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We have demonstrated that bidentate Lewis base catalysts can be constructed based on the Cinchona
alkaloid structure that promote highly stereoselective reactions of allyl- and crotyltrichlorosilane with
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aromatic as well as aliphatic aldehydes (90-99% ee, >98% diastereoselectivity). The catalysts are

available in a one-pot procedure in >70% yield from cheap starting materials and promote the allylation
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Introduction

Cinchona alkaloids and their derivatives have played a signifi-
cant role as a privileged scaffold in asymmetric catalysis.* The
strongly basic quinuclidine nitrogen can effectively serve as a
ligand for metal catalysis® or as a Brgnsted/Lewis base in orga-
nocatalytic reactions.® By incorporating into the catalyst struc-
ture another H-bond donor* or a metal-based Lewis acid,’

(a) known bifunctional catalysis modes:
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Scheme 1 Catalyst design and application. (a) Known catalyst design based on

Cinchona alkaloids. (b) Proposed new bidentate Lewis base catalyst.
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reactions at ambient temperature. Gram scale reactions with catalyst recovery and reuse showcased the
practicality of the catalytic system.

structures such as I, Il and III (Scheme 1a) have proven powerful
bifunctional catalysts for various organic transformations.
Surprisingly, the construction of a simple bidentate ligand or
catalyst, employing the quinuclidine nitrogen and another
Lewis basic donor moiety (as shown in Scheme 1b), has
remained elusive in asymmetric catalysis.

Towards the development of such a catalyst scaffold that will
certainly benefit from the readily available, inexpensive
Cinchona alkaloids, we chose the addition of allyl- and crotyl-
trichlorosilane to aldehydes as our model reaction, not only
because it is a mechanically well-established reaction that can
be catalyzed by a bidentate Lewis base,® but more importantly, it
represented the first catalytic approach to realize predictable,
diastereospecific crotylation (Type I allylation,* where the use
of E- or Z-crotylsilane provides anti- or syn-products with >98%
fidelity through the closed chair transition state), which is a key
requirement in the formation of propionate units that are
ubiquitous in polyketide natural products.” Many catalytic
systems have been developed for this reaction, which are
dominantly chiral phosphoramides and N-oxides reported from
the groups of Denmark and Fu,* Nakajima et al.,*/ Malkov and
Kocovsky et al.,*®" Hayashi et al.,* and Snapper and Hoveyda.¥
While the great potential of these methods in chemical
synthesis has been demonstrated,® one common limitation is
the lack of reactivity for aliphatic aldehydes, with the only
exception being the highly stereoselective allyl- and crotylation
of aliphatic aldehydes from the Iseki group that required an
impractically long reaction time (2-4 weeks).* In a related area
of research, recent work from the Krische group has revolu-
tionized the field of aldehyde allylation that bypasses the use of
allylmetal reagents and can be conducted from either the
aldehyde or alcohol oxidation level for both aromatic and
aliphatic aldehydes;® by the clever choice of substituted
allyl acetates or butadiene, crotylation products with high
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diastereo- and enantioselectivities can also be accessed.'’
However, considering the diastereospecific nature of Type I
allylation, where pure anti- or syn-isomers can be accessed
simply based on the choice of crotylating reagent, chiral Type I
reagents (mainly allylborations such as Brown allylation,"
Roush allylation' and the recent addition of allylsilylation from
the Leighton group®) are still commonly used in asymmetric
synthesis; a catalytic Type I allylation that can address the
limitations of previous systems is therefore still desired.'* Here
we present a Cinchona alkaloid amide as a highly efficient and
stereoselective catalyst for the allylation and crotylation of a
wide range of aldehydes, and in particular, aliphatic aldehydes
(95-99% ee). This system also provides significant practical
advantages that enable large scale production: the catalyst can
be prepared in a one-pot procedure from inexpensive starting
materials, can be easily recovered and reused, and promotes the
allylation reactions at ambient temperature (instead of low
temperatures of —40 to —78 °C for most previous systems).

Results and discussion

We initiated our studies by examining the catalytic activity of a
variety of quinine-derived compounds for the addition of allyl-
trichlorosilane to 1a, the product of which is highly

Table 1 Optimization of allylation of aliphatic aldehydes®
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synthetically useful but was not previously available using Lewis
base catalysis (Table 1). Quinine 3 and quinine ester 4 that were
previously widely used as nucleophilic catalysts® proved ineffi-
cient for our purpose, presumably due to limited Lewis base
activation from the monodentate quinuclidine nitrogen (entries
1-2). The well-established bifunctional catalysts* (Brensted base
coupled with H-bond donor) urea 5 and thiourea 6 were also
poor catalysts (entries 3 and 4). Sulfonamide 7 (ref. 15) and
phosphoric amide 8 may serve as bidentate Lewis bases, and
interestingly we did obtain product enriched in the opposite
enantiomer (40% ee with 7 or 8 vs. —41% ee by using 5),
however the level of efficiency and selectivity were far from
satisfactory (entries 5 and 6). To our delight, a simple quinine
amide such as 9, that has rarely proved successful in asym-
metric catalysis,'®"” provided the desired product with high
efficiency and excellent enantioselectivity (entry 7). Evaluation
of the electronics of the aryl group (entries 7-9) clearly showed
that the amide moiety serves as a Lewis base (instead of a
H-bond donor in which case the catalyst would be more effec-
tive with an electron-withdrawing substituent installed such as
10), with catalyst 11 possessing a strongly electron-donating
dimethylamino group being the optimal catalyst (88% conv.,
96% ee). Cinchonidine-derived 12 (only lacking the methoxy
substituent on quinoline) provided essentially the same result

10 mol% catalyst

f sicl. 15 eauiv. DIPEA o
BnO\)LH + AN BnOM
THF, 24 °C
1a 2a
Entry Catalyst Conv.? (%) ee’ (%) Entry Catalyst Conv.” (%) e (%)
19 3 15 -8 7 9 83 95
24 4 10 -5 8 10 35 81
3 5 30 —41 9 11 88 96
4 6 40 —20 10 12 83 96
5 7 36 40 11 13 35 9
6 8 45 40 12 14 88 —96
CF3
Ph /@
P & L g
_/\N H
- P J@
H I N _N
/
MeO
3 (quinine) 4 MeO' 7 (R = SO,Ph)
5(X=0);6(X=8) (R = POPhy)
i NMe, NMe, NMe,
‘/Ch R HN™ ~O (0} o]
H _N m N _O P
gMeO_ i
10 EE 3 :)02) 12 14 (quinidine
11 (R = NMe,) derived)

“ Unless otherwise stated, reactions were run for 24 h. See ESI for details. ©

determined by HPLC analysis. ¢ Reactions were run for 48 h.
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as 11, suggesting that the quinoline moiety in the catalyst
structure is not directly involved in activation of the silylating
reagent (entry 10). Compound 13, possessing the analogous
chiral amide moiety but lacking quinuclidine, was much less
efficient and selective, which further supported our hypothesis
of bidentate Lewis base activation of allyltrichlorosilane (entry
11). Finally, as Cinchona alkaloids exist as pseudo-enantiomers,
quinidine-derived 14 was also tested, and provided the enan-
tiomeric product ent-2a with the same excellent enantiose-
lectivity (entry 12).

The evaluation of reaction parameters showed that DIPEA
was necessary for the reaction to take place. THF was the
optimal solvent in terms of reactivity as well as enantiose-
lectivity. The optimal reaction conditions can be employed to
produce a wide range of homoallylic alcohols in excellent
enantioselectivity (Table 2). The reactions were carried out with
11 or 14 that yielded both antipodes of the products in
comparable excellent enantioselectivity. The enantioselectiv-
ities for allylations of aliphatic aldehydes are uniformly high
(95-99%). It is noteworthy that various functional groups such
as ethers and silyl ethers (entries 1-3), esters (entry 4) as well as
N-heterocycles (entry 5) are all well-tolerated, in addition to
simple alkyl and alkenyl aldehydes (entries 6-10). This
unprecedented scope bodes well for application in complex
natural product synthesis. The allylation of B-chiral aldehyde 10
was also examined (Scheme 2). While allylation of 10 (96% ee)
catalyzed by 11 provided 20 with 98 : 2 diastereomeric ratio,
suggesting >98% selectivity for the installation of the new
stereogenic center, the other diastereomer epi-20 could be
obtained with a high diastereomeric ratio of 97.5 : 2.5 from the
reaction catalyzed by 14. Aromatic aldehydes also work under
the same conditions to yield products with enantioselectivities
ranging between 90 and 94% ee (entries 11-14, Table 2).

More importantly, we demonstrated that our catalytic system
can be applied to the crotylation of aliphatic aldehydes with
high enantioselectivity as well as reliable diastereospecificity,
characteristic of Type I allylation. As shown in Table 3, with the
use of either E- or Z-crotyltrichlorosilane 15 (each prepared in
one step from commercially available starting materials),'® the
alcohol products 16 of the two ether-containing substrates were
obtained with excellent ee as well as high dr (>99% transfer of
the geometry of crotylsilane to the product diastereomeric
ratio). In contrast, the classical chiral Lewis acid-catalyzed
addition of allylic organometallic reagents (Si, Sn, B) to alde-
hydes (Type II allylation; open transition state) provides a
mixture of diastereomers, predominantly syn-isomer, indepen-
dent of starting allylic geometry, while the addition of allylic
organometallic reagents (Cr, Zn, In) generated in situ from the
corresponding allylic halides catalyzed by chelating ligands
(Type 1III allylation) yields predominantly the anti-isomer
regardless of starting allylic geometry.**

Practical, scalable allylation and crotylation

It is noteworthy that the current catalytic system is simple to
apply at ambient temperature using a readily available catalyst,
and commercial reagents (allyltrichlorosilane, DIPEA, etc.) as

This journal is © The Royal Society of Chemistry 2013
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Table 2 Substrate scope for allylation of aldehydes®

o 10 mol% 11 or 14 OH OH

. 1.5 equiv. DIPEA ?
J\H v o sicy ST L or R/'\/\

R R/\/\
. THF, 24 °C, 24 h
1 2.5 equiv. 2 ent-2
With 11 With 14
Entry  Product 2 Yield (%); ee (%)  Yield (%); ee (%)
OH
1 BlO_ AL 2a 83; 96 86; —97
OH
2 BnO\H/:\/\ b 89; 99 82; —98
2
OH
3 TBSOy \~ 70; 95 73; —96
W 2
QH
4 P“T%YV\ 2d  90;98 88; —98
(o]
QH
5 Qj//\/\/\ze 75; 95 80; —96
HN
OH
6 Me.y )~ 80; 96 74; —96
zf b b
W
OH
7 Me. )}~ 76; 96 71; —95
2 b )
s
b QH
8 Phy A~ 76; 97 70; —98
2h b b
*Hz/\/\
OH
9 /\HS/\/\ 2i 78; 97 85; —96
QH
10 2 S 83; 96 80; —96
6 2j
Et
(:)H
11°¢ A 775 90 75; —91
2k
(:)H
12¢ Q/\/\ g 8392 90; —92
O,N
QH
13¢ Q/\A\ 77; 94 80; —93
2m
Br
(:DH
14 am  86;93 89; —92

@ All reactions were carried out at ambient temperature for 24 h. The
yields are isolated yields based on the average of two runs. See ESI for
details. ®20 mol% catalyst was used. ° Toluene was used as the
solvent that provided higher conversion for aromatic aldehydes.

received from popular vendors without further purification. As
stated earlier, the catalyst can be easily prepared from inex-
pensive starting materials via a one-pot procedure that includes
the previously reported Mitsunobu reaction of quinine with
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Me Me OH (a) Ar
with 11 Me™ S x A/Ch oH 4/6\ NH, o
10 mol% catalyst ; /AN ref. 19 _/\N N cocl 1h =/\N N
Me Me O sequv. DIPEA 20, 88%, 98:2 dr \ Y| e 1)
NS - 1 Mitsunobu, 24 h _
Me’ H 25 equiv. ) 2.Staudinger, 16 h e Ar = 4-Me,NPh -
10, 96% ee A~SiCly Me Me OH 5 i i
with 14 3 (Quinine) o
Lo e X AN 169 one purification
THF, 24°C, 24 h Me 1.61 g, 70% yield
epi-20, 80%, 97.5:2.5 dr
i i (b) ) 10 mol% 11 OH
Scheme 2 Allylation of chiral aldehyde. NN B0~
1a 1.5 equiv. DIPEA 2a
THF, 24°C, 24 h 76%, 96% ce
. . . . 109 & -
diphenylphosphoryl azide followed by Staudinger reaction to catalyst racovery: >85%
yield 9-amino-9-deoxy-quinine,’” and finally acylation using oH
. . . . . (c) o . SiCly 10 mol% recovered 11 S -
commercially available 4-(dimethylamino)benzoyl chloride to Bno . P—. O AN
. . . 1 Me ¥ . M
yield the amide catalyst (Scheme 3a). The yield for the one-pot ? s BE THF, 24 °C, 24 h 160 e
10g i 70"‘{;_,,%637 ee
- r

procedure, after a single purification by silica gel chromatog-
raphy, was over 70%. To further showcase the utility of the
system, gram-scale allylation of 1a was carried out that yielded
2a with comparable chemical yield and enantioselectivity to the
small scale reactions (Scheme 3b vs. Table 2). The selectivity of
this system is not sensitive towards concentration or heat
transfer (as it is carried out at ambient temperature) so scaling
up was straightforward. Although a relatively high catalyst
loading of 10 mol% is required for the reaction, the catalyst
could be easily recovered nearly quantitatively. When the
recovered catalyst was used for another gram-scale crotylation
of 1a, alcohol 16b was obtained in high diastereo- and enan-
tioselectivity (Scheme 3c).

Mechanistic considerations

It has been showcased by the Denmark group that a Lewis base
can liberate a chloride ion from SiCl, or allyltrichlorosilane to
form a silicate intermediate (17 in Scheme 4a).>* In the case of

Table 3 Diastereospecific crotylation of aliphatic aldehydes®

Scheme 3 One-pot catalyst synthesis and gram-scale reactions with catalyst
recovery and reuse.

aliphatic aldehydes, however, this chloride adds to the aldehyde
to form the corresponding a-chloro silyl ether 18 that is
presumably responsible for the lack of allylation reactivity for
such substrates. In our case, it was also observed that catalyst 11
binds to SiCl, to liberate a chloride that quickly adds to
aliphatic aldehydes to generate the o-chloro silyl ethers (>60%
conv. in 10 min). On the other hand, the related product was not
clearly observed when we mixed 11 with allyltrichlorosilane and
aliphatic aldehyde (Scheme 4). This is in large contrast to the
control experiment using HMPA, which promotes this unde-
sired reaction with both SiCl, and allyltrichlorosilane. This may
be due to the relatively lower Lewis basicity of our catalyst
compared to HMPA, which is a fortunate character for the
success of aliphatic aldehyde allylation.

10 mol% 11 or 14

j\ + Ry SiCly 1.5 equiv. DIPEA ?H )O;/\
7 X or X
R”H \R(\/ THF, 24 °C, 24 h R/;g\ R IR
1 2 2.5 equiv. 2 ™ 2™
R;=Me, Ry =H, (E)}-15 16 ent-16
Ry =H, Ry = Me, (2)-15
With 11 With 14
Entry 15E:Z Product 16 Yield (%); ee (%) Yield (%); ee (%)
OH
BnO X 78; 97; 75; —98;
1 E)15;94:6 ~ o ’ ’
(By15; \/\,\‘,,/\ 94:6dr 94:6dr
16a e
OH
BnO. _~ 78; 96; 75; —95;
2 Z)-15; 2 : 98 ~TNX
() ! H 98:2dr 98 :2dr
16b Me
OH
BnO. y~ 74; 96; 70; —98;
3 E)-15;94:6 A
() ’ W 94:6dr 94 :6dr
16¢ Me
OH
BnO 72; 96; 73; —97;
15. 0 . R ) ) ) ’
4 (Z)15’2'98 W 98:2dr 98 :2dr

% See Table 2 and ESI.
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(@) @ o )
LB /U\ OSiX3
. Lewis base (LB) L alkyl” "H

P A~ —— akyfc

Cl al
17 18
LB = HMPA: ~50% conv. to 18 in 10 min
LB=11: <5% conv.in 12 h
10mol% NMez

(b)

0 Me\
Bno\)kH + A SICl; — - B“O\/\/\
1a
+ 1.5 equiv. DIPEA @ <10% conv.
<5% ee

THF, 24 °C,24 h

Scheme 4 Exploration of chloride ion liberation and catalyst modification.

It is noteworthy that the secondary amide moiety in our
catalyst may react with allyltrichlorosilane in the presence of
DIPEA to generate the corresponding O-silyl imidate, in which
process the chloride ion that is liberated from the silane will be
sequestered as part of the DIPEA-HCI salt (and thus avoid the
undesired a-chloro silyl ether formation). As stated earlier,
DIPEA was found to be essential for the allylation reaction to
proceed to high conversion. Preliminary NMR studies by mixing
the catalyst, silane, and DIPEA in a 1:1:1 ratio were incon-
clusive as a complex mixture was formed; however, the resulting
mixture was shown to be catalytically active. We have further
tested the activity of catalyst 19 with a methylated amide moiety,
which, under otherwise identical conditions, led to only <10%
conv. to the allylation product with <5% ee (Scheme 4b). While
the steric hindrance of this catalyst may certainly contribute to
this low activity and selectivity, it provides support for the O-silyl
imidate formation from catalyst 11 and 14. More extensive
mechanistic studies as well as calculations will be carried out to
further elucidate the nature of the active catalytic species as well
as the turnover of the “anionic” catalyst.

The conformational analysis of related Cinchona alkaloid
amides both in solution and in the solid state has been per-
formed by the Brunner group using NMR, X-ray as well as
molecular orbital calculations during their studies of enantio-
selective decarboxylation reactions using these catalysts as
chiral Brgnsted bases.'® These studies showed that these
molecules prefer the open conformation,* where the quinucli-
dine nitrogen points away from the quinoline unit, and in turn,
towards the 9-amide moiety. In particular, the calculated
minimum energy conformation of the protonated cinchonine
amide 20 (Scheme 5a) possesses a H-bond interaction between
the amide oxygen and the ammonium hydrogen.**® These data
pointed to the possibility of 9-amide and quinuclidine serving
as a bidentate catalyst. We have also carried out kinetic studies
of our catalytic system, which suggested that the allylation
reaction is first-order dependent on the catalyst (see ESIT for
details), lending further evidence for the bidentate nature of our
catalyst. Based on the above rationale, we propose the transition
state model (with catalyst 11) in Scheme 5b.

This journal is © The Royal Society of Chemistry 2013
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(a) (b) block the top )
\\ ﬂ LNQOMS )
N @Nmz .
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wel
RR1 R

Ri Ry

Cl

Scheme 5 Proposed reaction transition state model.

On the basis of the principles and mechanistic studies pre-
sented by the Denmark group®* and others,??”¢ the
aldehyde was placed trans to chloride to increase its electro-
philicity; the allyl group, on the other hand, would coordinate
trans to the strongly Lewis basic quinuclidine nitrogen,
rendering it more nucleophilic. While the quinoline moiety
points away to the back, the quinuclidine moiety effectively
blocks the top of the complex so that the aldehyde is placed
underneath. Allylation/crotylation through the chair like Zim-
merman-Traxler transition state*® then provides the desired
product in excellent enantioselectivity and predictable, perfect
diastereoselectivity.

Conclusions

In conclusion, we have demonstrated, for the first time, the
utility of bidentate Lewis base catalysts constructed from
Cinchona alkaloids in the highly stereoselective allyl- and cro-
tylsilylation of aldehydes. The catalytic procedure provides a
practical, scalable preparation of various homoallylic alcohols
that are useful building blocks in organic synthesis. Current
efforts in these laboratories are focused on detailed mechanistic
studies to further elucidate the origin of the asymmetric
induction, further extending the synthetic utility of the
system to allyl/crotylation of chiral aldehydes and application of
this family of catalysts to other important organic
transformations.
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