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Dynamic phases of colloidal monolayers sliding on
commensurate substrates†

Jaffar Hasnain,* Swetlana Jungblut and Christoph Dellago

We report on numerical simulations of a monolayer of charge-stabilized colloids driven over a substrate

potential by an external dc force acting along a symmetry axis of the monolayer. Using overdamped

Langevin dynamics, we studied the sliding transition for various inter-particle interaction strengths as a

function of the driving force. For weak interactions, the diffusion of individual defects is responsible for

the motion of the monolayer. As the interaction strength is increased, sliding is induced by distinct

density compression and decompression zones. For very strong interactions, a type of stick-slip

mechanism emerges, in which the sliding of the monolayer is mediated by the propagation of collective

distortion waves. Our predictions can be tested experimentally with two-dimensional arrangements of

colloidal particles exposed to periodic light fields and our work shows that the inter-particle interaction

strength tunes the degree of correlation in the sliding mechanism adopted by a monolayer driven over

a commensurate substrate.
1 Introduction

The dynamics of two surfaces that are in contact with each other
has been studied for centuries and empirical approaches based
on the Amontons–Coulomb law1 have enjoyed great success in
predicting the frictional response of macroscopic objects.
However, a truly atomistic understanding of friction remains
elusive. At the beginning of the last century, simplied atomisti-
cally resolved descriptions of friction such as the Frenkel–Kon-
torova (FK)2,3 and Tomlinson–Prandtl4,5 models were developed
and have since been the subject ofmuch attention on a theoretical
level.6–14 The recent advances in experimental realizations of the
FK model through the use of quartz-crystal microbalance
setups15–17 and atomic force microscopy18 inspired a number of
simulation studies that extend beyond the classical FK model.19–24

Furthermore, somatter systems, and in particular colloidal
suspensions of particles with tunable interactions, provide a
way to study condensed phase phenomena with single-particle
resolution usually unavailable to atomistic systems.25,26

Recently, Bechinger and collaborators27 devised an experiment
that is a two-dimensional extension of the FK model and
Vanossi and collaborators28 performed simulations which
reproduce and elucidate the key features of this experiment in
which the motion of a monolayer subjected to a substrate
potential is initiated through the formation of kink–antikink
pairs, as predicted by the FK model.
oltzmanngasse 5, 1090 Vienna, Austria.

tion (ESI) available. See DOI:

Chemistry 2013
In an attempt to build upon the aforementioned work, we
performed computer simulations of overdamped Yukawa
particles driven over a commensurate substrate (i.e., the
number of the minima of the external potential is the same as
the number of particles in the monolayer) in order to under-
stand the role that the inter-particle interaction plays in the
dynamical steady state adopted by themonolayer. We have been
able to draw a consistent picture for all possible inter-particle
interaction strengths for the particular substrate we considered,
and nd that the degree of clustering of the kinks and antikinks
that are formed in the monolayer increases as the inter-particle
interaction strength is increased or the density of colloidal
particles is decreased.
2 Simulation details

We studied the dynamics of colloidal monolayers driven by a
constant force while being subjected to a commensurate
substrate potential, as shown schematically in Fig. 1. The
motion of a colloidal particle is governed by the overdamped
Langevin equation,29,30

g _ri ¼ FYukawa
i + F sub

i + Fd + ~f i. (1)

Here, _ri is the velocity of particle i and g is the friction constant
related to the diffusion coefficient D of a single particle in the
uid by the Einstein relation g ¼ kBT/D, where kB is the
Boltzmann constant and T is the temperature. In all of our
simulations, we set kBT and g to unity, but in the following we
keep the notation for clarity. We have neglected hydrodynamic
interactions, but obtain good qualitative agreement with
Soft Matter, 2013, 9, 5867–5873 | 5867
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Fig. 1 Sketch of the model; the colloids are subject to a substrate potential with
lattice constant au and well depth U0. In addition to the forces exerted by the
substrate, colloidal particles also experience inter-particle Yukawa forces, random
buffeting forces due to the solvent, and a constant driving force, Fd.

Fig. 2 Average drift velocity of the colloidal crystal, hvcmi/ag, as a function of the
applied driving force, Fd/Fmax. The lines are guides to the eye and the differences
of the mean velocities between simulation runs are of the order of the symbol
size. The points in the curves for G ¼ 0.005, 0.2, and 1.0 kBT that are closest to the
horizontal line hvcmi/ag ¼ 0.13 (dot-dashed) are the subject of a detailed
discussion.
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experiment. The particle–particle interactions of charge-stabi-
lized colloids are described by the screened Yukawa potential,31

UYukawaðrÞ ¼ ½Gaeka� e
�kr

r
; (2)

where r is the inter-particle distance, a is the lattice constant of
the ideal monolayer, and k is the inverse screening length of the
solvent. We set a ¼ 6 mm and ka ¼ 37.5, similar to the values
realized in experiments.27 The prefactor in square brackets is
the coupling strength of the interaction and G is the potential
energy of two particles that are separated by one lattice
constant.

The substrate is a hexagonal arrangement of potential wells
dened as

UsubðrÞ ¼ �U0

9

X3

i; j¼1

cos
��
ki � kj

�
r
�
; (3)

where r denotes the position of a colloidal particle. The
depth of the potential wells was set to U0 ¼ 27 kBT,
which was chosen because of the good qualitative
correspondence to experiment. The wave vectors,
ki=kkk˛

�ð0; 1Þ; ð ffiffiffi
3

p
=2;�1=2Þ; ð� ffiffiffi

3
p

=2;�1=2Þ�, were chosen so
that the ensuing hexagonal substrate potential has the same
orientation as a colloidal crystal with lattice vectors
gi ˛

�ða; 0Þ; ða=2; a ffiffiffi
3

p
=2Þ�. The lattice constant of the substrate

potential is au ¼ 4p/3kkk, where kkk is the norm of the wave
vectors, and, since we consider only the commensurate case, is
set so that au ¼ a for all simulation runs. This denition of Usub

corresponds to the interference pattern produced by three
coherent laser beams in experiments.27 The driving force, Fd ¼
(Fd, 0), is constant in time. The components of the random
buffeting forces, ~f , that the uid exerts on the particle are
uncorrelated in time and follow a Gaussian distribution with
zero mean and variance h ~f (t) ~f (0)i ¼ 2 kBTgd(t), where d(t) is the
Dirac delta function and t is time.

We examined monolayers with interaction strengths
ranging from G ¼ 0 to 10 kBT subject to various driving forces,
Fd. Each monolayer consisted of 5476 particles and periodic
5868 | Soft Matter, 2013, 9, 5867–5873
boundary conditions were imposed. For each set of parame-
ters, ve simulation runs of 106 time steps of length
dt ¼ 10�4g�1 were conducted and before any measurements
were made, the systems were equilibrated for 2 � 105

time steps.
3 Results and discussion
3.1 Dri velocity of the monolayer

We begin with the analysis of the average dri velocity hvcmi of
the colloidal particles in the driving direction, which is pre-
sented in Fig. 2 as a function of the driving force, Fd. We express
Fd in units of Fmax ¼ 8pU0/9a, the maximum force that the
substrate potential can exert on a colloid in the driving direc-
tion. In all simulation runs, the diffusion perpendicular to the
direction of driving was indistinguishable from the undriven
case. Before we discuss the sliding mechanisms adopted by the
monolayer, we will present considerations on the particle
mobility in the limiting cases of very large and small inter-
particle interaction strengths as well as in the intermediate
regime.

3.1.1 Innitely stiff crystal. The lower boundary of all dri
velocity proles is given by the limit of G ¼ N. For very large
interaction strengths, thermally induced uctuations of the
particles in a crystal are completely suppressed and inter-
particle distances always correspond to those of a perfect lattice.
Hence, the entire monolayer moves as a completely rigid crystal
with dynamics governed only by the force due to the substrate,
F sub, and the driving force, Fd. Since the driving force acts only
in the x-direction, the equation of motion of the colloidal
monolayer is reduced to a one-dimensional differential
equation,

g _x ¼ F sub(x) + Fd , (4)

which can easily be solved. The differential eqn (4) is periodic,
so we can restrict our analysis to the interval x ˛ [0, a]. The
This journal is ª The Royal Society of Chemistry 2013
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integration of the equation of motion (4) yields the time ta that
particles need to travel from one potential minimum to the
next:

ta ¼

8><
>:

gaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fd

2 � Fmax
2

p if Fd .Fmax;

N else:

(5)

The average velocity is therefore given by

hvcmiG¼N ¼ a

ta
¼

(
g�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fd

2 � Fmax
2

p
if Fd .Fmax;

0 else:
(6)

The prediction of this equation is shown in Fig. 3 as the red
dotted line. The limit is approached already at G ¼ 10 kBT, as
can be seen in Fig. 3. This velocity prole constitutes a lower
boundary for all of the velocity proles in Fig. 2. For driving
forces smaller than Fmax, such a monolayer is completely
pinned to the substrate and no dri occurs. However, as soon as
the driving force Fd exceeds Fmax, the monolayer gains a non-
vanishing average velocity. At non-zero temperatures and nite
Fig. 3 Comparison of simulation data to theoretical predictions. Top: the lines
are the theoretical predictions of eqn (6) corresponding to G¼N (red dotted line)
and eqn (10) corresponding to G¼ 0 (black dotted line). The symbols are datasets
obtained from simulation for G ¼ 0 and G ¼ 10. Bottom: mean velocities of
monolayers as a function of G for different driving forces Fd. Our estimation of Gc is
indicated by the vertical dot-dashed line. The error bars are smaller than the
symbol size.

This journal is ª The Royal Society of Chemistry 2013
G, this sharp transition from a pinned to driing monolayer,
known as the depinning transition, is a smooth function in
terms of hvcmi.

3.1.2 Ideal gas, G ¼ 0. In the limit of vanishing interaction
strength, the motion of the colloidal monolayer can also be
understood from a single particle picture. In this case, the
particles move independently of each other and their average
dri velocity can be computed analytically by solving the
Fokker–Planck equation of a driven Brownian diffuser in a
sinusoidal potential. In the following, we sketch the derivation
of the average velocity presented by Risken.32 Again, we restrict
the analysis to one dimension. For a system of non-interacting
particles driven over a periodic potential at a given temperature,
the Fokker–Planck equation can be written as

vW

vt
¼ g�1 v

vx

	
U 0

sub � Fd þ kBT
v

vx



W ¼ � vS

vx
; (7)

where W(x, t) is the probability density distribution of the
particle positions and S(x, t) is the probability current. Since we
are only interested in the stationary distribution of the system,
the probability current is a constant given by

gS ¼ �
Fd �U 0

sub

�
WðxÞ � kBT

vW ðxÞ
vx

: (8)

We note that these relationships hold for any kind of
external potential. One can then proceed to obtain W(x),

W ðxÞ ¼ e�VðxÞ=kBT

0
@N � gS=kBT

ðx
0

eV ~xð Þ=kBTd~x

1
A; (9)

where V(x)¼ Usub(x)� Fdx. If one applies the condition that Usub

is periodic, then the integration constants S and N follow from
the requirements that W(x) is also periodic and normalized.
Risken32 applied the method of continued fractions expansion
proposed by Ivanchenko and Zil’berman33 to obtain W(x) by
solving eqn (9) numerically for an external potential described
by a cosine function. The average velocity is then given by

hvcmiG¼0 ¼ g�1

ða
0

ðFd �U 0
subÞWðxÞdx: (10)

The solution obtained numerically for G ¼ 0 is shown in
Fig. 3 as a black dotted line together with our simulation results.
Evidently, we recover the analytical solution for the case of non-
interacting particles.

3.1.3 Estimation of Gc. We nd that, for the inter-particle
interaction strengths that lie between the two limiting cases
discussed above, the frictional response is not monotonic in G,
as demonstrated in Fig. 2. For large values of G, a reduction of
the interaction strength increases the mobility of the monolayer.
This is easily explained by noting that particles are hindered
from hopping between substrate minima by the interactions
with their neighbors, and a reduction of G eases this restoring
force. However, below a certain threshold value Gc, further
reductions of the interaction strength decrease the mobility of
the monolayer. This is due to the fact that, for minuscule values
of G, it is much more likely that two or more particles can be
Soft Matter, 2013, 9, 5867–5873 | 5869
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trapped in the same substrate potential well, thereby slowing
the sequence of particle hops that are the origin of sliding.

To make a rough estimate of Gc, we derive the highest value
of G for which a conguration of two particles sharing the same
substrate potential minimum is mechanically stable. For all
interaction strengths above this value, if a colloid hops from
one substrate minimum to the next (occupied by another
colloid), it will necessarily initiate a sequence of particle hops by
forcing the particle previously residing in this minimum to
move out of it. In the following, we neglect the effects of
temperature, driving force, and the interactions with the
surrounding particles and restrict the analysis to one dimen-
sion. We start with the Hamiltonian given by

H ¼ UYukawa(|x1 � x2|) + Usub(x1) + Usub(x2), (11)

where x1 and x2 are the positions of the particles. The equilib-
rium positions are given by VH ¼ 0, while an evaluation of the
Hessian determines whether these congurations are stable.
We nd that two particles are bound in a potential minimum if

jx1 � x2j\a
2
. Hence, we estimate that

Gc ¼ 2p

9
U0

e�ka=2

1þ ka=2
¼ 6:866� 10�9 kBT ; (12)

which is the largest value of G for which two particles can be
trapped in the same substrate well. For larger inter-particle
interaction strengths, small perturbations, e.g., due to thermal
uctuations or the driving force, will knock one of the particles
out of the potential well. For smaller inter-particle interaction
strengths, the system will tend to restore the initial congura-
tion and thus suppress a particle hop. Therefore, all monolayers
with G < Gc will move slower than the monolayer with G¼ Gc. To
account for the eventual slowing down of the monolayers at
larger interaction strengths, we would have to consider the
inuence of the neighboring particles, which increases the
complexity of the calculation signicantly.

In the bottom frame of Fig. 3, we plotted the mean velocity of
the monolayer hvcmi as a function of G for different driving
forces Fd. All monolayers with G < Gc are indeed less mobile than
those with G ¼ Gc for all driving forces considered. In addition,
Fig. 3 demonstrates that the effects due to the neighboring
particles become perceivable at interaction strengths a few
orders of magnitude above Gc, where the velocity of monolayers
starts to decrease. It is to be expected that this crossover
behavior is particularly pronounced for potentials that change
drastically as particles approach each other, as in the case of the
Yukawa potential.
Fig. 4 Top: displacement of the center of mass of the colloidal crystal, d/a, as a
function of time, tg, for three representative cases at interaction strengths and
driving forces {G/kBT, Fd/Fmax}¼ {0.005, 0.717}, {G/kBT, Fd/Fmax}¼ {0.2, 0.948}, and
{G/kBT, Fd/Fmax} ¼ {1.0, 0.987}. Curves are shifted vertically for the sake of clarity.
Bottom: percentage Hp of the particles undergoing a hop for each of the curves
shown in the top panel.
3.2 Sliding mechanisms

An inspection of the trajectories of the monolayers revealed
that, for different values of G, characteristic mechanisms (that
persist for all driving forces) are responsible for the sliding
motion. In order to investigate these mechanisms, we present a
more detailed description of the motion of the monolayers for
G ¼ 1.0, 0.2, and 0.005 kBT that are driven by the forces
Fd/Fmax¼ 0.987, 0.948, and 0.717, respectively. These values of G
5870 | Soft Matter, 2013, 9, 5867–5873
span the range of mechanisms available to the system, and the
driving forces were selected so that they lead to the same
average dri velocity for each monolayer (as indicated by the
horizontal line in Fig. 2). In the top panel of Fig. 4, we show
examples of the average displacement of the selected mono-
layers in the direction of the driving force as a function of time
for these three cases. The curve for the largest interaction
strength, G ¼ 1.0 kBT, consists of distinct steps, indicating that
the monolayer alternates between periods of rest and rapid
spurts of motion. The difference in the height of two successive
steps is one lattice constant, and the width of the plateaus is
irregular, although there is a characteristic time between
steps.20 The G ¼ 0.2 kBT monolayer is perpetually in motion but
there are large uctuations in its dri velocity, whereas the G ¼
0.005 kBT curve appears as a smooth line at this resolution but is
in fact the result of a stochastic process with very small variance.

To obtain additional insights into the sliding mechanisms,
we computed the fraction of particles undergoing a hop at a
particular instant (in percent of the system size), Hp, as a
function of time, for the same trajectories as in the top frame of
Fig. 4. Particles are classied as undergoing a hop if the
potential energy due to the substrate exceeds�7 kBT because we
This journal is ª The Royal Society of Chemistry 2013
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observed in our simulations that colloids entering this energy
range almost invariably go from one substrate well to the next.
While the average number of hopping particles, presented in
the bottom frame of Fig. 4, is very similar for the three mono-
layers (all lie within the range of 1.7% to 2%), the signal
continuously loses its structure as G is reduced. For large values
of G, distinct peaks in the number of hopping particles sepa-
rated by periods of rest indicate that many particles move at the
same time in a correlated way. As G is decreased, the correlation
of particle hops becomes smaller and the sliding motion
becomes the result of independent hopping events leading to
an almost time-independent fraction of hopping particles.

This general picture of a sliding mechanism increasingly
dominated by correlations for growing interaction strength G is
conrmed by an examination of the congurations computed
over the course of a simulation run. Fig. 5 shows typical cong-
urations chosen from trajectories of the discussed monolayers.
The upper panels are depictions of congurations in which the
colloids are colored according to their substrate potential values.
The panels at the bottom show the local density compressions
and decompressions corresponding to the kinks and antikinks of
the FK model through the use of the congurations’ Voronoi
tessellations. In order to view movies of the trajectories from
which these congurations were taken, we refer to the ESI.†

For a monolayer with G ¼ 1.0 kBT and a driving force of
Fd/Fmax ¼ 0.987, there are long stretches of time in which each
particle oscillates about the point where the substrate force
counteracts the driving force. These particles appear green in the
Fig. 5 Snapshots (top) and corresponding Voronoi tessellations (bottom) of typic
0.987}, (b and e) {G/kBT, Fd/Fmax}¼ {0.2, 0.948}, and (c and f) {G/kBT, Fd/Fmax}¼ {0.005
corresponds to the substrate potential values of the colloidal particles shown in (a)–(c
the Voronoi cells depicted in (d)–(f), in units of the mean area per particle, r�1 ¼ ðp

taken.

This journal is ª The Royal Society of Chemistry 2013
substrate potential representation of Fig. 5a. The hopping
mechanism begins when a small cluster of particles reach the top
of their respective substrate potential barriers. This small
nucleus of particles initiates a circular sequence of particle hops
that encompasses the entire system. In Fig. 5a, the particles that
appear red are in the process of hopping from one substrate
minimum to the next and this ring of hopping particles will
subsequently continue to grow until each particle has hopped
once. Aer the hopping wave has run its course, the system
remains at rest until a new hopping nucleus spontaneously
appears. The blue particles that form a core in the middle of the
wave have recently hopped and are in the process of diffusing
from the bottom of their respective substrate wells to their new
equilibrium positions. The corresponding Voronoi representa-
tion, shown in Fig. 5d, illustrates that the front of the wave is a
zone of local compressions (kinks) whereas the rear of the
hopping wave is a decompression (antikink) region. As the ring of
hopping particles expands, the compression region propagates in
the direction of the driving force while the decompression zone
travels in the opposite direction. Due to periodic boundary
conditions used in our simulations, these two zones eventually
collide and annihilate each other. The top and bottom of the
hopping wave are not detected by this representation because the
Voronoi cells of those particles are sheared, not compressed. For
large driving forces, the likelihood of forming a hopping wave
increases to such an extent that multiple waves appear simulta-
neously. This mechanism has been observed and analyzed in
simulations of the two-dimensional FK model20 aimed at
al configurations obtained for monolayers with (a and d) {G/kBT, Fd/Fmax} ¼ {1.0,
, 0.717}, as they are driven by a force that acts from left to right. The top color scale
), in units of the well depth,U0. The bottom color scale corresponds to the area A offfiffiffi
3=2Þa2. See ESI† for videos of the trajectories from which these snapshots were
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reproducing quartz-crystal microbalance experiments, in which
the activation energy of the slip motion is derived by means of
classical nucleation theory.

For G¼ 0.2 kBT and Fd/Fmax¼ 0.948, the average dri velocity
of the colloidal crystal is almost identical to the previous case,
but the motion of the monolayer follows an entirely different
dynamical pattern. Typical congurations, such as the one
shown in Fig. 5b, feature a number of clusters of vacancies. For
each vacancy cluster, there is a corresponding island of (red)
interstitial particles that are traveling through the system via
inter-well hops, leaving low energy particles (blue) in their wake.
As in the previous case, the blue particles then turn green when
they reach their equilibrium position where the substrate force
and the driving force cancel. In the Voronoi representation
shown in Fig. 5e, one can clearly see that the traveling inter-
stitials form compression zones or kinks (red) while the
vacancies in the colloidal crystal are decompression zones
(blue). In the course of a simulation run, many clusters of
interstitials travel through the system, whereas the vacancy
regions remain virtually stationary.

For G ¼ 0.005 kBT and a driving force of Fd/Fmax ¼ 0.717, the
arrangement of the defects loses all structure (Fig. 5c). Here,
vacancies are locked in place while single interstitial particles
diffuse through the monolayer. As in the previous case,
compression zones (kinks) are mobile whereas decompression
zones (antikinks) are immobile.

Videos of trajectories from simulations of larger systems
(see ESI†) reveal conclusively that the hopping waves encountered
in the G ¼ 1.0 kBT case also display a kink–antikink asymmetry
because the kink region (front) of the wave travels more quickly
than the antikink region (rear) by about a factor 3. This nding is
corroborated by simulations of similar non-driven systems,34

where it was found that interstitials are more mobile than
vacancies. Furthermore, simulation and experimental measure-
ments of kink and antikink velocities demonstrate that, in charge-
stabilized colloidal systems, antikinks are consistently slower
than kinks.27,28 We ascribe the differences in the kink–antikink
mobility to the purely repulsive nature of the Yukawa potential for
which the motion of vacancies incurs larger energy penalties than
interstitials. In the FK model, on the other hand, particles in the
one-dimensional chain interact via a harmonic potential, which is
perfectly symmetric and we expect this to be the reason why kinks
and antikinks are equally mobile in that case.
4 Conclusions

In conclusion, we analyzed the mechanisms of thermally
induced depinning of colloidal monolayers driven by an
external force over a substrate potential and showed that the
occurrence of different sliding mechanisms is determined by
the strength of the inter-particle interactions. We have also been
able to nd upper and lower boundaries to the frictional
response of the monolayer in terms of the interaction strength
and preliminary results suggest that the approximations remain
valid even for signicantly weaker eld strengths.

The origins of the various depinning mechanisms involving
different degrees of correlation can be explained in terms of the
5872 | Soft Matter, 2013, 9, 5867–5873
energetics associated with vacancy–interstitial pairs. For strong
inter-particle interactions, the creation of a vacancy–interstitial
pair is energetically so disadvantageous that motion can only be
achieved through correlated hopping waves that involve many
particles and only weakly distort the hexagonal structure of the
monolayer. As the interaction strength is reduced, smaller
clusters of particles can escape from the local substrate poten-
tial minima and diffuse through the lattice. Finally, for weak
interactions, the energetic costs of a defect is so low that
correlations are lost and individual particles can travel along
one-dimensional channels in the direction of the driving force.

Further research into the dynamical asymmetry of kinks–
antikinks as well as a quantitative treatment of the vacancy–
interstitial energetics that give rise to the different sliding
phases that have been observed is warranted. The role of
incommensurabilities, variation of direction and frequency of
the driving force, as well as the role of the shape of the substrate
are also worth examining.
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