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Defect science and engineering of liquid crystals under
geometrical frustration

Takeaki Araki,*a Francesca Serrab and Hajime Tanaka*c

Spontaneous symmetry breaking while preserving flow ability is a remarkable feature of nematic liquid

crystals. When a nematic liquid crystal coexists with a solid, the surface field of the solid tends to anchor

the director direction on the surface: anchoring effects. If geometrical frustration between nematic

ordering and anchoring is strong enough, stable topological defects are formed. Defects in an ordered

state are usually regarded as undesirable features. However, recent studies reveal that defects stabilized

by a topological constraint from the solid surfaces are actually quite useful and open up novel

possibilities for defect engineering of liquid crystals: self-organization of soft matter by defects, memory

effects of topological origin, and control of flow of nematic liquid crystals and colloid motion by

defects. For example, defect reconfiguration accompanying the change in the topology costs a very high

energy far beyond the thermal energy, which overwhelms a typical energy scale in soft matter. This

provides extreme stability for structures assembled by defects and information memorized in defect

topology. Furthermore, effects of topological defects can easily be removed perfectly by a nematic-to-

isotropic transition, which provides switchable functions. Defects also affect the motion of colloids

immersed in a liquid crystal and flow behaviour of a liquid crystal. Here we review recent developments

in science and engineering of topological defects in nematic liquid crystals, mainly based on our

numerical simulation studies.
1 Introduction

Liquid crystals have spontaneous orientational order, which
gives rise to elasticity, but the lack of positional order provides
an ability to ow.1 For example, a nematic liquid crystal (NLC) is
a state of spontaneously broken “continuous orientational
symmetry” of the isotropic liquid. Orientational order in NLCs
is described by a tensorial ordering eld.1 Hydrodynamic
Goldstone modes appear as a consequence of the broken
continuous symmetry, restoring the lost continuous symmetry
of the isotropic disordered liquid.2–4 These modes in NLCs are
thermal uctuations of the director about its equilibrium value.
The modes are “massless” and their excitation does not cost any
energy for vanishing wavenumber. This results in large uctu-
ations of the local optical axis, which scatter light very strongly.
This is why NLCs look turbid and milky if there is no external
eld selecting the direction of the director. Another important
consequence of the continuous symmetry breaking is the
appearance of topological defects. Topological defects are
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formed when the orientational eld is strongly distorted and at
defect cores molecules are oriented randomly as in the isotropic
disordered liquid. Topological defects in liquid crystals have
attracted considerable attention in view of analogies to other
systems of spontaneous broken symmetry, such as magnetism,
superuidity, and cosmology.2,5,6 The universality ensures that
NLCs are model experimental systems for physics of topological
defects, since we can easily visualize defects in NLCs.7

Besides the fundamental importance, the coexistence of the
elasticity associated with orientational order and uidity
provides liquid crystals with fantastic dynamical characteristics,
which not only have many technological applications but also
may play important roles in biological functions. In conven-
tional applications of liquid crystals, defects are considered to
be unfavourable as their name suggests. For instance, defects in
a liquid crystal display deteriorate its optical quality. Recently,
however, topological defects have attracted much attention
since they provide interesting applications. For example, a
cholesteric blue phase, in which disclination lines (DLs) are
aligned regularly with a cubic symmetry, is utilized in displays
because of its fast response.8 Also, effective interactions among
colloidal particles mediated by defects fabricate self-assembled
braids.9,10

Topological defects are in general formed spontaneously
upon a symmetry breaking transition from a disordered state,
but the amount of defects tends to decrease with time so as to
Soft Matter, 2013, 9, 8107–8120 | 8107
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Fig. 1 Examples of solid objects opening up possibilities of defect engineering. A
sphere, ellipsoid, and block have Euler characteristics c ¼ 2, whereas a torus has c
¼ 0. A porous material usually has a large negative value of c.
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reduce the total free energy of the system, since the local free
energy density in the vicinity of defect cores is quite high.11

However, topological defects can be stabilized under frustra-
tion. For example, when molecules have strong chirality, the
director eld tends to twist spontaneously. Since the twisted
director eld cannot ll a three dimensional space, exotic
frustrated mesophases stabilized by defects, such as cholesteric
blue phase and twist grain boundary phase, are formed.2,3 In
these cases, frustration is of intrinsic origin.

Connement of liquid crystals in geometries incompatible
with the orientational symmetry also imposes frustration to the
director eld. Interactions between solid surfaces and mole-
cules tend to align the molecules adjacent to the surfaces. When
this anchoring interaction is large enough and the surfaces are
curved incommensurately to the symmetry preferred by
nematic order, stable topological defects are formed. Besides
surface anchoring, a non-uniform electric eld around charged
particles can also induce a sort of anchoring effects and lead to
the formation of stable defects.12

The stability of these topological defects formed by extrinsic
geometrical frustration hasmany interesting features, reecting
its topological origin. For example, the stability is extremely high
due to the constraint coming from the neutrality of topological
charge; in other words, the change in the topology of a defect
structure involves a very high energy barrier, which is far beyond
the thermal energy kBT. Since structures of somatter areusually
stabilized by an energy scale of kBT, interactions stemming from
topological defects are exceptionally strong. This allows us to
construct a very stable robust structure. Interestingly, however,
we can erase defects easily by phase transition from an ordered
state to a disordered state, which provides the switchability of
defect-mediated interactions. Another unique feature originates
from the ability of liquid crystals toow. Interestingly, theow is
signicantly affected by the presence of topological defects,
which elastically interact with solid surfaces. This provides us
withnovel possibilities of controlling the colloidmotion in terms
of the surface anchoring property of colloidal particles and
controlling ow behaviour by using a solid surface topology.
Thus the active use of topological defects in liquid crystals offers
a promising route to “defect engineering” or “defect-based
technology”. In this article, we will mainly review our numerical
studies on NLC systems, in which DLs are stabilized and
entangled to objects imposing anchoring conditions.

This article is organized as follows. In Section 2, we review
the basic knowledge on the stabilization mechanism of topo-
logical defects. In Section 3, we describe interactions mediated
by entangled DLs in colloidal particles immersed in a NLC.
These numerical studies are based on a uid particle dynamics
(FPD) method.13 In Section 4, we show our recent Monte Carlo
studies on the slow glassy behaviour and the memory effect,
which are observed in NLCs conned in porous media.
Although these two systems have so far been discussed sepa-
rately, we discuss them together from the viewpoint of ‘defect
topology’ in a unied manner. In Section 5, we discuss a
dynamical coupling between ow and defects in NLCs, based on
nematohydrodynamics. In Section 6, we will summarize our
paper.
8108 | Soft Matter, 2013, 9, 8107–8120
2 Stabilization of topological defects by
geometrical frustration

Here we describe the basics of the stabilization of defects in
liquid crystals by geometrical frustration. We consider only the
cases where the director eld of NLCs prefers to be aligned
normal to the surface: the so-called homeotropic anchoring.
Since the stability of defects comes from geometrical frustration
between the topology of solid surfaces and the symmetry of
liquid crystals, we rst discuss the topology of solid surfaces.
2.1 Topology of solid surfaces

The simplest topology of the surface is that of a sphere. A rod14,15

or a building block16 are interesting modications of a sphere
since it has orientational axes, which can be coupled with that of
a NLC. However, these are topologically equivalent to a sphere.
There are a number of isolated objects which have nontrivial
topological characteristics such as a doughnut structure. Such
interesting cases of topological colloids have recently been
reported by Senyuk et al.,17 which open up further possibility of
defect engineering. Besides these isolated closed shapes, there
aremany topologicalmanifolds, which can be realized as porous
solid materials. Some of these structures are shown in Fig. 1.

The characteristic length scale of such a structure is also
important. For ordinary anchoring conditions, it should be in the
order of submicrons to microns. Colloidal particles are usually
used for isolated particles. A recent development allows us to
make colloids with various shapes and even patchy particles18,19

with inhomogeneous anchoring conditions.20On the other hand,
bicontinuous porous structures may be formed by phase sepa-
ration, self-organization of surfactants, or bottom-up optical
polymerization techniques. Random porous structures are
formed by using ordinary spinodal decomposition. We can add
volume asymmetry and the resulting surface curvature asymme-
try and/or anisotropy by using viscoelastic phase separation.21

Controlled formation of ordered structures is more difficult.
Templating mesoscopic self-organized ordered structures of
amphiphilic systems22maybeonepromisingway. Applications of
two-photon polymerization are also now under investigation.23
2.2 Stabilization of defect structures of NLCs by a constraint
from solid surfaces

Now we discuss how topological defects are stabilized by
geometrical frustration imposed by the above mentioned
This journal is ª The Royal Society of Chemistry 2013
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structured solids. First, let us consider a spherical particle
immersed in a NLC. If the particle surface imposes the home-
otropic anchoring condition, the sphere behaves as a radial
point defect having the topological charge s ¼ +1 as shown in
Fig. 2(a). To compensate this topological charge, a defect with
s ¼ �1 should be formed.24–26 Two types of defects can satisfy
this condition: a hyperbolic point defect (Fig. 2(a)) and a DL
loop with s ¼ �1/2 (Fig. 2(b)).27 Since defects with positive s
interact attractively with those with negative s, these interac-
tions lead to the formation of defect-particle pairs with dipolar
or quadrupolar symmetry, as shown in Fig. 2(a) and (b). The
latter is called a Saturn-ring defect. Depending on the symmetry
of the particle-defect complex, it further interacts with others;
the former dipolar complexes in Fig. 2(a) spontaneously form
chain-like aggregates which are parallel along the background
orientation.9,26,28 A particle accompanying the Saturn-ring
defect, on the other hand, interacts with others through quad-
rupolar interactions.29–31 Hence, zigzag aggregates or chain-like
ones, the long-axis of which is tilted from the background
director eld, are formed. These effective interactions are well
explained by a theory with far-eld approximations, in which
the particle-defect complexes are treated as separated
objects.26,32 Recently, new interactions among particles in NLCs
have been found.33–41 These interactions are mediated by
entangled DLs, so that they cannot be described simply by the
far-eld approximation. We also numerically discovered a new
stable ‘gure of eight’ conguration.42 In Section 3, we will
provide a brief review on this numerical study.13

Incorporating liquid crystals into cavities, porous materials,
and microuidic devices also leads to the formation of stable
topological defects. In a spherical cavity with strong homeo-
tropic anchoring, for instance, a radial point defect with s ¼ +1
or a loop of DL with s ¼ +1/2 are formed as shown in Fig. 2(c)
and (d).43,44 They are the counterparts of the particle-defect
complexes in Fig. 2(a) and (b). In a cylindrical channel with
strong homeotropic anchoring, one or two DLs run along the
channel.45–47 At a Y-shaped bifurcation, the trajectory is not
uniquely determined, so that the DLs should choose one of the
possible paths. We can easily imagine that defects are arranged
in more entangled complex congurations for more interwoven
networks.43,44,48,49
Fig. 2 Possible defect structures of nematic liquid crystals around a spherical
particle ((a) and (b)) and those in a spherical cavity ((c) and (d)).

This journal is ª The Royal Society of Chemistry 2013
Provided the complete homeotropic condition in cavities,
the argument developed by Stein and based on the Gauss–
Bonnet theorem tells us that the sum of the topological charges
of DLs remaining in a complex geometry has to coincide with a
half of the Euler characteristics of the conning geometry.50

This condition is expressed by the following equation,X
i

si ¼ c=2; (1)

where si is the topological charge of the i-th defect. Here c is the
Euler characteristic of the surface structure. Although the
theorem was originally proved for simple, close surfaces, it was
later extended to complex and open networks,49 with the study
of a system where only point defects were present. However, in
the case of systems of DLs it is not easy to determine the
topological charges of DLs in three dimensional systems;
therefore there are difficulties in exploiting this theorem to
characterize DLs remaining in complex geometries.

It has been reported that a NLC conned in a porous
medium exhibits glassy slow dynamics and memory effect.51–58

The NLCs in porous media have been studied numerically with
a spin model, i.e., Lebwohl–Lasher59 model.54,56,60–64 Since the
effects of the connements were oen introduced by quenched
disorders, i.e., by xing the spins at randomly chosen isolated
lattice sites, the roles of the topology of the porous network have
not been considered explicitly. Our previous study on the
colloid dispersions in NLCs42 invoked the importance of the
connectivity of DLs in porous media. This motivated us to study
the physical mechanism of the slow glassy dynamics and the
memory effect and the roles of topology in these behaviours.
This problem will be discussed in Section 4.

It is also interesting to consider a situation where the char-
acteristic length scale of particles or pore size is very small and
not so different from a defect core size. In such a situation,
defects may be difficult to form. Liquid crystal microemulsions
may correspond to such a case.65 In relation to this, liquid
crystals including nanoparticles and included in nanoporous
materials are also an interesting topic. However, we do not
discuss them in this article.
3 Colloids in nematic liquid crystals
3.1 Theoretical model and simulation method

In this section, we consider colloidal particles suspended in
NLC solvents. There are many interesting topological shapes of
colloids such as doughnuts or knots, but here we consider the
simplest shape, i.e., a sphere. Our model for this part is based
on a coarse-grained description on NLCs.1 The nematic phase is
described with a tensorial order parameter Qab,1 where a and b

represent the Cartesian coordinates, x, y and z. When the
nematic phase is uniaxial, Qab is expressed by using a scalar
nematic order parameter Q and the director vector na as

Qab ¼ 3

2
Q

�
nanb � 1

3
dab

�
: (2)

Then the bulk state of the nematic phase is well described by
the Landau–de Gennes free energy density:
Soft Matter, 2013, 9, 8107–8120 | 8109
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Fig. 3 Simulated defect patterns around a pair of spherical colloid particles. The
spheres represent the particles and the thick lines are DLs, whose topological
charges are s ¼ �1/2: energetically, the two Saturn-ring structure in (a) is
preferred with respect to the ‘figure of eight’ structure in (b). Owing to an energy
barrier between the two configurations, however, once the ‘figure of eight’
structure is formed, it can be kinetically stabilized. (c) A kinetically stabilized
aggregate of seven particles bound by a single-stroke DL. The particles are likely
placed in a plane perpendicular to the background director field.
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fLdG
�
Qab

� ¼ A

2
QabQba � B

3
QabQbmQma þ C

4

�
QabQba

�2

þ L1

2

�
VmQab

�2 þ L2

2

�
VaQab

�2 � D3EaEbQab; (3)

where the repeated suffixes indicate the summation over the
Cartesian coordinates. B, C, L1 and L2 are positive material
constants. A depends on the temperature T and is approximated
as A ¼ A0(T � T*) with A0 > 0. The bulk isotropic–nematic
transition temperature is given by TIN ¼ T* + B2/(27A0C). The
cubic term of Qab represents the rst order nature of the tran-
sition. The fourth and h terms of the right-hand side of eqn
(3) are related to the Frank elastic energy. The last term repre-
sents the effect of an external (electric or magnetic) eld Ea and
D3 is the anisotropy of the susceptibility.

If a NLC is in contact with solid surfaces, the free energy of
the system is written as

F NLC ¼
ð
N

drfLdG
�
Qab

��W

ð
S

dsQabdadb; (4)

where
Ð
Ndr and

Ð
S ds represent the integrals over the volume

lled with the NLC and the surfaces adjacent to the nematic
phase, respectively. The second term in the right-hand side of
eqn (4) expresses the anchoring effect and W is the energetic
cost for the anchoring per unit area. da is the a component of a
unit vector normal to the surface. For W > 0, the director eld
prefers to align perpendicular to the surface, that is, the
homeotropic anchoring we consider in this article. If the
particle positions are xed, one can obtain an equilibrium
director pattern by minimizing eqn (4) with respect to Qab.26,66

Since interactions between particles mediated by the elas-
ticity of the nematic solvent intrinsically have many-body
nature, it is very difficult to describe the forces acting on the
particles analytically. Therefore, numerical minimization of the
free energy that incorporates the development of the particle
position has been employed to study the dynamics of colloidal
dispersion in NLC solvents.41,67 We also developed a numerical
method for simulating the dynamics of colloid–NLC suspen-
sions42,68 including hydrodynamic effects by introducing Qab to
a ‘uid particle dynamics (FPD)’ method.13,69 Our method
enables us to simulate full dynamics under a coupling among
particles, nematic orientational order and ow eld, which are
the three relevant physical variables to describe this system.42,68

The detailed simulation method is described in ref. 42.

3.2 Binding of colloidal particles by topological defects

Now we consider nontrivial defect-mediated interactions
between colloid particles immersed in a NLC. Following an
argument based on the Frank elastic energy, the conguration
of the accompanied defect transforms from the Saturn-ring
(Fig. 2(b)) to the dipole (Fig. 2(a)) as the size of the particle is
increased.26 This prediction was conrmed experimentally.70 In
this article, we consider only the situation where each particle
has a Saturn-ring defect if it is isolated.

3.2.1 Binding of a particle pair. First we consider two-body
interaction. We initially place two particles of radius a ¼ 12 (see
ref. 42 for the denition of the unit length) on the x axis with an
8110 | Soft Matter, 2013, 9, 8107–8120
interparticle separation of Dx ¼ 26. We use a pre-nematic state
Qzz¼�2Qxx¼�2Qyy¼ 0.1 as an initial condition forQab in order
to orient thebackgroundnematic order along the z axis. Then,we
quench the system to a nematic phase (A < 0) at t ¼ 0. The
equilibrium scalar order parameter has a value of QB ¼ 0.485 in
the absence of the particles. We also introduce thermal orien-
tational uctuations dQab, whose amplitude is |dQab| ¼ 10�2.

Aer equilibration (t ¼ 500tQ), where tQ is the characteristic
rotational time, we found that two topologically distinct defect
congurations can be formed. Fig. 3(a) shows one of these
congurations. In the gure the spheres and thick lines repre-
sent the particles and DLs, respectively. The DLs are detected by
using the isosurface of the elastic energy density fel ¼
L1(VmQab)

2/2 + L2(VaQab)
2/2. Therefore, the thickness of the lines

roughly corresponds to the core size of defects. Here each
particle accompanies a DL loop like an isolated particle
(Fig. 2(b)). The two particles tend to get close to one another,
accompanying bending deformations of the DLs to avoid their
contact. In our previous study, we reported that the angle
between the direction of the background director orientation
and the line connecting the particle centers is about 50�.42 In
our recent simulation without an external eld, we found the
angle to be about 90�, consistent with numerical observations of
Ravnik and Žumer.37 The difference in the angle may, thus, be
due to the effects of an external eld.

In Fig. 3(b), we show the other stable defect conguration.
Here, only a single DL loop having a ‘gure of eight’ structure
remains.42 Since the topology of the DL is different from that of
the other conguration in Fig. 3(a), this ‘gure of eight’ struc-
ture cannot transform continuously into the other one. The DL
loop tends to shrink to reduce the elastic energy cost, but
cannot cross itself because of a high energy barrier for such a
topological change. We can say that the particles are topologi-
cally arrested by the single closed DL loop. The particle centers
sit on a plane perpendicular to the background director eld.
Interestingly, this defect structure has a chirality, although all
the components do not have their own chiralities.39,42 The two
types of chiral structures are energetically degenerated and can
thus be formed with an equal probability.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 The aggregation process of particles immersed in a NLC. The volume
fraction of a particle is �f ¼ 3.72%. At t ¼ 0, we quenched the system from an
isotropic phase to a nematic phase.

Review Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ay
 2

01
3.

 D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 2
:0

1:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
We conrmed that the stored elastic energy of the congu-
ration in Fig. 3(a) is lower than the sum of the stored energies
for two isolated particles. Since there is no energy barrier
associated with this transformation, isolated particles can
smoothly form the conguration in Fig. 3(a). On the other hand,
the stored elastic energy of the ‘gure of eight’ defect structure
in Fig. 3(b) is much higher than that of the conguration in
Fig. 3(a).42 In this sense, the ‘gure of eight’ structure is a
metastable conguration. Once this structure is formed,
however, it remains as it is due to a large barrier associated with
the discontinuous topological change in the defect structure,
which is inevitably required for the transformation. So, we may
say that this structure is not selected energetically, but kineti-
cally. In other words, we need to form this structure from an
isotropic state of NLC. Indeed, this structure can be created by
melting transiently the nematic phase around the particles with
laser heating in experiments.36 We estimated the energy barriers
to be of the order of 102 to 103kBT,42 indicating that this particle
binding by a disclination line is extremely strong.

Shortly aer our nding but independently, Žumer, Muševič
and their coworkers reported similar topologically arrested
structures.35 They also found other stable congurations such
as ‘gure of omega’ and ‘entangled point defect’.36–40 As
described below, since this effective interaction works for more
than two particles, well-fabricated colloid patterns can be
created.39 This method attracts considerable attention as a
novel way to form extremely stable colloid assemblies. Before
these ndings by using a coarse-grained model, Guzmán et al.
studied a pairwise interaction between particles by molecular
dynamics simulations.33,34,71 They found that the two Saturn-
ring defects coagulate to form three ring DLs with two nodes.
The particles tend to align perpendicularly to the background
director and this conguration is called ‘entangled hyper-
bolic’.15 In our previous study,42 we mentioned that this
‘entangled hyperbolic’ structure was observed only transiently
in the early stage of the phase ordering and transformed to the
other metastable congurations shown in Fig. 3. Similar argu-
ments have been made by Ravnik and Žumer.37 About this
discrepancy, Hung pointed out that the defect conguration
may depend on the particle size and the anchoring strength.
The ‘entangled hyperbolic’ conguration is stable for a pair of
small (nm-sized) particles.15 This suggests an interesting
possibility that the particle size has a strong inuence on defect
organization.

The Saturn-ring associated with a spherical particle has a
topological charge s¼�1, as it can continuously transform into
a single hyperbolic point defect. Moreover, it is intuitive to think
that the spherical particle acts in a uniform medium as a point
defect of charge s ¼ +1 and therefore it must be associated with
a defect that may annihilate its extra charge. Analogously, two
spherical particles have a total charge s ¼ +2, therefore the
‘gure of eight’ loop must have s ¼ �2 although it is not
knotted. This was puzzling. Recently, Čopar and Žumer pointed
out that this can be naturally explained by considering the
three-fold symmetry of a disclination line.72,73 We oen use a
line to express a disclination line, but the important informa-
tion on the tensorial nature of the order parameter eld is
This journal is ª The Royal Society of Chemistry 2013
missing in this representation. Actually, the cross-section of a
DL of s ¼ �1/2 has the threefold symmetry due to the
arrangement of the LC molecules around it. In order to calcu-
late the topological charge, thus, it is convenient to consider a
DL as a ribbon, characterized by the self-linking number, which
includes both the writhe of the ribbon in space and also the
twist around its own axis.72,74 By considering the twist of the DL,
it was shown that the entangled defect congurations such as
‘gure of eight’ have a topological charge s ¼ �2 (s ¼ �Np for
many particle systems).

3.2.2 Simultaneous binding of many particles by a single
stroke disclination line. The effective interaction mediated by
entangled DLs can work also for many particle systems.37–40,42

We showed that we can form planar aggregates of particles
bound by a single-stroke DL as shown in Fig. 3(c).42 This inter-
action depends on the topology of the DL. This means that it is
intrinsically non-additive and cannot be expressed by a poten-
tial. Fig. 4 shows the aggregation process of many particles
immersed in a NLC aer being quenched from an isotropic
disordered state at t ¼ 0 without any external eld. The system
contains Np ¼ 400 particles in a cubic lattice space (1283). The
particle diameter is 2a ¼ 7.2, so that the volume fraction of the
particles is �f ¼ 3.72%. Just aer the quench, nematic ordering
takes place. Local selection of orientation leads to the formation
of DLs and their length quickly decreases with time. Since the
particle motion (conserved dynamics) is slow compared to the
defect motion (non-conserved dynamics), some defects are
trapped by particles in the early stage. At this stage, most defects
are strongly elongated and entangled in a complicated manner.
DLs, which are shared by particles far apart, shrink to lower the
elastic energy, inducing hydrodynamic motion of particles.
Particles bound by a defect can interact even when other
particles are located between them. Shrinking of defects while
keeping their connectivity results in the formation of clusters of
Soft Matter, 2013, 9, 8107–8120 | 8111
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Fig. 6 The time development of the particle displacement DR(t). We can see that
particles tend to move over larger distances for a weaker external field.
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the particles bound by DLs42 and chains.37 In this way, topo-
logically arrested metastable structures are kinetically selected
as a consequence of orientational ordering from an isotropic
state, despite them being in a high energy state.

Now we consider effects of an external eld on the behaviour
of defects. Fig. 5 shows the colloid distributions under (a) Ez ¼
0.0 and (b) Ez ¼ 0.1 at t ¼ 2000tQ. The particle volume fractions
are �f ¼ 0.93%, 1.86%, and 6.79%. In the absence of an external
eld, DLs are likely to be disconnected at the lower volume
fraction. In the kinetic process, the elastic force (or tension)
acting on a DL arises not only from the line itself, but also from
a viscous drag force to particles trapped. When an elongated
defect line cannot support the tension, it is disconnected in the
process of shortening. Then, isolated Saturn-ring defects are
formed around individual particles. Such particles then interact
with each other via connectivity-free interactions as shown in
Fig. 3(a). We note that the population of such isolated Saturn-
ring defects is higher for a more dilute dispersion. This is
because DLs are more strongly stretched because of larger
average interparticle distances, which leads to more frequent
disconnections of DLs.

The defect pattern depends not only on the particle
concentration, but also the way of preparation. When a sample
is quenched into a nematic phase under an electric eld as
shown in Fig. 5(b), the director eld is quickly aligned along the
eld in the early stage. This avoids defect entanglements. Then,
no percolated DLs remain; DLs are localized around each
particle, forming Saturn-ring defects for each particle. Fig. 6
plots the time development of the average particle displacement
DR, which is calculated as

DR2ðtÞ ¼ 1

Np

X
i

X
a¼x;y;z

�
Ri

aðtÞ � Ri
að0Þ

�2
; (5)

where Ri
a is the position of the i-th particle. The particle

displacement is larger under a weaker eld. It is evident that the
connectivity of the DL pattern is crucial in accelerating the
aggregation dynamics. The interaction potential between iso-
lated particles accompanying Saturn-ring defects is approxi-
mated by a quadrupole potential decaying as |Ri � Rj|�5,32 so
Fig. 5 Snapshots of colloid distributions in NLCs at t ¼ 2000tQ under (a) Ez ¼
0 and (b) Ez ¼ 0.1. The particle volume fraction is 0.93%, 1.86% and 6.79% from
the left to right panel.

8112 | Soft Matter, 2013, 9, 8107–8120
that the average displacement becomes larger for a higher
volume fraction for Ez ¼ 0.1. On the other hand, DR decreases
with an increase in the volume fraction for Ez ¼ 0. This is
because the large average displacement caused by entangled
DLs is more suppressed for a higher volume fraction.

Finally, we mention a very interesting study by Wood et al.,
which shows colloidal gel formation by defect binding. They
reported experimental and numerical observations on a
colloid–NLC composite.41 They measured its mechanical
strength and found that storage modulus is signicantly
increased when remaining DLs are percolated over the sample.
A temperature quench from an isotropic phase to a nematic
phase is not enough to synthesize composites of large elasticity.
In order to obtain a percolated sample, or recongure defect
structures, one has to apply strong shear to the sample.41 They
also showed that heating above the clearing point suddenly
transforms a gel to a liquid, which allows an instantaneous
transformation from a gel to a liquid and the resulting disap-
pearance of the elasticity. It may be worth noting that there is a
difference in the processes of phase ordering and aggregation
and in the percolation threshold between the numerical
observation of Wood et al. and ours, which might be of tech-
nical origin.
4 Nematic liquid crystals in porous media

Next we consider a structure of more complicated topological
characteristics. In porous media such as random nano-
structures of silica gels, non-ergodic memory effects have been
observed.51–58 Long-ranged elasticity and anchoring to solid
surfaces make effects of a spatial connement of NLCs by solids
very signicant. For example, for a NLC sandwiched by two
parallel plates imposing homeotropic anchoring, the director
eld can be aligned uniformly without defects. Hence, the
system memorizes the unique conguration, which is selected
to minimize the elastic energy. If this stable pattern is perturbed
by an external eld, the director eld quickly recovers the
original state aer the removal of the eld. In porous networks,
on the other hand, the global nematic order cannot go back to a
uniquely determined state unlike the above case and long-lived
remnant order remains even aer switching off the external
eld.
This journal is ª The Royal Society of Chemistry 2013
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Such memory effects and slow glassy dynamics have been
studied theoretically and numerically.54,56,60–64 In these studies,
point-like defects which anchor the director eld are introduced
to mimic a random surface eld. However, this approach
cannot deal with the topological characteristics of a solid
matrix. We have recently succeeded in studying effects of solid
matrix topology on memory effects in collaboration with Bellini
and Buscaglia.48 By means of Monte Carlo simulations consid-
ering ‘geometrical frustration’, we found that DLs topologically
concatenated to the solid networks play signicant roles in the
memory effect and thus the memory effect crucially depends on
the relationship between the topological characteristics of solid
surfaces and the symmetry of an external eld.

We employed lattice-basedMonte Carlo simulations with the
following Heisenberg model like Hamiltonian for spin nka:

H ¼ �J
X

hk;li˛NS

�
nka$n

l
a

�2 �W
X
k˛S

ðna$daÞ2 �
X
k˛N

�
nka$Ea

�2
(6)

The lattice space is partitioned into three portions in terms
of pore structures. N , S and P represent the space lled with
NLCs, solid objects and surfaces between them. The rst term
of eqn (6) describes the isotropic–nematic transition.59 In a
bulk, the transition temperature is TIN y 0.75J. The second and
third terms represent the effects of the anchoring and external
eld Ea. A positive W imposes the homeotropic alignments at
the surfaces. We carried out simulations with heat bath
sampling at temperature T.48 Here, we set W ¼ J ¼ 1.
Fig. 7 Time evolution of the global nematic order along the z axis. NLCs filled in
(a) RPM and (b) BC are cooled at T¼ 0.1 without an external field up to t¼ 105tMC.
During a period (105 < t/tMC < 2� 105), the external fields Ewith several strengths
are applied along the z axis. The resulting temporal changes of QE and QM are
plotted as functions of the field strength E for (c) RPM and (d) BC.
4.1 Memory effects due to a topological constraint from
solid surfaces

4.1.1 Behaviour of a defect structure. To see the essence of
memory effects of topological origin, here we mainly consider a
random porous matrix (RPM) structure and a regular bicon-
tinuous one with a cubic symmetry (BC) as the two fundamental
topologies. RPM is thought to mimic a system that has been
used for experiments, i.e., NLCs in Millipore ltering
membranes.53,56 To assess the importance of the bicontinuous
nature of structures, we also studied a simple cubic array of
isolated spheres that are not in contact (SCn). The radius of the
spheres is set to three lattice mesh, a ¼ 3.

We quench these systems at T ¼ 0.1(<TIN) and equilibrate
them without a eld (‘zero-eld cooling’). For the porous
matrices we run simulations up to the time t ¼ 105tMC. The
physical meaning of the temporal evolution of Monte Carlo
simulations is sometimes a matter of debate. However, the
method has been known to be very powerful and useful for
studying glassy systems with slow relaxation, the dynamics of
which is dominated by activation processes overcoming a free
energy barrier.75,76 The zero-eld-cooled states are locally well
ordered because their local nematic order parameter Q is
approximately the same as that of the bulk sample QB. At the
same time, the systems are globally isotropic, and hence the
tensorial order parameter averaged over the whole sample is
hQabi z 0. To these disordered states, we apply an electric eld
pulse along the z axis for a certain duration (105 < t/tMC # 2 �
105) and then switch it off at t ¼ 2 � 105tMC (or 1.5 � 105tMC).
This journal is ª The Royal Society of Chemistry 2013
Fig. 7(a) and (b) plot the temporal change in the nematic order
parameter along the eld of NLC, Q(t) ¼ hQzz(t)i, for RPM and
BC, respectively. When the electric eld is applied, the director
is forced to be aligned along the eld and the global order
develops along that direction. The degree of the global ordering
depends on the eld strength. Upon removal of the eld, the
system relaxes to a metastable state with an intermediate degree
of order, which we call a remnant order QM (see below for its
precise denition). This is a clear indication that the system has
a capability to memorize the eld-induced order. Fig. 7(c) and
(d) show the eld-strength dependences of the order parameter
in the presence of the eld, QE, and QM, respectively, for RPM
and BC. We can clearly see that BC possesses a higher memory
capability than RPM; the difference between QE and QM for BC,
which is a measure of the loss of memory, is much smaller than
that for RPM.

In Fig. 8, we show patterns of DLs aer the zero-eld cooling
at t ¼ 105tMC in the three employed porous matrices. We visu-
alize DLs inside the nematic domain, following the method
described in ref. 77. Aer zero-eld cooling, many DLs wander
through the pores without contacting the surfaces even aer a
long annealing time for all the matrix structures. Here, the
defect trajectories seem to be randomly entangled. The DLs
form closed loops without edges and some of them are
concatenated to the porous network. In Fig. 8, some DLs appear
to terminate, but actually they are connected with DLs at the
opposite side because of the periodic boundary conditions.48

Aer an application of a strong eld E¼ 0.5 along the z axis, the
defect pattern in BC transforms into a regular pattern consist-
ing of loops laying perpendicularly to the z axis, whereas that in
RPM changes to a different, but still randomly entangled
conguration.

Obviously, frustration imposed by surface anchoring plays a
crucial role in the memory effects described above. An enor-
mously large number of possible topological states of a
conned NLC suggests an apparent analogy to well-known
frustrated systems such as spin and structural glasses, in which
Soft Matter, 2013, 9, 8107–8120 | 8113
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Fig. 8 Patterns of disclination lines (DLs) in three types of porous matrices: A
randommatrix (left), a bicontinuous pattern with a cubic symmetry (center) and a
simple cubic array of sphereswithout contact (right). Top row: the structures of the
porous structures employed. The second row: configurations of DLs after zero-field
cooling, observed at t ¼ 105tMC. The third row: configurations of DLs under an
external field. Bottom row: configurations of DLs observed at t ¼ 3 � 105tMC. We
apply a strong field (|E| ¼ 0.5) along the z axis from 105tMC to 2 � 105tMC.

Fig. 9 The long-time relaxation process of the global nematic order after the
removal of a strong field for (a) RPM and (b) BC with various pore sizes l . In RPM, a
very slow logarithmic decay mode is observed (see eqn (8)).
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an exponentially large number of metastable states are sepa-
rated by large energy barriers. The origin of frustration of our
system is, however, quite different from that of these glass
systems. For example, typical spin glasses are intrinsically
frustrated because of the impossibility to simultaneously
minimize coupling energies. In the case of conned NLCs, a
topological constraint due to connement provides frustration
to an otherwise well-behaved system. The frustration is intrinsic
to the system's Hamiltonian in the former, whereas extrinsic in
the latter. This leads to a marked difference in the degree of
order in a mesoscopic length scale: while the nematic order is
well dened locally, at the length scale of the pores it is severely
affected by geometrical frustration because of the impossibility
to simultaneously match all the anchoring constraints without
forming topological defects. Each metastable state can be
characterized by its trajectory and twist of DLs wandering
through the maze of a porous system. This geometrical frus-
tration offers a possibility to design conning geometries that
optimize the macroscopic function of the metastable states:
‘geometrical functionalization’ of materials.

4.1.2 Slow glassy dynamics. Inspection of the defect
trajectories indicates that in complex geometries the onset of
remnant order is associated with a change in the way DLs are
concatenated to the solid matrix. In the case of a weak eld, DLs
respond elastically to the eld without changing their topology.
8114 | Soft Matter, 2013, 9, 8107–8120
Aer the eld removal, DLs relax back to their original trajec-
tories. Hence, the remnant orders QM are vanishingly small as
shown in Fig. 7(c) and (d). On the other hand, an application of
a stronger external eld supplies enough energy to recongure
the DL trajectories, producing different closed loops through
the connective paths of N . In the limit of a very strong eld, DLs
are forced against the surface regions for which the normal lies
in the x–y plane. The application of a strong eld may even
break the anchoring. However, as the eld is removed, the
normal anchoring is recovered and DLs relax to the local elastic
energy minimum while preserving in large part of the concat-
enation with the solid network forced by the eld, thus keeping
some memory of the eld effect. This leaves the system in a new
aligned stable state different from the zero-eld-cooled disor-
dered stable state. It is the structure of a porous matrix that
determines the degree of the remnant order in the new aligned
state, i.e., what fraction of DLs is preserved aer the removal of
a eld. In regular porous media like BC, we can realize a situ-
ation where the DLs are well aligned aer a strong eld is
applied along a compatible direction. Since such a loop
conguration (Fig. 8) is energetically favoured and thus
uniquely formed in BC, the remnant order reaches a well-
dened plateau for strong external elds as shown in Fig. 7(d).

Interestingly, the relaxation of the orientational order of
NLCs in porous media crucially depends on the geometry and
topology. Fig. 9(a) and (b) compare the pore-size l dependences
of the long-time relaxation behaviours of NLCs at constant T ¼
0.1 for RPM and BC, respectively. The relaxation aer the
removal of a strong eld E ¼ 1 is markedly different between
RPM and BC. The relaxation of the global nematic order in BC is
characterized by a single decay process and very well tted by a
stretched exponential,48

Q(t) ¼ QM + DQSexp{�(t/sS)
a}, (7)

where QM is the remnant order determined as the long-time
asymptote of Q(t), DQS is the amplitude of the stretched expo-
nential decay, and a is the stretching exponent (a # 1). In the
case of RPM, on the other hand, the decay does not saturate as
clearly as in the case of BC and the rst quick relaxation is
followed by a very slow decay to a second plateau. We nd the
curves to be well tted by a summation of two decay modes,

QðtÞ ¼ QM þ DQS exp
�� ðt=sSÞa

� þ DQL

1þ logð1þ t=sLÞ ; (8)
This journal is ª The Royal Society of Chemistry 2013
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Fig. 11 Snapshots of DLs in RPM at selected times during their relaxation
process after the field removal. The comparisons between (a) and (b) as well as
between (c) and (d) enable us to defect spontaneous topological changes in the
DLs. The matrix pattern is not shown here to show the defect patterns better.
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where DQS and DQL are, respectively, the amplitudes of the fast
stretched-exponential relaxation and of the slow decay. The
slow decay process could also be tted by a stretched expo-
nential but it seems to be better tted with the functional shape
in eqn (8), which crossovers from a Lorentzian decay at small t
to a logarithmic decay for t > sL.

The relaxation times of the fast stretched exponential decay
sS for RPM and BC geometries are shown in Fig. 10(a). The
values obtained in the two geometries match, indicating that
the fast decay is a relaxation process common to the two
systems and not associated with the change in defect congu-
rations. sS grows as l 2, a scaling generally found for the visco-
elastic relaxation of nematics in conventional liquid crystal
cells. Indeed, in these systems viscoelastic relaxation is expected
to govern the evolution of the system from a eld-induced
ordered state to the conguration of the minimum elastic
energy attainable without topological rearrangements of
defects. In the case of BC, such a conguration is characterized
by DLs stabilized by the surface geometry, so that no further
relaxation takes place at all l values. Our simulations indicate
that the regular pattern consisting of loops shown in Fig. 8 is
the global energy minimum state for BC.

When instead the topology attained aer the fast relaxation
is not stabilized by a surface geometry in a unique manner,
rearrangements of DLs leading to a state with a lower energy are
possible while accompanying a further relaxation, as for RPM.
The slow relaxation involves topological rearrangements of
defects. Aer the system has reached one of the local minima of
its elastic energy states, that is, for t z (2 � 3) � sS, DLs move
only by thermal excitations. These continued motions lead DLs
to transiently adopt conformations less energetically favoured,
and thus foster DL collisions which may result in topological
changes of defects, if energetically more favoured congura-
tions can be accessed by the defect collisions. Such events in
RPM can be directly seen in Fig. 11. A simple scaling analysis
conrms that the activation barrier for such a DL collision is
proportional to l , leading to the relationship ln(sL/tMC) f l /T.
Indeed, if a porous structure is uniformly enlarged by a factor of
b while keeping the elastic constants and the DL connectivity
unchanged, the free energy required for bringing two given DLs
together grows linearly with the expansion factor b, as
conrmed in Fig. 10(b). Inspection of the simulations also
provides us with a clue to understand the logarithmic nature of
Fig. 10 (a) The relaxation times for the fast stretched exponential decay sS for
RPM and BC geometries as functions of the pore size l . (b) Plots of sL in RPM
against the mean pore size l and the inverse temperature 1/T.

This journal is ª The Royal Society of Chemistry 2013
the slow glassy relaxation (eqn (8)). Each DL collision event
leading to a topological rearrangement is followed by a fast
viscoelastic relaxation to a new state in which DLs experience a
new energy landscape. This leads to a cascade effect, in which
the activation energies are modied as the relaxation proceeds.
More specically, a logarithmic decay may be a consequence of
an increase of the activation energy proportional to Q(t)�1. It is
natural to expect that the DL reorganization requires higher
energy barriers for further DL collisions as the time proceeds.48

4.1.3 Robustness of memory. For practical applications,
crucial is the robustness of the memory effects. The topology-
based non-ergodicity described here relies on a large energy
necessary to ‘recongure’ irreducible DL loops. The bicontin-
uous nature of the matrix is essential for this form of multi-
stability. This can be appreciated by studying the behaviour of
DLs in an array of isolated spheres (SCn, here). DLs compensate
for the topological charge introduced by the particle with
homeotropic anchoring. In the equilibration process, DLs are
annealed into Saturn-rings, as shown in Fig. 2 and 8. Upon the
eld removal, rings can continuously rotate around the spheres
without topological changes. Saturn-rings are held parallel to
one another by mutual elastic interactions and their collective
rotation is nearly a so mode. Because the total surface area is
small in SCn, the amplitude of the fast viscoelastic mode
becomes small, in comparison to that in BC. On turning off the
eld, we found that the nematic order starts rotating at a nite
temperature, as shown in Fig. 12. Although the defect patterns
in both BC and SCn consist of loops, such spontaneous rota-
tions of the global nematic order is prohibited for BC. In BC,
half of the regularly aligned DLs are irreducible, encircling the
porous network. So, they cannot change their orientation to
other directions without topological rearrangements. As noted
in the previous section, the energy cost necessary for rear-
rangements of DLs is much higher than the thermal energy. The
Soft Matter, 2013, 9, 8107–8120 | 8115
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Fig. 12 Thermal decay of the global nematic order along the z axis for various
temperatures in porousmedia (a) with and (b) without topological constraint. The
nematic liquid crystals are confined in (a) BC and (b) SCn, respectively. The
isotropic–nematic transition temperature in a bulk is TIN y 0.75. Even below TIN,
the memory is spontaneously lost in the porous medium without topological
constraint. Fig. 13 Evolutions of the global nematic order along the z axis in ‘jungle gym’

porous networks (see the inset). During 105 < t/tMC < 1.5� 105, an external field is
applied along the z direction, Ez¼ 0.5. We vary the radii of the pillars along x and y
axes with fixing the radius of the z-cylinders to a2 ¼ 2.8.

Table 1 Occurrence of memory effects after the application of a field in the z
direction in ‘jungle gym’ structures. The radii of the cylindrical pillars in the x and y
directions are a1 and that in the z axis is a2. Memory is expressed by the parameter
M¼ (QM� QZFC). Cerulean :M < 0.1, green : 0.1 <M < 0.3, orange : 0.3 <M <
0.6, red : 0.6 < M < 0.8, brown : M > 0.8. The half-circles represent the cases
where memory is lost due to a ‘saturation’ effect because of high spontaneous
ordering
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topological irreducibility of DLs is the key for the robustness of
the memory effects. We note that the local curvature of tubes
forming BC stabilizes the locations of loops along the eld axis,
which also plays a crucial role in enhancing the memory effects.
This mechanism of stabilization is weaker in a ‘jungle gym’

structure discussed below since it consists of straight cylinders
(the zero curvature along the eld axis).

4.2 Towards experimental realization of high memory
effects

In the above, we nd that BC provides one of the best surface
topologies for NLC memory. However, the formation of such a
regular structure is not so easy with currently available tech-
nologies. Fabrication of a regular porous structure with two-
photon polymerization is a promising method and very recently
applied to NLC memory.23 In this technique, the resolution of
the laser is different in the x–y plane and along the z direction,
and therefore all the channels do not have the same size, or the
cross-section of the channels is not necessarily circular. Thus, it
is important to evaluate the inuence of imperfection and
anisotropy on regular matrices by simulations for effective
comparison with experiments. Hence, here we introduce
anisotropy to ‘jungle gym’matrices, which consist of cylindrical
pillars oriented along the three orthogonal axes (see the inset of
Fig. 13), and study its inuence on the memory effect. The
separation between the nearest parallel pillars is set to be
l ¼ 16.

Fig. 13 shows temporal evolutions of the global orientations
along the z axis, before, during and aer the application of an
external electric eld. We vary the radius a1, the radius of the
channels in the x and y directions, while a2 ¼ 2.8, the radius
of the channels in the z direction. In the symmetric matrix
(a1 ¼ a2) the spontaneous global order is nearly zero and
remaining DLs are randomly entangled aer zero-eld cooling
(not shown here), as observed in BC and RPM. In asymmetric
networks, on the other hand, the NLCs show spontaneous
alignment: the global order parameter Q in the direction of the
anisotropy is much bigger or smaller than zero if the pillars in
that direction are bigger (a1 > a2) or smaller (a1 < a2), respectively.
In matrices with large a1/a2, in particular, remaining DLs are
already spontaneously aligned in x–y planes (not shown) even
without any external eld. This intrinsic alignment is directly
8116 | Soft Matter, 2013, 9, 8107–8120
caused by the anchoring interaction, and thus its quantity
depends on the difference between surface areas projected on
the three orthogonal planes. The mechanism of these sponta-
neous alignments will be reported elsewhere. The memory
effects aer the application of external elds are also affected by
the anisotropic structures. In particular, the NLC for a1 ¼ 1.4
shows a large decay mode as shown in Fig. 13. Pillar size and
anisotropy are important parameters affecting the memory
effects, as shown in Table 1, which lists the values of thememory
parameter M ¼ QM � QZFC, i.e., the difference between the
remnant order parameter QM aer eld application and the
order parameterQZFC aer zero eld cooling, for various cases. It
appears that the ‘jungle gym’ scaffolds of a1 z a2 show larger
memory. However, themechanisms of loss ofmemory are of two
different kinds: in the structures with a1 � a2 the DLs order
induced by the appliedeld is completely lost. Since they recover
their negative intrinsic orientations, they will retain memory
only if the applied eld is in the x or y direction. On the other
hand, the structures with very high anisotropy and a1 [ a2
already have a very strong spontaneous alignment before the
eld is applied, therefore they do not ‘gain’ any more alignment
from the application of an external eld. The memory effects
This journal is ª The Royal Society of Chemistry 2013
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aer the application of a eld along the x direction is also
important, in order to have a bistable (or multistable) system.
Hence, symmetric porous structures are also preferred.48
5 Dynamical coupling between NLC flow
and defect patterns
5.1 Dragging a colloidal particle accompanying a Saturn-ring
defect in NLCs

Here we focus on a remarkable feature of NLCs, i.e., the coex-
istence of orientational order and uidity. Hydrodynamics for
NLCs is different from that for isotropic liquids due to the
dynamical coupling between the orientational degree of
freedom and the hydrodynamic one. The viscosity of a NLC
depends on the local orientational eld and the elastic stress,
called Ericksen stress, acts on the anisotropic liquid itself.1

Then, sedimenting or electrophoresing particles in nematic
solvents show nonlinear ow behaviours, which are not seen in
isotropic liquids, even in the Stokes regime. In particular, the
coupling between topological defects and ow causes complex
particle motions.26,78–82 For example, Stark and Ventzki reported
li-up motions, the directions of which are not parallel to the
applied force, for a particle having a hyperbolic point defect.79,80

Furthermore, Lavrentovich et al. observed a dri motion of an
electrophoresing particle in AC electric elds.81 Interestingly, its
velocity is proportional to the square of the eld strength.

In ref. 68, we reported dynamics of a spherical particle
accompanying a Saturn-ring defect. This is a quite interesting
case where defect topology matters. We employed the same
numerical scheme as that in Section 3. Fig. 14 shows repre-
sentative snapshots of a particle moving in a NLC solvent. The
background director eld is oriented along the z axis. As shown
in Fig. 14(a) and (b), we apply body forces to a particle towards
the z and x directions, respectively. In NLCs, defect motions are
caused not only by the convectional ow, but also by the rota-
tional motion of the director eld. The dynamic behaviours are
well characterized by the Ericksen number Er, which is the ratio
between the elastic stress and the viscous stress. The Ericksen
number is roughly proportional to the particle velocity. We note
that the key process of defect motion is the director rotation. In
our problem, thus, the relevant viscosity for the Ericksen
number is the rotational viscosity, not the shear viscosity as
oen assumed.68
Fig. 14 Representative snapshots of a particle moving in a NLC solvent. At rest,
the background director is oriented along the z axis. We apply body forces for the
particle towards the (a) z and (b) x directions. The radii of the particles are a ¼ 8.
The upper and lower panels in (a) correspond to regimes (a2) and (a3), respec-
tively. The particle motions in (b) indicate regimes (b1) (upper) and (b2) (lower).

This journal is ª The Royal Society of Chemistry 2013
When we apply a force in parallel to the bulk director eld
selected by an external eld, we observed three regimes for the
particle motions. (a1) When the particle velocity is slow enough
(low Er), the accompanied defect is capable of keeping its most
preferred position relative to the particle. (a2) As the particle
velocity is increased (moderate Er), the defect can follow the
particle, but the relative defect position is shied backward
from the preferred equator position at a quiescent state. Here
the amount of the shi from the equator position increases with
an increase in the particle velocity. (a3) If the velocity is
increased further (high Er), the defect cannot catch up with the
particle and the relative separation then starts to increase with
time, which results in the increase in the elastic energy. When
the elastic energy cost exceeds the anchoring energy, the
anchoring state on the particle surface is broken and the defect
disappears eventually. In Fig. 14(a), we show these moderate
and strong pulling cases. In relation to this, we note that the
following behaviour has been recently reported: for a uid
particle like an emulsion droplet, the behaviour is the same as
that described above, whereas for a solid particle the defects
shi forward.82 The reason for this discrepancy is not clear at
this moment. We also note that defect motion may be strongly
inuenced by the ow-alignment coupling in the nematohy-
drodynamic equations.

More interesting is the case when a force is applied
perpendicular to the bulk director eld selected by an external
eld. Again we found three regimes, depending on Er. (b1) We
observed that the particle motion is not parallel to the force
direction for low Er regime. Since a portion of the defect in the
front of the particle motion behaves as an obstacle for the
particle motion, the particle tends to circumvent the defect and
it chooses one of the two possible detours with the equal
statistical weight.68 (b2) As the particle velocity is increased, the
front part of the Saturn-ring defect penetrates to the particle,
breaking the anchoring condition (see Fig. 14(b)). Upon this
anchoring breaking, the particle can move just along the
applied force. (b3) In a high Er regime, a full portion of the
disclination loop disappears: ow-induced disanchoring tran-
sition. The degree of the off-axis motion in (b1) depends on the
strength of the homeotropic anchoring condition: a particle
with weaker anchoring surface can be driven more parallel to
the eld direction. This suggests an interesting possibility for
separating particles in terms of their surface properties.68 This
may offer a new method for electrophoretic separation of
colloids or proteins in terms of their surface properties.
5.2 Flow of NLCs in a porous matrix

Recently, ow behaviours of NLCs in porous networks or
microuidic cavities have attracted much attention.49,83–85 We
recently reported a lattice Boltzmann simulation on ow prop-
erties of a NLC in a BC matrix.86,87 Fig. 15 shows a switching
process of the defect pattern in a BC matrix induced by ow.
Initially, we prepare a regular defect pattern by applying an
electric eld along the z axis, as shown in the second row of
Fig. 8. Then, we start to ow the nematic solvent in BC towards
the x direction at t¼ 0. When the ow speed is slow enough, the
Soft Matter, 2013, 9, 8107–8120 | 8117
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Fig. 15 Switching process of the multistable defect pattern in a cubic porous
medium. The NLC solvent is flowing towards the x direction.

Soft Matter Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ay
 2

01
3.

 D
ow

nl
oa

de
d 

on
 1

/1
7/

20
26

 2
:0

1:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
defects stay at their preferred positions. Under a moderate ow
speed, the DL loops laying x–y plains change their orientation to
a new direction. Because of themultistability of this pattern, the
new orientation is stable even aer the ow is stopped. So, we
can say that ow direction can be recorded as the defect pattern
in the porous network. This switching behaviour is similar to
that caused by an electric or a magnetic eld, as discussed in
Section 4.48 We found that the resistance coefficient relating the
ow speed to the force depends on the director pattern. This
leads to an abrupt increase of the ow speed upon this
switching. We also expect that the ow path can be dynamically
selected by manipulating local defect congurations. As the
ow speed is increased further, cyclic motion of the trapped
defects is observed, and its characteristic frequency depends on
whether or not the defects are topologically concatenated to the
network. These nonlinear behaviours are strongly inuenced by
the anchoring condition. The conventional argument based on
the Ericksen number does not take the anchoring interaction
into account. In microuidic devices and porous networks, the
coupling between ow and anchoring is not negligible, as in the
above case of colloids driven in a NLC. This will open up an
interesting possibility of applications to ow control.
6 Conclusion and outlook

In this article, we mainly review our numerical studies on
topological defects of NLCs formed by geometrical frustration.
In complex geometries with curved surfaces, frustrations
between the elastic eld favouring the undistorted nematic
order and the anchoring effect distorting the order lead to the
formation of stable defects, whose spatial conguration reects
how orientational order is organized in space. Since the energy
barrier required for a change of the defect topology is far beyond
the thermal energy, structures stabilized by defects are excep-
tionally robust among various structures in so matter. The
coexistence of this robustness of the defect structure and
owing ability of NLCs is a quite unique opportunity of defect
engineering, which applies defects to create new functions.
Defect engineering discussed here offers interesting applica-
tions of defects, which have been thought to be undesirable in
conventional technology. Optical manipulation of defects is a
quite promising way to control a defect conguration in liquid
crystals.10,39 While we are focussing here only on nematics, we
note that defects in a smectic A phase can also be manipulated
and patterned optically88 and also geometrically.89–92
8118 | Soft Matter, 2013, 9, 8107–8120
We show here mainly two types of NLC systems, in which the
homeotropic anchoring to surfaces is assumed: isolated
colloidal particles immersed in a NLC, where solids are mobile,
and a NLC conned in porous media, where solids are immo-
bile. For the former, we found a new type of metastable state, in
which a ‘gure of eight’ disclination entangles around a pair of
particles and strongly binds them. This effective interaction
mediated by entangled DLs is also relevant for many particles,
so that the particles can be irreversibly self-organized.

For the latter, stable defects formed in frustrated geometries
have attracted many researchers for about two decades.
However, global energy minimum states have been mainly
considered so far. If only point defects remain in the system,
they can move towards their most favourable positions without
topological constraints, and then the system can reach the
global energy minimum state. On the other hand, DLs are oen
trapped at high energy congurations because of their entan-
glement effects. However, such metastable states are not
necessarily unfavourable. The entangled DLs now provide us
with fascinating and promising tools to design systems with
multistabilities. Indeed, in NLCs conned in porous media,
remaining DLs wander through the channels of the solid
network while keeping a large number of possible trajectories.
Random porous media provide highly degenerate metastable
states, leading to glassy slow dynamics, a topic of fundamental
interest. Aer the removal of an external eld, the system
exhibits two relaxation modes in the global order parameter.
The slower mode represents a thermally activated process,
which accompanies the topological rearrangements of the DL
pattern, and gives rise to the memory effect of topological
origin. We demonstrated that the slow mode can be suppressed
by designing the topology of matrix structures, more precisely,
by removing the degeneracy of metastable states and realizing a
unique topologically stable structure. This allows us to drasti-
cally enhance the capability of the memory effect. Here the
bicontinuity of the matrix and the resulting irreducibility of DLs
are the key to the robustness of the memory.

As emphasized in this review article, liquid crystals provide
an ideal opportunity for investigating how topological
constraint can affect not only self-organization of an ordered
structure but also its dynamical behaviour. Geometrical frus-
tration and the resulting glassy behaviour including memory
effects are also important subjects. We would like to stress that
the concept of defect science and engineering described in this
paper may be relevant to strongly correlated electron systems
and defect dynamics in Bose–Einstein condensates, including
superconductors, liquid He, and laser cooled systems. What is
common to these systems is the coexistence of order and
uidity. Here we consider only the topology of DLs but do not
consider the degree of freedom of twist explicitly. Liquid crys-
talline phases such as nematic and smectic A do not have
spontaneous topological defects, whereas some phases with
chiral symmetry breaking, such as twisted grain boundary and
cholesteric blue phases, have defects as their intrinsic structural
elements. Thus, it is also interesting to consider the effects of
chirality as well as effects of geometrical frustration on intrinsic
defects.
This journal is ª The Royal Society of Chemistry 2013
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Research on these topics has just started and is still imma-
ture. We hope that this review article would facilitate further
intensive research that may lead us to the basic understanding
of this fascinating physics on topology and its applications.
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38 M. Ravnik and S. Žumer, So Matter, 2009, 5, 4520–4525.
39 U. Tkalec, M. Ravnik, S. Čopar, S. Žumer and I. Muševič,
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