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On the collapse transition of a polymer brush: the case
of lateral mobility

F. A. M. Leermakersa and S. A. Egorovb

We consider a polymer brush composed of end-grafted polymer chains. Classical theory advocates that a

worsening of the solvent quality results in a smooth decrease of the brush height from a swollen to a dense

brush. We report that a homogeneous brush under poor solvent conditions can have a negative surface

pressure, indicating an instability in favour of lateral segregation. Also by using a two-gradient version

of the self-consistent field (SCF) theory we show that, in contradiction to the classical result, but in line

with the negative pressure, the collapse transition for laterally mobile chains has a first-order character,

exemplified by the presence of a compact brush that coexists with a dilute gas of end-grafted chains.

The dense brush assumes a pancake shape wherein the chains balance the stretching entropy against

surface energies. The height of the pancake scales sub-linearly with the chain length because the local

grafting density decreases with increasing chain length. In analogy with wetting studies we discuss how

the spreading parameter has an influence on the pancake structure. Accordingly, the height increases

with worsening of the solvent quality and decreases with increased affinity for the substrate. The two-

phase state is expected in many practical situations.
I Introduction

A collection of linear chains graed onto a substrate or
anchored onto an interface, such that the chains are strongly
interacting, is known as a polymer brush. Polymer brushes are
popular structures not only from an experimental and applica-
tion point of view, but also from a theoretical perspective.1–7

There are many unique results known for the polymer brush.
For example, when the number of chains per unit area, that is
the graing density s, exceeds the overlap threshold s > 1/N,
with N being the number of segments per polymer chain, we
know that the height H of this layer is invariably proportional to
the chain length:8

H f Ns1/3n1/3 (good solvent n ¼ 1 � 2c > 0) (1)

H f Ns1/2u1/2 (theta solvent c ¼ 0.5) (2)

H f Ns (poor solvent c > 0.5) (3)

where u is a ternary interaction parameter.
Note that these predictions are generated using the classical

SCF theory and are elaborated by a scaling analysis which
requires as a prerequisite that the brush remains laterally
homogeneous. The lateral homogeneity is undisputed unless
olloid Science, Wageningen University,
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the solvent quality is poor. In this paper we will focus on the
poor solvent case and test the validity of this result.

It is well known that the classical theory predicts that the
brush height decreases smoothly, that is not jump-like, upon
worsening the solvent quality.9 In other words it predicts that
the collapse transition is not a rst-order transition. To illus-
trate this point we present the prediction of the numerical SCF
theory (for details see below) for the height H of the brush as a
function of the Flory–Huggins interaction parameter in Fig. 1.
In this result the height of the brush is dened by the rst
moment of the end-point distribution (cf. eqn (11)). The results
shown in Fig. 1 are for brushes with chain lengths
Fig. 1 The height of the brush H, scaled by the chain length N, as a function of
the Flory–Huggins parameter c as found by the classical SCF theory. The grafting
density is given by s ¼ 0.02, and the chain lengths N ¼ 100, 200, 500, 1000, 2000
and 5000 from top to bottom lines (for the longer chain lengths, the curves
overlap).
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N ¼ 100,.,5000. Inspired by the linear chain length depen-
dence (cf. eqn (1–3)), the height is normalised to the degree of
polymerisation. As is seen, the collapse of the neutral brush has
a universal dependence on the FH interaction parameter. The
graing density was xed to s ¼ 0.02 which is just a factor two
larger than the overlap threshold for N ¼ 100. This explains the
relatively large deviations from the universal c dependence for
the shortest chains. The universal dependence for the larger
chain lengths strongly supports the idea that even in the limit of
N / N the transition remains smooth. Close inspection of the
‘universal’ curve shows that for a sufficiently large N the
curvature v2H/vc2 ¼ 0 changes sign at c ¼ 0.5.

The prediction for the collapse transition of the brush is
remarkable. To elaborate on this we rst consider a system of
polymer chains in a monomeric solvent whose chains are not
graed to any surface. Upon worsening of the solvent quality in
this system, it is well known that above a critical value of the
interaction parameter c, the system features a solubility gap. In
this case there is a concentrated polymer solution in equilib-
rium with a (monomeric) solvent phase with a very low polymer
concentration. Within the Flory–Huggins theory10 the critical
point of this system is

ccr ¼ 1

2

�
1

1þ ffiffiffiffiffi
N

p
�2

(4)

4cr ¼ 1

1þ ffiffiffiffiffi
N

p (5)

It is known11 that the interfacial tension gPS and the density
difference of polymer Df between the polymer-rich and solvent-
rich phase, that is Df¼ 4polymer rich phase

P � 4solvent rich phase
P , obey

(in the mean eld) to the power-law dependences

gPS f (c � ccr)3/2 ¼ Dc3/2 (6)

Df ¼ fDc1/2 (7)

which denes Dc. From numerical SCF results we found that
not too far from the critical point gPS z 0.45Dc3/2 (for N ¼ 200).
This result is used below. The super-linear scaling with Dc is
understood from the observation that when the system
approaches the critical point the interface widens (and in fact
also diverges when Dc / 0) and this brings in an additional
entropic gain on top of the enthalpic contributions.

Now let us consider the scenario of a polymer–solvent system
in the case that c > ccr, and discuss how the polymer phase
(minority phase) interacts with a substrate. The possible
scenarios are well known in the eld of wetting.12 Basically there
are three cases. (i) The substrate (W) is wet by the polymer. In this
case the polymer covers the substrate completely; the lm
thickness is homogeneous and the thickness is given by the
amount of polymer available per unit area of the substrate. In
this case there are just two interfaces, namely substrate–poly-
mer (that is the polymer-rich phase) and polymer–solvent (that
is, phases rich in polymer (P) and solvent (S), respectively). (ii)
The substrate is wet by the solvent. In this case the solvent is
preferentially at the substrate and the polymer-rich phase is
3342 | Soft Matter, 2013, 9, 3341–3348
formed somewhere in the bulk and exists as a spherical drop.
Again there are just two interfaces, namely substrate–solvent
and polymer–solvent. (iii) The surface is partially wet by the
polymer. In this case there are three interfaces in the system,
namely the polymer–solvent (PS), the substrate–polymer (WP)
and substrate–solvent (WS) interfaces.

The three interfaces have an interfacial free energy per unit
area (interfacial tension) gPS, gWP and gWS. Let us assume that
the polymer is the minority phase and consider that the poly-
mer drop is on the surface. At the edge of the drop there is a
three-phase contact line; that is where the polymer-rich phase,
the solvent-rich phase and the substrate come together. At this
three-phase contact line there exists a contact angle a.
Balancing the interfacial tensions leads to Young's law:

cos a ¼ gWS � gWP

gPS

(8)

1� cos a ¼ gPS � ðgWS � gWPÞ
gPS

¼ S

gPS

(9)

which denes the spreading parameter S.
In the absence of gravity the curvature of the sessile drop is

homogeneous and thus the shape is a sphere cap. Importantly,
for large drops the PS interface becomes sufficiently far sepa-
rated from the WP interface so that the corresponding interfa-
cial energies are well dened.

One way to look at this result is that laterally along the
surface we see the coexistence of a polymer-rich phase (at
the location of the drop) and a solvent-rich phase (outside the
drop), which may be seen as a ‘gas’ of polymers. This coexis-
tence of the two phases is of course possible due to the choice of
the interaction parameters with the substrate (partial wetting),
but is primarily the signature of a rst-order phase transition of
the polymer–solvent system, that is, c exceeds the critical value.

Let us now see how the case of a sessile drop of polymers in
two-phase coexistence differs from the polymer brush under
poor solvent conditions. One immediately notices that a chain
in the polymer-rich phase is completely mobile, whereas the
chains are pinned to the substrate/interface in the case of a
brush. This pinning constraint has, as we will see, a few major
consequences. Importantly we notice that for a brush it is not
always true that the lateral mobility is necessarily absent.
Indeed there are cases wherefore the polymer chains are teth-
ered (by way of some anchoring group) onto a mobile interface
(e.g. a liquid–vapour interface). Then the lateral mobility of the
chains will allow them to organise themselves laterally along the
surface. In such a case the difference between the polymer-rich
phase in the drop and the polymer brush comes down to the
restriction of the end-point in a 3D volume versus a 2D plane.
Below we will focus on the case that the graed chains are
laterally mobile.

In our view a brush in poor solvent, that is c > ccr, is not so
much different from a collection of chains in a polymer-rich
phase. Of course, in the case of a collapsed brush the ‘drop’
shape will typically deviate strongly from the sphere cap.
Another important difference is that the interfacial free energies
of the free polymer–solvent (PS) and the polymer–surface (PW)
This journal is ª The Royal Society of Chemistry 2013
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cannot be determined independently from each other. Indeed
the two interfaces are necessarily in close proximity due to the
chains that bridge elastically between the two interfaces. Below
we take a pragmatic standpoint and still consider the PW and
PS interfaces separately and assign phenomenologically inter-
facial free energies to the individual PS and PW interfaces. Here
we will write �g to remind ourselves that strictly these quantities
are only pragmatically dened.

It must be stressed that there are already a number of reports
in the literature that a brush can undergo a jump-like phase
transition when the solvent quality becomes poor.8,15 Also the
lateral aggregation of surfactants, lipids or polymers in Lang-
muir troughs is well documented.16 Our report adds to the
evidence that a transition should be expected. We will elaborate
on this below, both in one-gradient and in two-gradient SCF
computations. We will complement our results by scaling
arguments.
II Numerical self-consistent field model

The SCF theory for polymer brushes is well documented.17,18

Here we will elaborate on the Scheutjens–Fleer variant wherein
a lattice is used as a means to discretise space. The polymer
chains are assumed to be composed of segments that t the size
of a lattice site. Within this SF-SCF approach it is possible to
elaborate on models wherein the polymer density can vary
normal to the graing surface (one-gradient model) but also
wherein the polymer density gradients can develop in two
directions (two-gradient models).19 The latter can be used to
study directly the phase coexistence of laterally mobile chains.
We refer to the literature for details and mention the prereq-
uisites of the numerical SCF theory while introducing the
model(s).

Let us consider linear polymer chains composed of segments
(P), that is spherical units of size b, numbered s ¼ 1,.,N. The
rst segment is constrained to a coordinate z ¼ 1, just above a
surface W position at z # 0. The target is to predict the distri-
bution of polymer segments in the space above the surface, that
is in lattice layers z ¼ 1,.,M. The use of a lattice facilitates the
counting of the conformations. The cells in the lattice have a
dimension b so that a segment ts on the lattice site. All linear
lengths used below are normalised by the segment length b.

Apart from the polymer chainswehave amonomeric solvent S,
which takes up all space besides the polymer. Polymer confor-
mations are generated using a freely jointed chainmodel and the
single chain partition function is evaluated using a discretised
version of the Edwards diffusion equation.20 Here we do not go
into details, but we mention that the conformations are weighted
using the segment potentials. In these potentials the solvent
quality is specied by the FHparameter c and short-range surface
contacts are given by cW. The number of contacts is estimated
using theBragg–Williamsapproximation.Herewe implement the
insight that only the difference of WP and WS contact is needed:
cWhcPW�cPS.17Ontopof this, the self-consistenteldpotential
has a Lagrange eld contribution, which is coupled to the
incompressibility constraint 4P(r) + 4S(r)¼ 1 implemented for all
coordinates r.21
This journal is ª The Royal Society of Chemistry 2013
In the one-gradient model we focus on the volume fraction
prole perpendicular to the surface, that is we have r ¼ z and
apply the mean-eld approximation in the x–y plane. Most of
the results discussed below are generated using a two-gradient
model r ¼ (x, z) wherein we apply the mean-eld approximation
in the y direction only. Again the z direction is perpendicular to
the surface and the x ¼ 1,.,Mx direction runs parallel to the
surface. When we consider a pancake of polymer chains in
equilibrium with a very dilute phase of graed chains, we have a
straight line separating the two phases.

As we will see, it is possible to nd the two-phase state when
the solvent quality is poor. The concentrated phase is posi-
tioned at small values of x and the ‘gas’ phase at large values of
x. Reecting boundary conditions apply both between coordi-
nates x ¼ 0 and x ¼ 1 and x ¼Mx and x ¼Mx + 1. It is of interest
to measure the effective graing density at coordinate x, that is
s(x):

sðxÞ ¼
X
z

4Pðx; z;NÞ (10)

It is also of interest to give a measure of the local height H(x).
One option is that we use the distribution of the free ends of the
polymer chains for this and evaluate the rst moment according
to

HgðxÞ ¼
P

z4Pðx; z;NÞz
sðxÞ (11)

Alternatively, we can use all polymer segments for this

HtðxÞ ¼
P

z4Pðx; zÞzP
z4Pðx; zÞ

(12)

The local average segment density in the pancake may be
estimated from f(x)¼ s(x)N/H. As the collapsed brush has more
or less a homogeneous density we can also use the product
q(x) ¼ s(x)N, which is the amount of polymer segments in the
brush at coordinate x (per unit length in the y direction) as a
measure of the height of the pancake.

The pancake is in mechanical equilibrium with the
(extremely) dilute phase of graed chains. Unless the system is
near the critical point, the lateral pressure is to a good
approximation zero, simply because the chains outside the
pancake are separated sufficiently far from each other so that
the (ideal gas) pressure vanishes. Hence the grand potential U
in the system, which is easily computed from the SCF result,21

can directly be identied as the line tension s. Upon the
approach of the critical point, however, the lateral pressure p

becomes nite, and the line tension is given by s ¼ U + Mxp.
Below, all energies are normalised by the thermal energy kBT.
Hence the line tension is normalised by kBT/b. Similarly inter-
facial tensions are normalised by kBT/b

2.
III Numerical SCF results and a scaling
analysis
One-gradient analysis

The reference results for the collapse transition of a polymer
brush in a one-gradient SCF model are already shown in Fig. 1.
Soft Matter, 2013, 9, 3341–3348 | 3343
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One may think that the one-gradient analysis is not informative
about the instability of the brush under poor solvent condi-
tions. This is of course not the case. One characteristic for phase
coexistence is that both phases should have the same pressure.
To elaborate on this we have computed the grand potential,U¼
F � sm (the chemical potential of the solvent is zero). This
quantity may be interpreted as minus the surface pressure p in
the brush. For stability we should expect that the surface pres-
sure is an increasing function with graing density. Thus the
surface pressure cannot be negative. Deviations from these
trends indicate the possibility of phase coexistence. Then, for
coexisting phases the pressure should be the same in both
phases.

As an example we show the grand potential as a function of
the graing density for the case where chains are N ¼ 200
segments long and the substrate has equal affinity for the
polymer segments and the solvent monomers cW ¼ 0 in Fig. 2.
Similar loops in the pressure prole have been reported
before.13,14 Here we focused deliberately on a solvent quality
which is close to the critical value c¼ 0.6 > ccr. Indeed the grand
potential is not a monotonically decreasing function, and thus
the surface pressure does not continuously increase with the
graing density. Also, it is easily seen that one can have two
systems that differ in the graing density that have the same
lateral pressure. From classical thermodynamics we know that
the open system will tend to go to the lowest possible grand
potential in the system. Indeed from the perspective of the
brush that is allowed to choose its own graing density, the
systems are open with respect to the graing density. The two
phases that coexist are connected to each other by a dotted
horizontal line. The two coexisting graing densities are the
graing density of the dilute phase (below we refer to this as the
‘gas’) and the graing density in the ‘pancake’.

Upon decreasing the solvent quality, we will show below that
very quickly the graing density for the gas-phase goes towards
zero. Hence the coexisting pressures will evolve towards zero.
We can therefore routinely search for the graing density of the
‘pancake’ phase by searching for the graing conditions for
which the grand potential vanishes. Below we have used this
Ansatz frequently to complement two-gradient analysis.
Although much of the analysis can be done in a one-gradient
Fig. 2 Grand potential U¼�p of the brush as a function of the grafting density.
N ¼ 200, c ¼ 0.6 (only slightly above the critical value), cW ¼ 0, surface interac-
tions are ‘neutral’, that is polymer segments have equal affinity for the substrate
compared to solvent monomers. sgas is the grafting density for the dilute phase;
spancake is the grafting density in the pancake.

3344 | Soft Matter, 2013, 9, 3341–3348
model, we proceed to present the remainder of the result in the
two-gradient setting. The advantage of the latter is that we get
information about the line tension as well.
Two-gradient analysis

Let us proceed to consider the brush composed of laterally
mobile chains under poor solvent conditions using an SCF
model within a two-gradient (x, z) coordinate system. As an
example we focus on a case where N¼ 200 in a poor solvent c ¼
1 for a neutral surface cW ¼ 0 (polymer segments and solvent
molecules have equal affinity for the substrate). Fig. 3 gives a
two-gradient equal density contour plot for the polymer chains
for qðtotalÞ ¼ P

xqðxÞ ¼ 700. As anticipated we notice that there
is a pancake with a homogeneous height, in this case running
from x ¼ 1,.,50, and the edge of the pancake has a near 90�

contact angle. This high contact angle is anticipated because
cW ¼ 0. Note that the mirror-like boundary condition applies at
the boundaries in the x direction: Fig. 1 thus only shows the
cross-section through half the pancake. Upon close inspection
one notices that the density prole of polymers just near the
surface is a bit lower than in the remainder of the pancake. One
of the origins of this depression of the polymer density is the
entropy loss the polymer chains experience near the impene-
trable surface. Only when there is sufficient adsorption energy
cW < �1 this depression vanishes.

It is of interest to point to a few characteristics of the
pancake. Inside the pancake the polymer density is homoge-
neous as can be concluded also from the satellite cross-section
proles 4(x, 5) and 4(5, z) in Fig. 3. We expect that this density of
segments in the pancake, f, is a function of Dc and not somuch
a function of s or N.

The brush height results from a balance of stretching energy
and interfacial free energies. For each chain the interfacial free
energy is inversely proportional to the graing density. As in a
collapsed brush sN/H ¼ f we nd that the interfacial energy is
given by �S/s ¼ �SN/(fH). The proportionality with a spreading
parameter �S is motivated by the observation that each chain in
Fig. 3 Equal volume fraction contour plot in the x–z plane for N ¼ 200, q
(total) ¼ 700, c ¼ 1 and cW ¼ 0. The two satellite graphs give a cross-section
profile (top) 4(x, 5) and (right) 4(5, z). In the x-direction reflecting (mirror-like)
boundaries are implemented (hence the cross-section of only half of the drop is
shown). The substrate is placed at z¼ 0 and the chains are pinned with their ends
in the layer z ¼ 1 and are allowed to move in the x–y plane.

This journal is ª The Royal Society of Chemistry 2013
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the pancake forms PS and PW interfaces at the cost of a corre-
sponding piece of the SW interface. The bar notation is used to
recall that its value is not identical to S introduced in eqn (9),
but has ‘corresponding’ phenomenological contributions.
Again, we expect that �S(Dc). Combining the interfacial energy
with the Gaussian stretching energy of the brush chains gives a
free energy (per chain) of the form

FðHÞ ¼ H2

N
þ SN

fH
(13)

where we ignored constants of the order of unity. Optimising
this free energy with respect to the height gives for positive
values of �S:

H f N2/3 �S1/3f�1/3 (14)

s f N�1/3 �S1/3f2/3 (15)

As is seen, the height of the pancake grows sub-linearly with
the chain length. This is because the graing density of the
chains inside the pancake is not xed: the graing density
decreases with increasing chain length.

To test these chain length dependences, we xed c ¼ 1, so
both �S as well as f are expected to be constants. In Fig. 4 we
show the height (a) and graing density (b) dependences as a
function of the chain length in double logarithmic coordinates.
It is easily seen that the pancake obeys to a good approximation
the laws given by eqn (14) and (15).

The line tension is for obvious reasons expected to scale with
the height of the brush and also this dependence is observed (cf.
Fig. 4c). One may further expect that the line tension is
proportional to the interfacial tension between a polymer-rich
and solvent-rich phase (cf. eqn (6)). Using the numerical result
for the interfacial tension as given by eqn (6), gPS z 0.125 for
c ¼ 1. The Ansatz s ¼ HgPS gives a value of s ¼ 2.5 when H ¼ 20.
From Fig. 4 we extract a line tension sz 2.7 forH¼ 20, which is
Fig. 4 (a) The height, given by eqn (12), (slope is close to 2/3) (b) the grafting
density s (slope is close to �1/3) and (c) the line tension of the pancake (slope is
close to 2/3) as a function of the chain length in double logarithmic coordinates.
Parameters: c ¼ 1, and cW ¼ 0. All quantities are made dimensionless as
explained in the modelling section.

This journal is ª The Royal Society of Chemistry 2013
very close to the estimate s ¼ HgPS. Recall that in this example
the inuence of the substrate on the line tension is expected to
be small because cW ¼ 0.

From eqn (14) and (15) we notice that we should expect a
decrease of the height of the pancake when �S increases.
Recalling that cW h cPW � cSW, we realise that when cW < 0 the
polymer segments have a higher affinity for the substrate than
the solvent molecules. With decreasing (more negative) cW we
expect �gPW � �gSW to decrease as well. The corresponding
decrease of �S leads to a decrease of the height of the pancake.
Further, when �S ¼ 0 we should expect that H f N1/2 because in
this case the chains can freely adopt their Gaussian dimension
R f N1/2. For �S ¼ 0 we also should nd s f N�1/2.

When the polymer chains are strongly attracted to the
surface, �S < 0, the brush height becomes less than the unper-
turbed radius of gyration. To squeeze the pancake to small
heights, H < R leads to an entropy loss. This entropic penalty is
expected to scale with N (extensive property). Moreover, we
expect that the entropy should scale proportional to R/H, and
thus the entropy change is given by N/H2. Combining this with
the interfacial term gives

FðHÞ ¼ N

H2
þ SN

fH
(16)

for �S < 0. By optimising this free energy toH givesHf |�S|�1. The
thinning of the brush with increasing affinity for the surface
continues until all segments are in contact with the substrate.
Such a continuous decrease of the pancake with decreasing
values of �S is obviously only possible when the average graing
density of chains is sufficiently small, that is when the original
system of graed chains is below the overlap threshold.
Unfortunately it is not trivial to estimate for which cW the
spreading parameter �S changes sign.

Fig. 5 presents the amount of polymer segments q(x) ¼ s(x)N
in the pancake as a function of x (brush contour plot), for a xed
overall amount of polymer chains q (total) ¼ 700 and a given
solvent quality c ¼ 1 and chain length N ¼ 200. Several results
are collected for a range of surface interactions cW as indicated.
Here we limited ourselves to the regime of modest surface
attraction so that the brush is not completely attracted to the
surface yet. In line with the arguments given above, we see a
decrease of the brush height upon an increase of the affinity of
Fig. 5 The height of the brush H(x) where the height is given by q(x) ¼ s(x)N, for
q (total) ¼ 700, c ¼ 1, N ¼ 200, for different values of cW as indicated.
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the polymer for the surface. Note that q(x) is a measure of the
brush height because the density in the brush f is not a func-
tion of cW. With decreasing cW we notice also a modest change
at the edge of the pancake. Gradually the contact angle becomes
less than 90�.

A more detailed analysis of the pancake height as a function
of the affinity of the surface is presented in Fig. 6 for somewhat
larger chains. Here the amount of polymer (in the homoge-
neous part of the pancake, i.e. near x ¼ 1) is plotted as a func-
tion of cW. We see that with increasing affinity (more negative
cW) the brush height decreases consistently with Fig. 5. Below
q ¼ 10 (indicated by the horizontal dotted line) the drop of the
brush appears very fast. We tried to analyse these predictions
using a guess for the spreading parameter. We assume that �S is
linearly related to cW. More explicitly, �gWP � �gSW is expected to
be closely related to cW. As we do not know how large �gPS is, we
used the Ansatz that �S ¼ 0 when cW z �1.5. For this reason we
used �S ¼ 1.5 + cW. In the insets of Fig. 6 we present the
prediction of the height of the pancake as a function of �S (top
inset) or �S (bottom inset) in double logarithmic coordinates.
The open circles give q values and the open squares are the rst
moment over the overall prole Ht. As long as the height is
larger than the Gaussian size of the coils we nd that the height
scales as �S1/3 to a good approximation. This scaling is not so
much dependent on the choice of the exact denition of �S.
When the layer is compressed with respect to the Gaussian size,
the inverse dependence with �S is found with some imagina-
tion. However, it must be noted that in this case the exact value
of the scaling exponent does depend on the way �S is computed.

Let us return to the cW¼ 0 case and focus on the dependence
of the pancake on the variable solvent quality c. In this case we
expect that �S z �gPS and is a decreasing function of Dc. In
addition, the polymer density in the pancake f decreases with
Dc. A polymer phase under poor solvent conditions is found to
be composed of blobs with size x that contain g segments.
Locally the chain remains Gaussian and thus x2 f g. The
polymer density f f g/x3 f x�1. The interfacial energy of the
polymer–solvent interface has an excess energy which may be
Fig. 6 The amount of polymer per unit area in the pancake q ¼ s(x)N as a
function of the affinity for the surface cW. Parameters c ¼ 1, N ¼ 1000. In the
insets two measures of the height q (open squares) and Ht (open circles) are
plotted as a function of �S (top left inset) or –�S (bottom right inset) in double
logarithmic coordinates. The �S is defined in the text. The horizontal and vertical
dotted lines bracket the regimes of compression and expansion of the brush.

3346 | Soft Matter, 2013, 9, 3341–3348
approximated by �gPS z x�2 (one kBT per blob at the surface).
Hence, we expect �S/ff x�1. Again we should anticipate that the
blob size itself is a (decreasing) function of Dc, and thus �S/f
should be an increasing function of Dc. Inspired by eqn (7) we
can expect �S/f f (Dc)1/2. Inspection of eqn (14) leads us to the
prediction that H increases with decreasing solvent quality.

In Fig. 7 we have collected data for the condensed pancake
(labelled by ‘thick’) in coexistence with the dilute ‘gas’ (labelled
by ‘thin’) of graed chains in dependence of the solvent quality.
A pancake can only form when the solvent quality is sufficiently
poor. Here we nd a critical value of ccr (brush)z 0.58 (vertical
dotted line in Fig. 7a). The critical solvency by eqn (4) (bulk
chains) gives for chains with a degree of polymerisation N¼ 200
a value ccr z 0.573, which is slightly lower than that found for
the brush. The exact reason for the small discrepancy is not fully
clear, but we can anticipate that a truly two-dimensional
pancake for which all segments lay on the surface, the critical
value is 6/4 times that for the chains in the 3D bulk, simply
because the polymer in 2D has fewer contacts Z ¼ 4 with other
polymers than in the bulk Z ¼ 6, and the c parameter is nor-
malised using the Z ¼ 6 value.

The number of chain segments per unit area q ¼ sN as a
function of c is given in Fig. 7a for both coexisting phases. The
critical q z 1. This value is close to the overlap threshold and
brushes in such a low graing density should evolve to a
Gaussian size Hf

ffiffiffiffi
N

p
. At the critical point, the polymer density

is thus 4crfN1/2. This density is consistent with the well-known
binodal volume fraction given by eqn (5). With increasing values
of c the brush height of the pancake increases as expected. In
the inset we have plotted the amount of polymer as a function of
Dc and found a scaling of 2/3 to a good approximation.

In Fig. 7b we present the height of the condensed brush
(‘thick’) as well as the height of the chain layer in the gas phase
(‘thin’). Again at c ¼ ccr we should expect that both heights
should converge to the same value. From the gure we can see
that the approach to the critical H z 8.81 is rather odd: the
pancake comes from below and the ‘gas’ phase comes from
above this common value. The far eld proles, that is, the
Fig. 7 (a) The amount of polymers per unit area q ¼ sN as a function of the
solvent quality c in log-lin coordinates. The inset shows q(Dc) of the thick film in
double logarithmic coordinates. The dotted line has a slope of 2/3. (b) The height
of the brush H h Ht as a function of the solvent quality c. The inset shows H(Dc)
for the thick film in double logarithmic coordinates. The dotted line has a slope of
1/6. (c) The line tension as a function Dc ¼ c � ccr in double logarithmic coor-
dinates. Parameters: N ¼ 200, and cW ¼ 0. The vertical dotted lines in panels (a)
and (b) are at c ¼ ccr z 0.58; the value for the pancake is labelled ‘thick’ and the
value outside the pancake is labelled ‘thin’.

This journal is ª The Royal Society of Chemistry 2013
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4(x0, z) prole far enough from the contact line, both in the
pancake (x0 ¼ 1) as well as in the ‘gas’ phase (x0 ¼ Mx) are given
by the one-gradient prole provided that the local s(1) and
s(Mx) are used. We do not give these proles here, but inspec-
tion of these proles proves that the prole for the ‘gas’ phase is
a Gaussian-like prole which extends slightly further in solution
than the (also Gaussian-like) prole of the phase with a some-
what higher graing density. This is consistent with the
unusual H-dependence near the critical point.

The values for the two heights also cross around c z 0.63.
This crossing is necessary because the pancake should become
thicker with decreasing solvent quality and eventually will be
higher than the dilute brush (which height remains near H z
R). In passing we note that the isolated chains in the gas phase
do not collapse in the SCF model. The averaged density is too
low for this to happen. Arguably when intra-molecular excluded
volume effects are properly accounted for one may expect a
slightly different behaviour. These effects may be seen in
computer simulation studies or in single chain mean eld
modelling.15

In the inset we show H(Dc) in double logarithmic coordi-
nates and nd a slope of approximately 1/6. Combining the
results of the insets of panels (a) and (b) leads to the observation
that q/H � ff (Dc)1/2, consistent with the van der Waals result
(cf. eqn (7)). Hence, we nd that the blob size xf (Dc)�1/2. Using
these scaling results we reconcile the solvency dependences for
H (cf. eqn (14)) and s (cf. eqn (15)) with the results given in the
insets of panels (a) and (b), proving the internal consistency.
These results indicate that the free energy per unit area asso-
ciated with the polymer–solvent interface �gPS scales linearly
with Dc. This should be contrasted with the van der Waals
result given by eqn (6). It is noticed that for the polymer–solvent
interface of a brush in the pancake shape, the interfacial width
of the PS interface is proportional to x < H2. Clearly, this width
cannot diverge upon the approach of the critical point. Hence
the interfacial tension is dominated by the enthalpic contribu-
tion, and thus cannot be super-linear with Dc.

The numerical prediction for the line tension is shown in
Fig. 7c. In this gure it is seen that the line tension drops to zero
when c / ccr as expected. The scaling behaviour is consistent
with the idea that the line tension scales with the interfacial
tension HgPS as given in eqn (6). We nd a scaling dependence
slightly higher than 3/2 but less than 5/3. Clearly the super-
linear dependence is consistent with the observation that the
width of the edge of the pancake diverges upon the approach to
the critical point.
IV Discussion

Above we have shown that a collection of graed chains can
undergo a rst-order phase transition when the solvent quality
deteriorates from marginal to poor. Unless c ¼ ccr the graing
density in the pancake is much higher than that in the ‘gas’
phase. Obviously the chains in the pancake assume a graing
density so that the chains interact and overlap. Invariably the
chains in the ‘gas’ phase have a too low graing density to call
this phase a brush. As we did not yet impose that the overall
This journal is ª The Royal Society of Chemistry 2013
graing density is high so that overall the chains are strongly
overlapping, we cannot yet claim that the classical brush theory
is wrong in the poor solvent case.

Let us therefore consider a brush with the given graing
density ~s which is sufficiently large so that the brush chains
strongly overlap, that is, N~s > 1. The classical theory predicts a
height in the poor solvent case which is given byH¼ N~s/(Dc)1/2.
When it is allowed to have lateral inhomogeneities we found H
f N2/3(Dc)1/6 for the pancake. Of course the inhomogeneous
situation can only exist when the pancake height is larger than
that of the homogeneous brush, and thus

Dc > N1/2~s3/2 (17)

Here we have assumed that the average density of the
collapsed brush in the classical theory is of the same order as in
the pancake. Taking a typical value of s ¼ 0.02 and a chain
length N ¼ 1000, it is easily checked that the chains strongly
overlap and thus are in the brush regime. In this case the brush
becomes laterally inhomogeneous when Dc > 0.09, that is, when
c > 0.62. This condition is easily met of course. Moreover, in
typical cases when the number of polymer segments on the
surface is xed, that is qðtotalÞ ¼ P

x

P
z4ðx; zÞ is xed, we see

that the condition specied by eqn (17) is naturally obeyed at
elevated chain lengths. So we conclude that the classical theory
fails to describe the brush under poor solvent conditions. The
same conclusion could have been drawn by noting that the
amount of polymer per unit area in the pancake q typically
exceeds by far the value of unity (cf. Fig. 7a). Any brush with an
average q that is below the pancake value is subject to a rst-
order collapse transition. In practice, such a rst-order transi-
tion should thus be expected in many and perhaps most
situations.

However, one can take another standpoint, namely that for
any solvent quality and graing density there exists a threshold
chain length N above which the brush remains laterally
homogeneous. The reason for this is the sub-linear scaling of
the pancake height with N. More specically, when

N > (Dc)2~s�3 (18)

the classical brush theory is correct. Typical values Dc¼ 0.5 and
s ¼ 0.02 give a threshold chain length z30 000. Such a brush
has q ¼ 600 equivalent monolayers polymer material at the
surface. Admittedly, one can claim that the classical brush
theory survives asymptotically, but this appears mostly of
academic interest.

Finally, we may speculate on how a (homogeneous) pinning
of the chains to specied locations will alter the picture. Of
course the collection of all chains into a single pancake is no
longer possible, and the inhomogeneities, if these form can
develop only locally. There are a few papers in the literature that
consider the formation of so-called pinned micelles in sparsely
graed layers, but how these structures can develop in a poly-
mer brush with a high overall graing density is less clear.22,23

Also in simulations25 inhomogeneous layers with ‘clusters’ and
‘dimples’ have been seen. Indeed, the negative pressure of a
Soft Matter, 2013, 9, 3341–3348 | 3347
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brush under poor solvent conditions signals that the homoge-
neity of the brush is not guaranteed. We think that it is possible
to study this more systematically using three-gradient SCF
analysis.24
V Conclusion

Using a two-gradient model of the self-consistent eld theory we
showed that end-tethered chains which are laterally mobile can
undergo a rst-order gas–liquid phase transition upon wors-
ening the solvent quality from marginal to poor. Such a rst
order transition was not anticipated from the classical SCF
theory. It has largely been overlooked that under poor solvent
conditions a brush has a lateral pressure that does not increase
monotonically with an increase of the graing density. The
point is that the classical theory assumes that the chains remain
homogeneously distributed, that is the graing density is
homogeneous and xed. When this constraint is lied, we nd
that under sufficiently poor solvent conditions a collection of
mobile end-graed chains organise themselves spontaneously
in a dense pancake, which becomes in equilibrium with a dilute
gas of graed chains. We have shown that the height of the
pancake scales sub-linearly with the chain length because the
graing density decreases with the chain length. We found a
continuous decrease of the height of the pancake with
increasing substrate affinity, which stops only when all
segments are in contact with the substrate. On the other hand,
the height of the pancake increases with decreasing solvent
quality. The line tension, which is the excess free energy of the
contact line between the pancake and the gas, scales with the
height of the pancake and is proportional to the interfacial free
energy of a polymer-rich phase in equilibrium with a solvent-
rich phase (as can be found from the corresponding bulk phase
behaviour).
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