa-
tion leading to these various patterns we consider two mecha-
nisms governing the stability of colloidal clusters. Based on the
Soft Matter, 2013, 9, 5565–5571 | 5569
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Fig. 7 The typical width (black line) and the optimal aspect ratio a (red line) as a
function of the surface cross-section of the clusters predicted by minimizing the
free energy eqn (9) assuming Cex ¼ 4.0kBT/s, Csq ¼ 2.4kBT/s and g ¼ 0.2s. The
smallest layer-spanning clusters are isotropic towers with the width of L0 z 4.6s,
while clusters larger than that form elongated walls. Clusters smaller than hbL0
(shaded region) are not layer-spanning in the simulations.
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simulations, the clusters are assumed to be vertically uniform and
spanning the entire polymer layer. The polymers are excluded
from the volume occupied by the colloids, which increases their
effective density in the available space to the critical density r0.
We will specically focus on the transition from symmetric towers
to the elongated wall-like clusters. The towers have a circular
cross-section with radius r. For simplicity we assume that a “wall”
is composed of the middle part of length l with a rectangular
cross-section and two semicircular ends (radius r). A generalized
cluster is characterized by the width 2r and the aspect ratio ah 1
+ l/2r (a ¼ 1 for the towers and a > 1 for the walls).

The rst contribution to the free energy penalty is the
“excluded volume” term Fex. We assume that the polymers are
excluded from the volume occupied by the cluster and from an
additional “depletion” layer with the thickness g around it –
modelling the entropic penalty of conning the polymer
congurations near a solid object. The free energy penalty due
to the excluded volume is proportional to the total volume
inaccessible to the polymers:

Fex/kBT ¼ Cexr0hb[r
2fa + gr( fa + p)]. (8)

where hb isa towerheightwhich isequal to thebrushheight andr0
is the critical density, which is the density of the polymers
surrounding the clusters in the case of fully loaded polymer layers.
For clarity, we have dened the expression fa h p + 4(a � 1). The
thickness of the depletion layer g will in general depend on the
polymerdensityandshouldbeabout the radiusofdeGennesblob:

gz
1

2
ffiffiffiffiffi
r0

p . The proportionality constant r0Cex species the free

energy penalty per unit volume for inserting a cluster into the
brush. It can be determined from the insertion free energy plots
in Fig. 2. The typical value for the parameter regime in our work is
Cex z 4kBT/s (for details see ESI†). The excluded volume contri-
bution favorsmacro-phase separation of colloids and polymers in
order to minimize the depletion penalty.

The second contribution to the free energy penalty is the
“squashing” term Fsq, an elastic-like term that measures the
entropy loss of the parts of the polymer chains squashed
beneath the cluster. The elastic penalty is assumed to be
proportional to the length of the squashed chains, e.g. kBT per
squashed de Gennes blob. We also assume that the polymer
chain extends radially (with respect to the center of tower) from
its graing point in order to minimize the squashed length. For

the towers, Ftow
sq ¼ Csq

Ðr
0
2prr0ðr � r0Þdr0 ¼ Csq

pr

3
r3, where Csq is

a constant that species the squashing entropic penalty per unit
length of a chain, which is (see ESI†) CsqzkBT

ffiffiffiffiffi
r0

p
z2:4kBT . The

total free energy penalty F ¼ Fex + Fsq for a small number N of
generalized clusters is

F

Nr0kBT
z
Csq

6
r3½3fa � p�

þCexhb
�
r2fa þ grð fa þ pÞ�: (9)

Minimizing eqn (9) with respect to N, r and a subject to a
constraint of xed total colloid area, Scol ¼ Nr2fa, we obtain the
5570 | Soft Matter, 2013, 9, 5565–5571
optimal number, size and shape of the clusters (Fig. 7): at small
cluster volumes hbScol, a single tower with circular cross-section is
formed. The theory predicts that the width of the circular tower
grows from zero to L0z 4.6swith an increasing cluster volume. In
reality, clusters thinner than L0 are not layer-spanning (see Fig. 5)
and we only expect to observe circular layer-spanning towers of
width L0. Larger clusters then elongate into wall-like objects –

keeping their width constant. The theory correctly predicts the
characteristic length scale L0 and the shape of small clusters.

Deriving the nal expression, we made two approximations.
First, we assumed r z r0. While this assumption is valid for
isolated clusters (h/ 0), it does not hold at larger colloid lling
fractions. It overestimates the squashing term and consequently
favors circular towers over elongated walls. The second
approximation is the assumption that the effective polymer
density is equal to r0 everywhere in the interstitial space
between clusters. This is not strictly true since polymers are
anchored and the blob density should be higher near the clus-
ters than further away. The approximation neglecting this fact
favors elongated over circular clusters. Our hand waving argu-
ment is that the two effects partially cancel out – extending the
validity of eqn (9) to nite values of h. The good agreement of
the theoretical predictions with simulations at small values of h
supports this argument. To quantitatively predict the stability of
percolated structures at large h, however, a more rened
approach, explicitly taking into account the two corrections
mentioned above, would be needed. The micro-phase separa-
tion happens when the squashing constant Csq is positive. If, on
the other hand, anchoring points were mobile on the surface,
the polymers would not get squashed because they could simply
escape from beneath the clusters. This is equivalent to setting
Csq ¼ 0, where the theory predicts r / N, e.g. a macroscopic
phase separation. This was indeed observed in the simulations.

VI Conclusion

Our results provide insight into collective ordering of particles
in polymer layers, which is of key relevance for understanding
This journal is ª The Royal Society of Chemistry 2013
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various biological processes, and to design novel materials and
applications. We predict that graed surfaces can be efficiently
used as a sorting device for polydisperse particles or particle
aggregates, as well as to control the rates of chemical reactions.
A possible physical realization of our model is thin metallic
lms with metal-coated micro-particles pulled into graed
layers by gravity. The collective ordering of colloids is governed
by the interplay between themacro-phase separation and elastic
deformation of the polymer layer. The resulting patterns with
morphologies reported in this work are expected to have unique
mechanical, charge or heat transport properties. If mechanical
stress can be applied to stretch or bend the substrate, the
graing density and the morphology of the emerging structures
can be externally manipulated, which opens up new possibili-
ties of designing responsive applications (e.g. smart glasses25

and miniature sensors26). The observed morphologies and the
theoretical insight should provide useful insight for character-
ization of graed surfaces.
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