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Thermophoretically induced flow field around a
colloidal particle

Mingcheng Yang* and Marisol Ripoll

A colloidal particle suspended in a fluid solvent with a non-homogeneous temperature undergoes a

thermophoretic force. This force may translate into a directed drift of the particle and a source-dipole-

like flow field around it. Alternatively, if the colloid is fixed in space, the accompanying flow is long-

ranged. In this work, we provide a first simulation study of the thermophoretic force-induced flow fields

by a particle-based mesoscopic method. The simulation results are quantitatively consistent with

theoretical predictions obtained by solving hydrodynamic equations. Based on these results, we propose

a single-particle microfluidic pump without movable parts, in which the flow direction can be reversed.

Furthermore, we quantify the long-range hydrodynamic attraction between two suspended particles

near the boundary wall induced by the thermophoretic flow field.
I Introduction

In the presence of a temperature gradient, a colloidal particle
experiences a directionalmotion. This phenomenon is known as
thermophoresis, thermal diffusion, or Soret effect.1–3 Practical
applications of thermophoresis are numerous, for example, in
separation of macromolecules in solution4,5 or biological
processes.6,7 Another interesting and less known effect of
colloidal thermophoresis is the induced uid ow. The ther-
mophoretic force exerted on the colloid is not an external driving
force but results from the interactions of the colloid with the
solvent which is inhomogeneous due to the temperature
gradient. The reaction force of the thermophoretic force induces
in turn a motion of the surrounding uid. Currently, small scale
hydrodynamic ows are receiving rapidly increasing attention,
especially in microuidic and biophysical applications. The
thermophoretically induced ow is therefore a promising alter-
native mechanism to originate small scale hydrodynamic ows.

Although the thermo-osmotic ow in porous media was
investigated a long time ago,8,9 its existence in colloidal
suspensions has only been experimentally proved very
recently.10,11 The experiments showed that in temperature
gradients colloidal spheres can form a two-dimensional crystal
on a boundary wall, which is similar to the electric eld-induced
colloidal crystal on electrode surfaces.12,13 The formation of
thermophoretic crystals clearly indicates the existence of the
thermophoretic ow eld around a xed colloidal particle in
non-isothermal suspensions. However, a precise observation of
this ow by means of experiments or computer simulations is
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still lacking. A detailed investigation will not only justify the
analytical predictions, but also help to understand more deeply
the thermophoretic effect in liquids, whose microscopic basis is
still under debate.2,3,14–16 Furthermore, this study will provide
insight into how to design high-performance temperature
gradient driven nanomachines.17,18

Here, we employ computer simulations to investigate the
thermophoretic ow eld induced by a colloidal sphere
immersed in a non-isothermal solvent. Both the colloidal
spheres and solvent are modeled at the particle level by a hybrid
mesoscopic-molecular dynamics scheme.19,20 The induced ow
eld around a colloidal sphere is analyzed in the case that the
colloid is externally xed and in the case that the colloid is
driing freely, showing a fundamentally different behavior. The
obtained results are quantitatively consistent with the theoret-
ical calculations. Further, the effect of boundary walls is studied
by xing the particle near one wall, in which a signicant lateral
ow is observed. This provides a direct simulation evidence for
the appearance of a long-ranged inter-colloidal hydrodynamic
attraction due to the thermophoretic ow eld. Finally, we
suggest a single-particle microuidic pump based on the ther-
mophoretic effect, in which no movable parts are required and
in which the ow direction can be reversed. The feasibility of
this pump is demonstrated by simulations.
II Simulation method

The typical sizes of a colloidal particle and the surrounding
solvent particles are separated by two to four orders of magni-
tude, which translates into even larger differences in the typical
time scales of both components. This intrinsic difficulty has
motivated the development of various mesoscopic simulation
methods. Here, we employ a hybrid scheme that describes the
Soft Matter, 2013, 9, 4661–4671 | 4661
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solvent by a particle-based simulation technique known as
multi-particle collision dynamics (MPC),19–22 while the interac-
tions of the colloidal particle with the solvent are simulated by
standard molecular dynamics (MD). This hybrid scheme is
especially appropriate for our purposes due to three main
reasons. Firstly, hydrodynamic interactions and thermal uc-
tuations are correctly captured on a large length scale.23,24

Secondly, the precise local conservation of energy enables the
sustainability of temperature inhomogeneities and heat trans-
port.25 Thirdly, the particle–solvent interactions can be naturally
included and tuned, which will have a relevant inuence on the
simulated colloidal thermophoretic properties.26

The MPC method consists of alternating streaming and
collision steps. In the streaming step, the solvent particles of
mass m move ballistically for a certain time h. In the collision
step, particles are sorted into the cells of a cubic lattice of size a,
and their velocities relative to the center-of-mass velocity of each
cell are rotated around a random axis by an angle a, ensuring
mass, momentum and energy local conservation. The solvent
transport properties are determined by the MPC parameters,27,28

for which we employ standard values a ¼ 130�, h ¼ 0.1, and the
mean number of solvent particles per cell r ¼ 10. Other param-
eters determine the simulation reference units for which we take
m¼ 1, a¼ 1 and kB�T ¼ 1, where kB is the Boltzmann constant and
�T is the average system temperature. Note that by construction,
the solvent dynamics in MPC is coarse grained by the collisions
within each collision cell. Hydrodynamic interactions can then
be reproduced for lengths larger than a.35

In order to impose the presence of a constant gradient of
temperature, methods developed for non-equilibrium molec-
ular dynamics can be employed with the MPC solvent as
extensively discussed in ref. 25. In the present work we employ
two different system congurations. In the rst conguration
the uid is conned between parallel walls, with periodic
boundary conditions (PBCs) in the other two directions. The
walls are implemented with the bounce back rule, which
approximately results in stick boundary conditions.29,30 In this
case a temperature difference on a thin layer close to each wall
is imposed by the velocity exchange algorithm,25,31,32 which
consists of interchanging the velocity of the warmest particle in
the cold layer with the coldest particle of the hot layer. The
second conguration considers PBCs in the three directions.
The way of obtaining the required periodicity in the tempera-
ture gradient direction consists of dividing the box into two
halves with a cold layer imposed in one extreme of the box and a
warm layer in the middle. In this case we obtain a temperature
gradient by thermalizing at different temperatures the warm
and the cold layers.25 In both congurations linear temperature
proles are nicely obtained. It should be emphasized that,
although MPC has shown liquid-like dynamical properties,33

the equation of state corresponds to the one of an ideal gas, due
to the lack of potential inter-particle interactions. The temper-
ature gradient translates therefore into a non-constant distri-
bution of the solvent density, which could eventually yield to
some compressibility or thermal expansion effects. The inu-
ence of compressibility in our simulations will be carefully
discussed later.
4662 | Soft Matter, 2013, 9, 4661–4671
Solvent and colloidal particles have a potential interaction.
Although different potentials can in principle be selected, in
this work we employ a truncated and shied Lennard-Jones
potential,34

ULJðrÞ ¼ 43
h�s

r

�2n
�
�s
r

�ni
þ 3; r\rc ¼

ffiffiffi
2

n
p

s (1)

with r the distance between the colloidal center and the solvent
particle. The potential intensity is 3 and the interaction length
parameter s. Here we have xed n¼ 3, 3 ¼ kB�T and s¼ 3a. High
values of s/a reproduce more accurately the ow eld, and also
increase signicantly the computational cost. Padding and
Louis36 showed that for s/a ¼ 2 the ow eld around a sed-
imenting colloid can be simulated with a small relative error.
The chosen s/a ¼ 3 in the simulations presented here is
therefore a good compromise to obtain an accurate description
of the ow eld. A central potential like that in eqn (1) is known
to result in slip boundary conditions. Between two MPC colli-
sion steps, Nm MD steps are implemented for the solvent
particles that are in the interaction range of the colloid. The
equations of motion are integrated by the velocity-Verlet algo-
rithm with a time step Dt ¼ h/Nm, where we use Nm ¼ 50.
III Thermophoretic force and flow field

In the presence of a temperature gradient, the inhomogeneities
of the solvent interactions result in a net thermophoretic force
fT on the colloid, which is, in general, directly proportional to
the temperature gradient. The direction and intensity of this
force completely depend on the nature of the solvent colloid
interactions. In simulations, different potentials have shown to
translate in important differences in the thermophoretic colloid
behavior. The thermophoretic force can be not only weaker or
stronger, but also change from thermophobic to thermophilic,
this is changing the direction of the dri motion from cold to
warm regions.26 The so repulsive potential in eqn (1) induces a
relatively strong thermophilic force. The coefficient that char-
acterizes the most relevant system thermophoretic properties is
the so-called Soret coefficient ST, or its dimensionless equiva-
lent aT ¼ �TST, the thermal diffusion factor.2,3 This factor indi-
cates the separation ratio between components in a binary
mixture, and although in the most general case it depends on
the thermophoretic force exerted in both components,37 for the
case of large particles the following approximation is accepted,

fT ¼ �aTkBVT, (2)

with VT the temperature gradient.
According to Newton's third law the surrounding solvent

experiences a reaction force �fT, which translates into a uid
ow. The analytical expression of the velocity eld around a
spherical particle in the low Reynolds number regime is stan-
dardly calculated by solving the Stokes equation.38 We implicitly
assume that the boundary layer approximation is valid (short-
range particle–solvent interactions), and the case of an incom-
pressible liquid. We rst consider the case of a xed particle in
the presence of a temperature gradient, which implies the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Cross-section of the flow field induced by a thermophilic colloid fixed
between parallel cold and hot walls. Small red arrows indicate the flow velocity
directionand intensity,while the thickblue lines correspond to theflowstream lines.
Theaxeswhere theflowvelocitiesarequantified inFig. 2aredisplayedhere inwhite.
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presence of a thermophoretic force, and the following boundary
conditions: (i) vanishing velocity eld at innity, (ii) vanishing
normal component of the ow eld at the particle surface, and
(iii) the integral of stress tensor over the particle surface corre-
sponding to fT. The resulting stationary ow eld11,39 is,

vðrÞ ¼ � 1

8phr

�
r̂r̂þ I

�
$f T þ R2

8phr3

�
3r̂r̂� I

�
$f T: (3)

Here, R is the particle radius, h the solvent dynamic viscosity,
r̂ ¼ r/|r| and I the unit tensor. The ow is the superposition of a
Stokelet and a source-dipole. Eqn (3) indicates that the ow
velocity around a xed particle in a temperature gradient has an
opposite direction to the thermophoretic force, and that it is of
long range since it decays linearly with the inverse distance
from the particle center.

A different conguration is when the particle is not xed, but
freely moving. In this case, the thermophoretic force results in
an averaged dri velocity, the thermophoretic velocity uT. These
quantities can be directly related by fT ¼ guT, with g the friction
coefficient. Note that for this analytical calculation the friction
is approximated to be spatially constant.40 As a consequence of
the dried motion, not only the thermophoretic force but also a
balancing viscous drag is exerted on the particle. The boundary
conditions to solve the Stokes equation are now: (i) vanishing
velocity eld at innity, similar as before, (ii) the normal
component of the ow eld is vanishing only in the particle
reference frame, and (iii) the balancing forces on the particle
result in a vanishing integral of stress tensor over the particle
surface. The obtained velocity ow eld38,41 reads,

vðrÞ ¼ R3

2r3

�
3r̂r̂� I

�
$uT: (4)

The ow velocity across the colloidal center and along the
temperature gradient has now the same direction as the ther-
mophoretic force, and decays with the inverse of the distance
cubed; this is much faster than in the case of a xed particle.
Note that the friction coefficient is related to the particle radius
with g ¼ AhR, where the numerical factor is A ¼ 6p for stick
boundary and A ¼ 4p for slip boundary conditions. This also
distinguishes the ows of the xed and moving colloids, since
in the case of a xed colloid the relation between the ow eld
and the thermophoretic force does not vary if the colloid has
stick or slip boundary conditions.

To conclude this section, it is instructive to compare the two
previous solutions of the Stokes equations, with the solution of
a sedimenting colloidal particle. The boundary conditions (i)
are similar in the three systems, while the conditions (ii) are
similar to the driing thermophoretic particle. For the sed-
imenting particle, the gravitational force g is directly applied on
the particle, and not the result of the interactions with the
surrounding solvent. The integral of the stress tensor over the
particle surface corresponds then to �g, similar to conditions
(iii) of the xed particle. The result is the Rotne–Prager–Yama-
kawa (RPY) tensor,42,43 which can also be understood as an
extension of the Oseen tensor. The RPY tensor has a similar
structure to the one in eqn (3), differing only in the numerical
prefactor of both contributions. The main difference is though
This journal is ª The Royal Society of Chemistry 2013
that the signs are opposite in both cases. That is, the ow
induced by a sedimenting particle has the same direction as the
gravitational force, while the ow induced by a temperature
gradient of a xed particle has the opposite sign to the corre-
sponding thermophoretic force.
IV Simulation results
A Flow eld of a colloid xed between parallel walls

We rst study the ow eld induced by a colloid xed equi-
distant to two parallel walls which are thermalized at different
temperatures (Fig. 1). In simulations the colloid is xed just by
freezing its motion. In experiments this can correspond to the
existence of a balancing external force, like in the case of laser
tweezers. The considered size of the simulation box in the
temperature gradient direction is Lz ¼ 50a, and Lt ¼ 40a in the
two perpendicular ones. Aer reaching the stationary state,
both the thermophoretic force and the velocity eld can be
computed. Within this conguration, fT can be measured by
directly summing the colloid–solvent interactions.26 In these
simulations VT x 0.0125�T/a, and the thermal diffusion factor
in eqn (2) is estimated to be aT x �200. By convention, the
negative aT is related to a resulting force towards the warm area.
The magnitude of aT in our simulation model is about 50-fold
smaller than that of a 1m colloidal sphere in previous experi-
ments regarding the thermophoretic ow.10,11 The ow eld
around the colloidal particle is obtained by time-averaging the
uid particle velocities in small cubic bins that we choose to be
of the same size as the collision cells. The thermophoretic ow
eld is subjected to thermal uctuations and it is proportional
to aT, such that with our parameters a long running time is
necessary to obtain a clear ow pattern. For the example in
Fig. 1, a total time of t¼ 105 in simulation units, and an average
over 50 independent runs has been employed. In principle,
smoother ow lines could be obtained by using a different
mesoscopic method which would neglect hydrodynamic uc-
tuations, like the standard lattice Boltzmann method.44–46
Soft Matter, 2013, 9, 4661–4671 | 4663
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Nevertheless when using this method, other technical prob-
lems, like the potential colloid implementation, would then
need to be taken into account, apart from evaluating the effect
of neglecting uctuations.

The stream lines in the colloid neighborhood in Fig. 1 show
that the ow goes from hot to cold, consistent with the ther-
mophilic behavior of the implemented colloid and eqn (3). In a
system bounded by walls, the steady-state net ow through any
section is zero. This means that the thermophoretically induced
ow eld must be balanced by a wall-induced backow (ow in
the opposite direction to the main ow), which originates the
vortex ring in Fig. 1. In the theoretical calculation in eqn (3), an
innite system is considered, such that the backow is negli-
gible. This contrasts to the nite-size simulation boxes pre-
sented here, where the backow effect and the consequent
vortex structure are signicant.

The quantitative values of the simulated velocity elds are
displayed in Fig. 2 where we also compare with the analytical
predictions. The component along the temperature gradient of
the ow velocity is displayed in two axes that cross the colloidal
center, showing in both cases a decrease of the magnitude with
distance from the particle consistent with eqn (3). One axis is
perpendicular to the walls and along the temperature gradient,
and one parallel to the walls. These axes are indicated as a and b
in Fig. 1. The open and closed symbols in Fig. 2b denote the
velocity values computed in both directions of axis-b, which we
could call ‘up’ and ‘down’. These two directions have no
intrinsic difference such that the differences between these
symbols just give an indication of the statistical error. Similarly,
the open and closed symbols in Fig. 2a refer to velocity values
computed in the cold and warm directions of axis-a, where
Fig. 2 Flow velocity as a function of distance from the colloidal center. Symbols
correspond to simulation results, dashed lines to the theoretical calculation in eqn
(3), dotted lines to the constant backflow approximation, and solid lines to
theoretical calculation with the reflection method. Arrows indicate the position of
the system boundaries. (a) Velocity in axis a. (b) Velocity in axis b.

4664 | Soft Matter, 2013, 9, 4661–4671
compressibility effects could be of importance, given the ideal
gas equation of state of the MPC solvent. Nevertheless, it can be
observed that the differences are only slightly signicant in the
close neighborhood of the colloid, where the velocity in the cold
side of the colloid is about 15% larger than in the warm side.
Therefore, compressibility effects will not be of great impor-
tance when applying the MPC solvent to study the hydrody-
namic interactions in non-isothermal suspensions with small
temperature gradients.

In order to perform a quantitative comparison with the
theoretical prediction in eqn (3), the shear viscosity is calculated
from MPC kinetic theory28 as hx8:7

ffiffiffiffiffiffiffiffiffiffiffiffi
mkBT

p
=a2, and its

temperature dependence is disregarded. The so potential in
eqn (1) employed in our simulations does not clearly determine
a particle radius. We employ the standard choice of considering
it equal to the interaction length parameter, this is R ¼ s. The
solution of the Stokes equation in eqn (3) (dashed lines in Fig. 2)
displays similar functional dependence as the simulation data
except from an upward shi. The shi arises from the wall-
induced backow not included in eqn (3) which effectively
considers the presence of walls placed at an innite distance. A
down constant displacement of eqn (3), enforcing zero velocity
at the walls, corresponds to the approximation of uniform
backow. This simple approximation (dotted lines in Fig. 2)
matches very well the simulation data. A more fundamental
approximation that corrects eqn (3) without considering
uniform backow can be analytically calculated by using the
reection method.47–49 The fact that the system is bound by two
walls instead of by one indicates that multiple reections are
necessary to obtain a satisfactory convergent result (see calcu-
lation details in the Appendix). Interestingly, the analytical
corrections with the reection method of eqn (3) (solid lines in
Fig. 2) almost perfectly coincide with the uniform backow
approximation in very good agreement with the simulation
data. If the backow is understood as an additional constant
ow in the direction of the thermophoretic force, it is to be
expected that an additional friction force is exerted on the
colloid which enhances the magnitude of the computed fT. The
intensity of the backow decreases linearly with system size and
is exerted in the fT direction. This nicely explains the strong
nite-size effects observed in our recent work,26 which have then
a signicant different nature than other nite-size effects. As a
standard example, the diffusion of the center-of-mass diffusion
of a polymer in equilibrium increases with box size, as a
consequence of the spectra truncation.23,50,51 Meanwhile, the
thermal diffusion factor aT in conned systems decreases with
system size, as a consequence of the decreasing backow.26
B Flow eld by two colloidal particles in a periodic gradient

In order to minimize the effects of connement in simulations
the usual procedure is to employ PBCs. As introduced in Section
II, in the presence of a temperature gradient PBCs are obtained
by dividing the simulation box in two halves with temperature
gradients of opposite signs.25,52,53 Given the system symmetry it
is standard to average the properties in both system halves by
only regarding about the sign difference. Here we study the ow
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 Cross-section of the flow field induced by two thermophilic colloids
symmetrically fixed in neighbouring temperature gradients with opposite signs,
and PBCs in the three dimensions.

Fig. 4 Cross-section of the flow field induced by one thermophilic colloid fixed
in one of the two neighboring temperature gradients with opposite signs, and
PBCs in the three dimensions.
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velocity induced by two colloids xed in the center of the two
simulation half boxes (Fig. 3). The size of the simulation box in
the temperature gradient direction is 2Lz with Lz ¼ 50a, and
Lt ¼ 40a in the two perpendicular ones. This geometry is
similar to the existing simulation studies of colloids in a
temperature gradient.26,54 The repulsive solvent colloid interac-
tions in eqn (1) result in a colloid with thermophilic properties
and in a solvent that goes to the cold regions in the axis crossing
the colloidal center along the temperature gradient. This means
that solvent ows with opposite directions converge in the cold
and hot layers, what enforces a vanishing ow velocity at the
boundary layers in the direction of the temperature gradient.
The resulting ow prole for each xed colloidal particle is
therefore very similar to the ow for a xed particle between
walls, as can be seen in Fig. 3, with a noticeable presence of
backow. It should be though noted that it is more accurate to
state that the ow is equivalent to the one originated by walls
with slip boundary conditions since the velocity in the direc-
tions perpendicular to the temperature gradient does not
necessarily vanish. Therefore, the use of PBCs with the presence
of periodic temperature gradient does not help to minimize the
effects of connement.

C Flow eld by one driing thermophoretic particle

It is a considerably more difficult task to directly obtain the ow
eld around a driing thermophoretic particle than the case of a
xed particle due mainly to two facts. Since PBCs are accompa-
nied by a periodic gradient, it should be completely ensured that
the colloidal particle does not reach the system boundaries. On
the other hand, themotion of the particle will explore areas with
different temperatures which correspond to areas with varying
density, viscosity andeventually thermophoretic properties. This
makes the precise comparison with the analytical approaches
that consider properties without temperature dependence diffi-
cult. In order to circumvent these difficulties, we investigate the
behaviour of a different system and we show how to precisely
map it to the freely moving particle.

The system we investigate in the rst place consists of a
periodic gradient with PBCs in three dimensions. The box size
is 2Lz with Lz ¼ 40a in the direction along the temperature
gradient, and Lt¼ 36a in the two perpendicular directions. The
employed temperature gradient is VT ¼ 0.0082�T/a. Here one of
the half boxes includes the presence of a xed colloid in the
center, while there is no colloid in the other half box with
This journal is ª The Royal Society of Chemistry 2013
opposite temperature gradient, as depicted in Fig. 4. When the
temperature gradient is switched on, the originally quiescent
uid is initially accelerated by the thermophoretic force. In
contrast with the examples previously discussed, the boundary
conditions do not enforce a vanishing velocity at the cold and
hot layer boundaries. This, together with the mass conservation
conditions, results in a continuous net ow across the whole
system, as can be clearly observed in Fig. 4. At the same time,
the net ux of the uid on the colloidal surface exerts a friction
force in the ow direction, which gradually weakens the uid
acceleration until a constant velocity is reached. In the
stationary state, the thermophoretic force fT is exactly balanced
by the friction force fg, such that the integral of the stress tensor
over the particle surface vanishes.

In systems where the Galilean invariance is fullled, the
problem of a colloid moving with velocity U in a quiescent
solvent is exactly equivalent to that of a ow past xed colloid,
with velocity � U at an innitely distant position. The velocity
distribution of the solvent around the moving colloid can be
obtained from the solvent velocity around the xed colloid by
simply subtracting the velocity; the uid is then at rest at
innity. MPC satises Galilean invariance,55 and in our situa-
tion, the equivalence can be understood by further verifying the
validity of the boundary conditions to solve the Stokes equa-
tions in the case of a freely moving particle, as specied to
obtain eqn (4). It can be checked that this is the case, since, for
example, in both systems a vanishing force is exerted on the
colloidal surface. The ow velocity around one xed colloid in a
periodic gradient ṽ(r) can therefore be understood as the
superposition of two independent ow elds, v ̃(r) ¼ u(r) + v(r).
Here, v(r) corresponds to the ow eld around a moving
particle, and u(r) to the velocity of the uid innitely separated
from the colloid with a constant net ux. In an incompressible
uid, a constant net ux implies a constant velocity eld, but
since MPC has an ideal equation of state, the solvent density
depends together with the temperature on the spatial coordi-
nate along the temperature gradient, z, such that the super-
imposed ow velocity eld u(r) ¼ u(z) with u(z)r(z) ¼ J. This
implies that the velocity u(z) will have the same functional
dependence as the temperature, namely it grows linearly from
the cold to the warm side. The contribution u(z) can be obtained
directly in the simulations by computing the average velocity in
an axis along the temperature gradient that is as distant as
Soft Matter, 2013, 9, 4661–4671 | 4665
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Fig. 5 Cross-section of the velocity field around a freely drifting thermophilic
colloidal sphere in a temperature gradient. The velocity field is obtained from the
simulation shown in Fig. 4. The inset shows the theoretical result from eqn (4).

Fig. 6 Velocity field around a drifting thermophoretic particle as a function of
distance from the particle, with the positive direction toward the hot side.
Symbols refer to the simulation results, lines to the theoretical calculation from
eqn (4). (a) Velocity field Va, solid and open symbols correspond to Va,c and Va,h,
respectively. (b) Velocity field Vb.
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possible to the colloidal particle, where v(r) is approximately
vanishing. The values obtained in such axis result indeed in a
linear velocity prole and in a constant ux J except from uc-
tuations smaller than 1%.

Consequently, the ow eld of a moving particle can be
determined simply by subtracting the two velocities directly
computed in the simulations as v(r) ¼ ṽ(r) � u(z). Fig. 5 shows
the ow eld of a freely driing thermophilic colloidal sphere
mapped from the ow eld of one xed particle in a periodic
gradient. The ow eld has the direction of the colloidal ther-
mophoretic force along the temperature gradient in the axis
that crosses the colloidal center, as predicted by eqn (4), and
there is no backow.41 Precisely, the absence of backow facil-
itates the analytical calculation of the ow eld in this case,
which is shown in the inset of Fig. 5 and as can be seen it agrees
very well with the simulated one.

In order to quantify the colloidal thermophoretic velocity uT,
the mapping procedure has to be inversely considered, and it
can be obtained from the subtracted velocity of the uid. As
explained the subtracted velocity is position dependent, and in
order to quantify uT, the velocity should be considered at the
colloidal position, uT ¼ �uðzcolÞx0:0055

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
. With this

velocity, a quantitative comparison with the velocity eld pre-
dicted from the Stokes equation in eqn (4) can be performed.
The comparison is displayed in Fig. 6, and it is carried out in
two axes that cross the colloidal center. One axis is in the
direction of the temperature gradient and one perpendicular to
it (similar to Fig. 1). The analytical prediction in eqn (4) does not
contain any adjustable parameter, and given the fast decay of
the velocity, no further corrections need to be performed due to
the nite size of the simulation box. The results in Fig. 6 show a
very good agreement between simulations and the solution of
the Stokes equation in both analyzed axes. Moreover, in Fig. 6a
the simulation results va,c and va,h have no larger differences
than those produced due to statistical errors, which further
conrms that the effect of the compressibility can be neglected
in our non-isothermal simulations.
4666 | Soft Matter, 2013, 9, 4661–4671
In the case of one colloidal particle xed between parallel
walls, or equivalently of two colloids in a periodic temperature
gradient, the thermophoretic force could be obtained by directly
measuring the colloid solvent interactions. This is not the case
now since the direct interactions provide a net vanishing force
on the colloidal particle. The thermophoretic force can be
alternatively estimated by its relation with the thermophoretic
velocity fT ¼ guT, where the friction coefficient g needs to be
determined. In principle, this coefficient can be determined
from the colloid self-diffusion coefficient, or approximated as
g ¼ 4phR, which considers slip boundary conditions. This
relationship together with eqn (2) allows us to calculate the
thermal diffusion factor as aT x �220, which is 10% higher
than the one computed in Section IV-A. The lack of backow in
this setup would make us to expect an effective smaller value of
aT, such that other factors should contribute to explain this
deviation. Although we do not have a quantitative estimation of
these factors, it can be expected that besides the intrinsic
statistical error of the simulations, the overestimation of the
hydrodynamic radius of the colloidal sphere36 might have a
noticeable inuence.

Another important consideration is the uid temperature.
When the moving colloid is considered in a quiescent uid
(Fig. 5), the uid is completely thermalized. Meanwhile, when
one xed colloid is considered in a moving uid (Fig. 4), the
uid moves over a region with different temperatures, such that
it is in principle partially thermalized. These partial thermali-
zations can be neglected if the heat conduction is much faster
than the uid motion. Otherwise the real uid temperature
could be different than the one assumed by the existing
This journal is ª The Royal Society of Chemistry 2013
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temperature gradient, such that a correction factor would be
required to map these two systems as exactly equivalent. The
characteristic times of the heat conduction and the uid
translation can be expressed as sc � s2/c with c the thermal
diffusivity of the solvent, and su � s/u with u the typical velocity
of the moving uid, respectively. Using the estimated c from
kinetic theory28 and uT obtained in the simulations, we have
sc/su � 10�1. Although the time scale separation is only of one
order of magnitude, the trend indicates that the assumption
used in our mapping strategy is justied. On the other hand,
this could also be the origin of the deviation of the estimated
value of aT.
Fig. 7 Cross-section of the flow field around a thermophilic particle fixed in a
near-wall environment. The inset shows the velocity field in a plane parallel to the
walls and between the colloid and the hot wall.
V Applications

The existence of a thermophoretically induced uid ow has
interest not only from the fundamental point of view, but can
also nd numerous practical applications. In the following we
present and discuss two of these applications. The rst one is
the existence of inter-colloidal hydrodynamic attraction
induced by the thermophoretic ow, which has already been
shown to be able to form thermophoretic crystals. And the
second one is the possibility of designing a single particle
thermophoretic pump.
A Thermophoretically induced colloidal attraction

In the cases where xed particles have so far been investigated,
the colloids have been considered equidistant from the walls or
the boundary layers, which intends to better reproduce the
properties in bulk. However, when the colloidal particles are not
considered to be xed, they will naturally dri towards one of
the walls as a consequence of their directional thermophoretic
force. The colloids may then stay at an averaged xed distance
of the conning wall performing a two-dimensional Brownian
motion.10,11 It is then to be expected that the thermophoretically
induced ow eld will signicantly vary from the symmetric
case in Fig. 1.

In order to study the wall effect in the thermophoretic ow
eld, we perform simulations of a thermophilic colloidal
particle conned between walls at different temperatures,
where the colloidal position is xed at a distance hw¼ 5.5a from
the hot wall. Note that the particle wall separation hw is large
enough to consider more than one MPC collision box between
the colloidal surface and the wall, such that the hydrodynamic
behavior can be properly resolved. The distance between the
walls is Lz ¼ 30, while PBCs are employed in the other two
directions with box size Lt ¼ 40a. The steady ow eld is
depicted in Fig. 7 where the signicant asymmetry of the
streamlines is easily observed. This ow pattern is the same as
the analytical prediction.11,39

In contrast to the symmetric system in Fig. 1, the thermo-
phoretically induced ow eld has now a strong lateral
component toward the colloidal sphere and parallel to the wall,
which necessarily affects the motion of ambient particles. If a
second particle is in the neighbourhood of the colloid, it will
suffer hydrodynamic drag toward the rst particle. When the
This journal is ª The Royal Society of Chemistry 2013
lateral ow is strong enough (high |aT|), the attraction force can
be larger than other repulsive contributions or than the thermal
uctuation, originating stable colloidal aggregation. Such 2D
colloidal crystals induced by the presence of thermophoretic
ow elds have indeed been experimentally observed.10,11

Experiments are performed with thermophobic colloids such
that the colloidal accumulation takes place in the cold wall in
contrast to our case. Note that if the colloid would be xed by an
external force to the opposite wall of their thermophoretic
affinity (e.g. thermophobic colloid xed at the hot wall) the
contribution of the thermophoretic ow would induce a repul-
sive interaction.

By computing the typical lateral ow velocity as
ulx0:0005

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, the rst quantitative estimation of the

hydrodynamic force can be performed as fH x 4phsul x
0.15kBT/a. In order to evaluate more precisely the hydrodynamic
attraction induced by the lateral ow, we perform simulations
of two thermophilic colloidal particles xed at a distance hw ¼
5.5a from the hot wall. The distance between the walls is now Lz
¼ 30, and the box size in the other two perpendicular directions
is Lt ¼ 50a. The attraction force can be directly obtained in our
simulations by evaluating the solvent–colloid interactions that
now will have a non-vanishing component not only in the
direction of the temperature gradient but also perpendicular to
it, in the direction of the second colloid. Independent simula-
tions with colloids placed at different positions allow us to
obtain the attraction force as a function of inter-particle sepa-
ration as shown in Fig. 8. Similar to the particle wall separation,
the smallest separation between colloids is large enough to
properly capture hydrodynamic interactions. The computed
magnitude of fH in Fig. 8 is consistent with our rst rough
evaluation. The attraction force decreases monotonously with
the separation, which qualitatively agrees with the experimental
results.10,11 From the force curve, an effective potential between
particles can be obtained with a potential well depth of�1.5kBT.
Soft Matter, 2013, 9, 4661–4671 | 4667
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Fig. 8 Hydrodynamic attraction force as a function of the inter-particle sepa-
ration. Symbols correspond to simulation data and the dashed line to the
analytical prediction in eqn (5).
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Thermal uctuations will then contribute to eventually over-
come the attractive potential between colloids with non-xed
positions, such that no stable aggregation occurs in our system.
Stable congurations can be achieved by, for example,
increasing the size of the colloid,10 which increases the thermal
diffusion factor aT of the colloids.

Analytically, the attraction induced by the thermophoretic
ow eld has been calculated using the reection method. To
the rst reection, the attraction force fH is expressed as11,39

fHðsÞ ¼ f cH

" �
R2 þ hw

2
�
s�

s2 þ 4hw
2
�5=2 � 10R2hw

2s�
s2 þ 4hw

2
�7=2
#
; (5)

with s the inter-colloidal separation and the constant prefactor
f cH ¼ 6lhwRfT calculated with the slip boundary conditions. Here
the absolute value of the thermophoretic force is considered,
fT ¼ |fT|. The factor l ¼ l(hw) is a dimensionless correction for
the friction due to the presence of the wall,56,57 which can be
analytically obtained for our case as l x 1.43. Thus, fH can be
calculated without any adjustable parameter, in contrast to the
experimental measurements.11 Fig. 8 shows the simulation
results together with the analytical prediction showing a very
nice agreement for large separations. At shorter distances, the
analytical prediction appears to signicantly underestimate the
values obtained by simulations of the attraction force. Devia-
tions might be due to different effects. The analytical approxi-
mation in eqn (5) is obtained with only one reection which
essentially neglects the effect induced by the second wall. This
second wall is anyhow relatively distant from the colloid, such
that we do not expect a large contribution from this effect. Other
effects disregarded in the analytical expression are the distor-
tion of the ow eld due to the presence of the second colloid,
and the effect of the periodic images. The contribution of the
periodic images would in principle decrease the magnitude of
the attraction and will be more important at larger separations.
The larger distances considered are still considerably smaller
than the size of the employed system size such that we expect
this contribution to be negligible. The distortion of the ow
eld due to the presence of the second colloid is expected to
increase for smaller separations. This could explain the
4668 | Soft Matter, 2013, 9, 4661–4671
enhancement of the simulation results with respect to the
analytical theory at short distances, an effect that can then be
expected also in experiments. The larger enhancement found at
the two shortest measured distances should though be carefully
considered, since at these distances is where some compress-
ibility effects were found to be more relevant. Other effects can
also affect the results, like the temperature dependence of the
thermal diffusion factor.58
B Single-particle microuidic pump

In Section IV-C we have investigated the ow eld around one
particlexed inaperiodic temperaturegradient.As showninFig. 4,
this conguration results in a net solvent ow which can be
exploited to fabricate a single-particlemicrouidic pump. In order
to validate this idea we perform simulations of one thermophilic
spherical colloid xed in a periodic gradient conned between
parallel walls. Walls are implemented with stick boundary condi-
tionsbyusing thebounce-backof theMPCparticles at thewall. The
chosenwall separation is Lt¼ 12a. PBCs are used in the other two
directions.Theboxsize in thedirectionof theperiodic temperature
gradient is 2Lzwith Lz¼ 22a, and the third and neutral direction is
Lt¼ 12a. The employed temperature gradient is VT¼ 0.0135�T/a.
As depicted in Fig. 9, the colloidal sphere is xed equidistant from
the walls and from the cold and the hot layer, while no colloidal
particle is considered in the neighbouring half-box where the
temperature gradient has an opposite sign. In this conguration
the colloid has the hot layer on its right, which originates a ow
from right to le. The direction of the ow could be reverted by
placing the hot layer on the le of the thermophilic colloid, or by
employing instead a colloid with thermophobic properties.

The so-called Knudsen pumps59,60 are also pumps operated
without any moving parts and with a temperature gradient
along the walls of a micro-channel. The driving mechanism is
though completely different from the one presented in our
work. The Knudsen pumps are driven thermal creep gas
ows,61,62 while here we present a pump driven by liquid ther-
mophoretic forces. Thermal creep ow occurs when the mole-
cules of a rareed gas interact with walls that have a position
dependent temperature. The molecules in a high temperature
region can transfer more momentum to the wall than those in a
low temperature region, such that the gas exerts a net force on
the wall against the temperature gradient.62 This in turn
translates into an effective ow velocity that goes always from
cold to warm areas. In the present thermophoretic pumps, ow
can occur in both directions. A different family of microuidic
manipulation that has been widely used63,64 is based on the
existence of a surface tension gradient in the direction of a
temperature gradient. For example, liquid droplets or lms on a
surface can be transported along or against a temperature
gradient.65,66 A very recent simulation work shows that liquids
can also be pumped by a symmetric temperature gradient
through a composite nanochannel,67 in which one half of the
channel wall has a low uid–wall surface energy while the other
half has a high one. Essentially, the physical mechanism is the
same as the pump we present here, since the single particle can
be regarded as a curved surface or as a building-block of planar
This journal is ª The Royal Society of Chemistry 2013
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Fig. 9 Single-particle thermophoretic pump. Thermophilic colloidal particle confined between parallel walls, with both extremes of the tube connected by PBCs, and
larger temperatures in the tube center. Given that the colloid is thermophilic and has the hot layer on its right, the solvent continuously flows from right to left.
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walls. The variant proposed here is based on the properties of a
single particle which provides an important additional degree
of exibility in the design of microuidic devices.

We analyze the averaged velocity prole across the tube in
the simulated single particle pump. Two bins 5a wide are
chosen at both sides of the cold layer. These are completely at
the le and at the right of the tube as displayed in Fig. 9. The
results in Fig. 10 show the expected parabolic prole, although
the two bins are signicantly different. This difference origi-
nates from the thermal creep ow, since in our simulations the
mean free path cannot be taken to be arbitrarily small due to
computational costs. For the le half of the channel in Fig. 9,
the thermal creep ow is against the thermophoretic ow eld
such that it effectively reduces the slip on the wall. However, the
thermal creep ow in the right half of the channel has the same
direction as the thermophoretic ow eld which noticeably
enhances the slip. This difference can also be directly seen in
Fig. 9 where the le half of the wall seems stickier than the right
half. The inset of Fig. 10 shows the parabolic prole of the ow
in a similar conguration but with a thermophobic colloid.
Here, the ow is in the opposite direction.
Fig. 10 Velocity parallel to the walls and between them for the flow in Fig. 9.
Triangles correspond to the average profile in a bin 5a wide just on the right of
the cold layer. Circles relate to a bin 5awide just on the left of the cold layer. Lines
refer to a parabolic fit. The inset corresponds to the velocity profile in the same
layers but for a thermophobic colloid.

This journal is ª The Royal Society of Chemistry 2013
A nal point that distinguishes the ow of this pump and the
ow displayed in Fig. 4 is the existence of wall friction, besides
the friction of the colloidal surface. This means that the integral
of stress tensor over the particle surface for the case of the pump
is not zero. It can be therefore expected that the magnitude of
the solvent ow decreases with increasing tube length.
VI Discussion and conclusions

A colloidal particle in solution in the presence of a temperature
gradient does not only suffer a thermophoretic directed force,
but also induces a thermophoretic ow eld. This ow is here
extensively studied by means of mesoscopic simulations. The
obtained results quantitatively agree with the analytical
predictions, which support both the assumptions made in the
theory and the validity of the MPC simulation technique to
investigate the dynamics of non-isothermal solutions. The ow
eld in the case that the colloidal particle is xed is rst
analyzed. The force exerted on the colloid is in this case the
thermophoretic force, and the induced ow eld is Stokeslet-
like and therefore long ranged. This is in some aspects similar
to a sedimenting particle, although the lack of motion and the
fact that the driving force is not external make them clearly
different. We also investigate the ow eld around a freely
moving particle. The thermophoretic force balances with the
friction force due to the colloidal motion, such that the total
force on the colloid vanishes. The induced ow eld is then
source-dipole-like and therefore very short ranged. The uid
motion in these two examples does not violate the second
principle of thermodynamics since these are non-equilibrium
systems to which external energy has to be constantly supplied
in order to maintain the temperature gradient. During the uid
motion, thermal energy is continuously transformed into
translational kinetic energy of the uid, which is simulta-
neously dissipated by viscous friction. In the stationary state,
the two processes balance each other.

The importance of hydrodynamic interactions in the ther-
mophoretic phenomena has long been a subject of debate.3,68

The most important example is the explanation of the size
independence of thermal diffusion coefficient of a dilute high-
weight polymer solution.14,41,69,70 From the study presented in
Soft Matter, 2013, 9, 4661–4671 | 4669
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Fig. 11 Schematic diagram of the reflection method used in our calculations.
With solid lines, the actual walls and the central colloid; with dashed lines the
corresponding images.
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this manuscript, it is straightforward to argue that the ther-
mophoretically induced ow eld around a xed colloidal
particle accounts for the effect of the thermophoretic force,
while the ow around a moving colloid accounts for the
combination of the thermophoretic and friction forces. In a
recent work37 we show how the long ranged hydrodynamic
contribution of the ow eld can explain the size independence
of thermal diffusion coefficient of a dilute high-weight polymer
solution. In our reasoning this occurs just as a cancelling effect
of the dependence of the thermophoretic force and the self-
diffusion coefficient.

As a practical application, we show that long-ranged attrac-
tion between colloids can be induced as a consequence of the
hydrodynamic thermophoretic ow eld near a boundary wall.
This is consistent with the theoretical calculations and the
recent experimental observations.10,11 Our simulations offer a
complementary verication of this effect. An enhancement of
the attraction at short distance with respect to the analytical
prediction is observed in our simulation results. Finally we
present a prototype of a single-particle thermophoretic pump
which has not yet been experimentally veried. In this pump the
ow eld can be generated given the presence of a thermo-
phoretic particle and a temperature eld with an alternating
gradient. The implementation of this pump does not require
the presence of any movable part. The direction of the ow is
determined by the orientation of the alternating temperature
gradients and the thermophoretic properties of the employed
particle. One very important advantage of this pump in
comparison with other existing pumps59,60,63,64,67 is that the ow
can be controlled at a single particle level which will allow the
development of promising microuidic applications.
VII Appendix A: reflection method to
calculate wall-induced backflow

The Stokes equation for the ow eld is solved in eqn (3)
considering vanishing velocity eld at innity. In general, the
effect of one near wall can be analytically described by using the
reection method. In order to cancel the uid velocity on the
wall (stick boundary conditions), the ow eld can be evaluated
by considering an image particle with respect to the wall.47,48

The ow eld at a point r ¼ (rx, ry, rz) due to the image placed at
r 0 ¼ (r 0x, r 0y, r 0z) is found to be47,48

vi ¼ Fj

8ph

(
�
 
dij

~r
þ ~ri~rj

~r 3

!
þ 2hw

�
djadak � djzdzk

�

� v

v~rk

"
hw~ri

~r 3
�
 
diz

~r
þ ~ri~rz

~r 3

!#)
; (A1)

where ~r denotes the relative position ~r ¼ r0 � r and its modulus
is ~r. Here z is the direction perpendicular to the wall, the indices
i, j, and k ˛ (x, y, z), a ˛ (x, y), and the Einstein's summation
convention is employed. Fj is the force exerted on the solvent by
the image, and hw is the image–wall distance. Note that eqn (A1)
only includes the Stokeslet part of the ow produced by the
4670 | Soft Matter, 2013, 9, 4661–4671
image particle, and higher-order source doublet contributions
are neglected.

For the case of the thermophoretic ows va and vb considered
in Fig. 1 the ow and force are both perpendicular to the wall
and eqn (A1) is simplied as

vz ¼ fT

8ph

2
41
~r
þ ~rz

2

~r 3
þ 2hw hw � ~rzð Þ

~r 3

0
@1� 3~rz

2

~r 2

1
A
3
5; (A2)

here the thermophoretic force fT ¼ �Fz is used, and hw can be
identied with Lz/2. If the system only has one wall, then the
combination of eqn (3) with eqn (A2) gives the correct total
velocity eld. The existence of the second wall makes it neces-
sary to consider an additional image to cancel the ow also at
such wall. Nevertheless, the image of the second wall gives a
non-vanishing contribution in the rst wall. This can be cor-
rected by considering additional images as sketched in Fig. 11.
To obtain a satisfactory convergence, even higher-order images
need to be taken into account. In the case of Fig. 2, the
approximations for va and vb are calculated to the 4th and 5th

order images, respectively.
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