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The progression from regular to chaotic behaviour with increasing vibrational energy is examined for two

unimolecular reactions, CH3NC = CH3CN and NCNC = NCCN. The potential energy surfaces used are,

respectively, a piecewise empirical construction and an ab initio numerical surface. It is found that in the

former case, the motions never become chaotic in the appropriate energy range, but in the latter, they
seem to be approaching that ideal condition. The reasons for this difference are subject to speculation at
the present time, but there seems to be a strong impediment to randomisation of energy in one case that
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is not present in the other. An attempt is made to formulate a semi-quantitative measure of chaotic

behaviour in these reactions. Until this problem with synthetic potential energy surfaces can be resolved,
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Introduction

A cornerstone of the theory of unimolecular reactions is that in
the reactive energy range, the internal motions of the atoms
are random, or that all energy states are equally probable, or
some other statement implying totally chaotic motion. A
second cornerstone is that states depleted by reaction are
replaced on a time scale much faster than the decay processes;
in the case of a single molecule, or at the low-pressure limit,
this randomisation process must be first-order, although it
may have a second-order component at higher pressures.'”
The mechanism of this process may be envisaged as follows:
we start from a ground-state molecule, for which the internal
motions are regular and vibrational spectra can be observed,
but as the energy rises, due to anharmonicities, a pair of
spectral lines will merge, i.e. have the same energy, and the
wave function becomes indeterminate. The higher the energy,
the more crossings there will be, and the degree of chaos
increases. For small (triatomic) molecules, there may be no
crossings, or else very few, and so their reactions do not fall
within the realm of traditional (RRKM) unimolecular reaction
theory; on the other hand, large molecules will have many
crossings and readily fulfil the requirement of chaotic motion
at reaction energies. Of the two isomerisation reactions chosen
for this study, the first is generally regarded as falling into the
large-molecule class, whereas the other, containing only four
atoms, has to be regarded as a borderline example.
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these results have important consequences for the numerical modelling of larger polyatomic systems, up
to and including such problems as protein folding.

In previous studies,” we had observed that for the
isomerisation reaction NCNC = NCCN, the calculated life-
times obeyed microscopic reversibility, i.e.

p(E)CN/fCN = ﬂ(E)Nc/ch

where 7 is the ensemble average lifetime and p(E) is the density of
states at the given energy E; however for the reaction CH;NC =
CH;CN, this was not true, with a discrepancy of about an order of
magnitude, but improving slowly with increasing energy. The
study presented here attempts to understand this departure from
one of the fundamental principles of statistical mechanics.

Computational procedure

The computational methods used have been described
extensively in previous publications:** briefly, to follow each
trajectory by using a simple fourth-order Runge-Kutta start-up
procedure followed by a fifth-order Adams-Mouton predictor-
corrector.” For a given value of the energy, trajectories were
started from the equilibrium internuclear configuration of
either NCNC or NCCN with quasi-random momenta assigned
to each of the 12 degrees of freedom (or 18 for the CH;NC or
CH;CN cases); a portable random number generator (rani.
for)® was used to create these random initial conditions. A
time step-length of 0.1 fs was used throughout, and values of
all internuclear distances for the 4- and 6-atom reactions were
tabulated at J¢ = 5 fs intervals.

Each of the (r — re)?{ﬂ vectors for trajectory N, i = 1,iax, ¢ =
1,tmaxs (fmax = 14 and t,.x = 16 3840¢ in this study - see below),
was subjected to a Fourier transform algorithm?® to extract the
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characteristic frequencies; however, the individual frequencies
themselves are of minor importance because, separately, they
contain no angle information, but they do provide an intuitive
feel for the connections of specific motions with particular
spectral frequencies.

It is a simple matter, for the 4-atom case, to see that a vector
containing the sum of all 6 distances at each time step
contains all the information, internuclear distances, bond and
dihedral angles, and gives the full spectrum.

The 6-atom case is more complicated: there are 15 inter-
atomic distances, but there are only (3n — 6), i.e. 12 internal
degrees of freedom when n = 6. Thus, by using all 15 distances,
the system would appear to be over-specified, but not so: it is
feasible, but not trivial, to transform these 15 vectors into 12
vectors, each representing one normal mode, but complicated
further because there are 4 doubly-degenerate as well as 4 non-
degenerate modes. Moreover, the concept of a normal mode
only has meaning for low energies where the motions are
regular, and it is unclear how instructive such calculations
would be when applied to partially or completely chaotic
motions, so this avenue was not explored further.

A useful contraction is to impose the constraint that all
three H atoms are grouped with one C atom to give a pseudo-
molecule N-C'-C>-M where M represents the centre of mass
of the three H atoms; as before, N-C'-C>-M has 6 inter-
particle distances, and the 4-atom group C’H; contains
another 6, making 12; however, the rotation of the CH; group
when N-C'-C>-M is non-linear is not defined, and it needs
distances from any one of the H atoms to C' and to N to
specify the dihedral angles completely, making 14 in all. It was
thought that this parallelism between the two systems might
be of help in their comparison.

The calculations are subject to two constraints: (a) that the
trajectory shall be long enough to contain a large number of
vibrational periods, and (b) that the sampling width for the
Fourier transform (FFT) algorithm shall be wide enough to
give a good resolution. With time intervals of 5 fs, a choice of
256-point sampling width gave reasonable results; this leads to
a 16 384-length vector for each variable, and a time length of
81.92 ps.

At energies near the higher limit of these calculations, there
are often many more than 50 crossings and recrossings of the
energy barrier on this time scale,’ whereas only trajectories
with no (or very few) crossings are suitable for this experiment;
for example, in one of the two sets of high-energy (7.3 eV)
calculations, out of 1000 trajectories not one lives for this
length of time without a crossing, and only one at 7.0 eV.

The potential energy surfaces used were: for CH;NC =
CH;CN, the empirical surface constructed by Sumpter and
Thompson;” and for NCNC == NCCN, an 870-point “clamped-
nuclei” MP2/6-31G* ab initio potential surface.®*

Fig. 1 shows the key properties of the two potential energy
surfaces. Since the energy difference between the minima of
the CH3;NC and CH;CN potentials is almost exactly 1 eV, it is
convenient to use electron volts in these calculations: 1 eV =
23.06 keal mol ™! = 96.5 k] mol ™! = 8066 cm ™ *; in what follows
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Fig. 1 Relative energy levels, in eV, for the reactions CH3NC = CH3CN and NCNC
= NCCN: the bottom-most thick horizontal line denotes the potential minimum
for each molecule, and zpe denotes its zero-point energy; TS and TSy, are,
respectively, the classical saddle points on the clamped-nuclei surfaces without
vibration, and with the vibrational "“correction” usually introduced in transition
state theory.

(except for Fig. 5) energies are uniformly measured from the
global minimum, i.e. NCCN or CH;CN. The zero-point energy
(zpe) for either CH3NC or CH;CN is 1.3 eV, so that the highest
energy, 7.3 eV, is 5 eV above the CH3;NC zpe, ie 115 kcal
mol !, which is far above the activation of 38.2 kcal mol *.°
Likewise, the NCNC minimum is about 1.38 eV above the
global minimum and the zero-point energies for both NCNC
and NCCN are 0.42 eV; this makes the topmost energy tested
of 4 eV approximately 2.2 eV above the NCNC zpe.

Numerical results: CH3NC and CHsCN

At energies near the zpe, the resolved spectral lines are very
sharp. but they grow in width with increasing energy. Fig. 2
shows the degree of variation for two individual Fourier
transforms, (a) for R(N-C) and (b) for R(C-C). There is a slight
shift in frequency of the single peak in the former case, but no
evidence of contamination from other frequencies in the
system; in the other, in addition to the broadening, there is an
apparent shift of about 400 cm™" of one peak to higher
frequencies. This implies that there is virtually no significant
coupling of R(N-C) with any of the other motions in the
molecule, even when the total internal energy is 5 eV greater.
For the R(C-C) case, there is evidence of anharmonicity, but at
higher energy, one would expect the energy levels to be closer
together, and not further apart.t

Fig. 3 gives two more examples: there are 3 R(C-H) motions
and 3 R(H-H) motions, and the members of each set are
almost indistinguishable from each other; panel (a) shows the

1 It should also be noted that in all these spectral plots, the vertical axis is linear
in the strength, not logarithmic as is the normal way of representing
experimental data.
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Fig. 2 Fourier transforms of two individual distances at the zpe and at (zpe + 5 eV): for (a) R(N-C) and (b) R(C-C); the very sharp peaks at 600 cm~"and 2150 cm ™" are

for the zpe and the broad peaks for the (zpe + 5 eV) motions.

R(C-H) behaviour, and (b), that of the R(H-H) motions. These
spectra show much more evidence of mixing and chaotic
behaviour, and of frequency shifts in the expected direction.
Fig. 4 compares the total spectra of two trajectories. For the 2.3
eV case, these spectra are very similar for each individual
trajectory, but vary in the observed intensities due to the
differences in starting momenta in each calculation. However,
for the higher energy spectra, these are almost identical for
trajectories with no (or only a few) CH3;NC = CH;CN
crossings; since each of these trajectories starts from a
different set of momenta, this sameness suggests comparable
degrees of chaos in two isolated regions of phase space.

A semi-quantitative measure of the degree of chaos?

If the extent of the chaos revealed by a spectrum such as
Fig. 4(b) were perfect, the spectrum would be a flat line over
the whole range, with the total signal strength residing at zero
frequency. This plot shows some of the required character-
istics: there is a long low signal between 200 cm ™" and 800
em ™', and a longer one between 1200 cm ™' and 2000 cm ™",
which could be characterised as something analogous to
“white light’; also, there is a hint of the expected rise near zero
frequency.

However, there are “blockages” between these two regions
of “almost-chaos” - a large one near 1000 cm ™' and a weaker
one near 1300 cm™ ', which are frequencies associated with
R(C-C) and R(H-H) motions in Fig. 2 and 3. At the present
time, the exact cause of these impediments to the onset of
chaos throughout the system are yet to be understood.

Examining the complete spectra extracted from non-cross-
ing trajectories for all four of the molecules studied in this
paper, it appears that there is a relationship between the total
area under the curve and the energy: this is shown for CH;NC
in Fig. 5(a). Even though there is a large scatter in the data, it is
clear that there is something like a linear correlation between
the area and the energy; the area units are arbitrary, as each
point is simply the sum of the 256 values of the strength given
by the Fourier transform algorithm for each individual
trajectory. The straight line is simply a guess, drawn by eye,
and it does not start at the origin, as it probably should; in
fact, at very low energies (e.g. in the classical region below the
zero-point energy), the motions are too feeble for the Fourier
transform algorithm to extract any frequency peaks, due to
insufficient arithmetic precision. The large scatter also arises
from a combination of the limitation in the trajectory length
and in the sampling width, whence the whole frequency range

(@  CH3NC (b) CH3NC
R(C--H)x 3 R(H--H) x 3
‘ I I | | I I | L1 1 1 | || | I | I I - | I I | | 1 1
0 1000 2000 3000 0 1000 2000 3000
1

spectral frequency cm~

Fig. 3 Fourier transforms of the relative separations R(C—H) and R(H-H) at an energy of (zpe + 5 eV); there are 3 such (almost identical) spectra for (a) and for (b).
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Fig. 4 Complete spectral plots, i.e. Fourier transforms of Er%), at energies of (a) zpe and of (b) (zpe + 5 eV); in (a), for this particular trajectory, the doublet near 3000

cm ™" is very prominent.

from zero to slightly over 3300 cm ™" is covered with only 256
points.

As energy is removed from the regular to the chaotic regime,
the area under the regular spectrum will decline, and be
transferred to the feature near zero frequency. To test this
hypothesis, an arbitrary division was chosen at 250 cm ™" (just
under the lowest bending frequency of 263 cm™ " in CH3NC)
and the area below that was compared with the total. For both
CH;3NC and CH;CN trajectories having no or few crossings,
values of less than 0.1% were found at the lowest energies and
up to around 10% at very high energy. This is shown in
Fig. 5(b) which exhibits similar scatter, and for the same
reasons.

If it were possible to reduce the scatter of these plots, a more
accurate relationship between the energy and the area under
the spectrum would ensue, and the percentage of the total area
residing below some cut-off frequency would yield an
acceptable measure of the chaos in the internal motions for
each trajectory. This is not quite as straightforward as it may
seem: first, it would be necessary to use a larger sampling
width, say 512 or 1024, which would necessitate the construc-

tion of, respectively, (14 x 32 768) or (14 x 65 536) matrices
of interparticle distances as a function of time. This cannot be
done by extending the time span because already (see above)
very few trajectories of higher energy live for 81.92 ps without a
crossing, so the time intervals must be reduced. That will
make the inter-atomic differences at each step smaller, with
loss of precision, and may require quadruple (32 decimal
place) precision, especially at the lower energies.

Numerical results: NCNC and NCCN

The results for trajectories of these molecules are quite similar
to those described above at low energies, as shown in Fig. 6; if
we label the atoms in this molecule as N;C;N,C,, then panel
(a) represents the transform on R(C;-C,) and (b) on R(N;-C,).
For NCCN at 2.0 eV, the average percentage of the total area for
the 0-250 cm™ ' range in 13 trajectories having zero or one
crossing is 10.8%, and for NCNC over 11 low-crossing
trajectories, 24.6%. At energies greater than 3.0 eV above the
NCCN minimum, there are very few low-crossing trajectories

total area

ebejuslad

0 2 4 6

0 2 4 6

energy above CH3NC minimum (eV)

Fig. 5 (a) Total area under spectral curve (vertical units arbitrary); (b) fraction of total spectral intensity residing below 250 cm™".
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Fig. 6 Fourier transform of two individual atom-separations for NCNC at the zpe.
in an ensemble of 100, with percentage for the 0-250 cm™* Discussion

range being (for 2 trajectories in each case) 13% and 25%,
respectively. An example of one of these spectra is shown in
Fig. 7(a): the signals around 1000 and 2000 cm™" from Fig. 6
still persist, but are hardly perceptible on the scale of this
diagram: the feature between 400 and 800 cm™ ' is probably
the remnants of a bending process."’

Usually, there are very many crossings at these energies for
each trajectory, typically in the range 50-60,° and the
outcomes are quite different. For example, Fig. 7(b) shows
the result for a trajectory with 53 crossings over the 81.92 ps
period: here, one finds a truly random result - with in excess of
99% of the signal strength concentrated below 250 cm™ .
Moreover, the feature near 1000 cm™" is probably associated
with the crossing frequency: of the 53 crossings, 15 are spread
fairly evenly between 9 and 11 ps, i.e. mean separation of 0.13
ps; two other bursts of crossings have mean lifetimes of 0.17
ps, hence, the mean there-and-back crossing time is about 0.3
ps, corresponding to a frequency near 1000 cm™ .

Earlier spectra purporting to show ergodicity, e.g. Noid,
Koszykowski and Marcus,""
behaviour of Fig. 7(b) here.

are remote from the asymptotic

The results of this study show conclusively that the synthetic
potential surface for the CH3;NC = CH;CN reaction in
rotational state J, = J, = J; = 0 is deficient because there is
some obstacle to randomisation. Calculations with non-zero J
are very little different because the rotational broadening of
the lines is minimal, and the rotations don’t add significantly
to the probability of eigenvalue crossings. The simplest way to
describe it would be to say that if the three R(C-H) spectra for
Jx =Jy = J; = 0, one of which is shown in Fig. 3(a), and the
corresponding three for (say) J. = J, = J, = 10 for the same
energy and initial conditions, were laid out on the desk, one
could not guess which ones went with which J; likewise for the
three R(H-H) spectra, one of which is shown in Fig. 3(b).

As we have noted previously,>*'* the calculated rate
constant for the isomerisation of CH;NC is about a factor of
20 below the observed reaction rate, and a similar discrepancy
of a factor of 20 was found by Stimac and Barker'® during the
simulation of the CH;-O-ON-O radical thermal dissociation
into CH3;O + NO,, using a similarly constructed potential
energy surface. In addition, their ensemble decay resembles

NCNC -- 1 crossing

NCNC -- 53 crossings

0 1000 2000 3000

spectral frequency cm~

0 1000
1

2000 3000

Fig. 7 Complete spectral plots, i.e. Fourier transforms of Zr’(‘,’”, at energies of (zpe + 2.2 eV): (a) low-crossing case; (b) high-crossing case.
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that of a small molecule like HNC,"* instead of a first-order
process like that for CH;NC."?

That these deficits are due to insufficient mixing has been
demonstrated by adding more coupling between the vibra-
tions: this was done by either using coupling constants
published by Sumpter and Thompson,” or by an artificial
coupling procedure in which some momenta were reversed
every 0.1 ps'> mimicking, crudely, collisions at very high
pressure, or black-body radiation® in a collisionless environ-
ment. However, there is no way of knowing, beforehand, how
much coupling to add, as the reaction rate can be driven too
high, especially just above threshold, as shown in Fig. 6 of ref.
12.

Beyond that, there are other issues that need to be resolved.
For example, in the light of Fig. 4(b), why does the decay of an
ensemble of 1000 trajectories behave in a perfectly logarithmic
fashion'® when there are two isolated quasi-chaotic regions of
phase space? This could only be true if molecules trapped on
either side of the blockage decayed with the same intrinsic
rate.

This raises the question how much chaos is needed for
there to be a first-order decay? Both CH3;NC and NCNC exhibit
first-order ensemble decay,®'® but in the first case, the
distribution of states is far from chaotic, whereas in the
second it seems to be approaching total chaos: thus, first-order
decay does not imply a proper chaotic distribution among the
reactant states. On the other hand, microscopic reversibility,
which fails badly in the first case, but not in the second, seems
to be a more reliable indicator.

Finally, does microscopic reversibility guarantee the calcu-
lation of the correct rate constant? We know that for the
isomerisation of CH3;NC where there is a discrepancy of about
an order of magnitude,” the calculation of the rate fails badly;
unfortunately, there are no experimental data available for the
NCNC isomerisation, as it polymerises readily at 193 K,"® so we
may never know.

Recently, Sutcliffe and Woolley'” have pointed out that
clamped-nuclei potential energy surfaces are inconsistent with
quantum mechanics and cannot give a correct representation
of the transition state problem; however, the Eyring-Polanyi
concept of the transition state as a saddle-point on a potential
energy surface has been a powerful visualisation tool, and one
would expect the numerical errors to be comparable with those
usually assosciated with the Born-Oppenheimer approxima-
tion. Thus, it is important to determine how well the classical
treatment of motion on a clamped-nuclei potential energy
surface can match the experimental behaviour.

The smallest molecules for which extensive experimental
isomerisation data are available are methyl isocyanide®"°
cyclopropane,*® 6-atom and 9-atom molecules respectively.
Calculation of ab initio clamped-nuclei potential energy
surfaces for the former reaction, perhaps even the latter, are
within the bounds of modern computing power,>' whence it
would be possible to test the predictive accuracy of two
methods: first, the classical trajectory method used here; and
second, a wave-packet method>” which is essentially a wave-

and

This journal is © The Royal Society of Chemistry 2013
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mechanical version of the same classical method.i The
possibility of an ‘“exact” solution, based on Sutcliffe and
Woolley’s analysis, seems to be further into the future.

Finally, from time to time, Ehrenfest’s Theorem and/or the
correspondence principle are mentioned in connection with
such trajectory calculations. In the quantum sense, this
association is meaningless because as the energy rises and
the first eigenvalue crossing occurs, the adiabatic principle is
violated. But the present calculations show that such crossings
are nowhere nearly as frequent as one might expect, and often
the ground-state vibrational frequencies persist up to very high
energies. To resolve this paradox, it should be possible to
construct an arbitrary 3-atom potential energy surface with
anharmonicities chosen in such a way that the vibrational
frequencies will cross at some energy. At this point, what
happens? Do they become one more complex motion, is there
an avoided crossing, or do they simply cross and continue
unchanged?

If either of the last two, by analogy with the high-energy
behaviour of a harmonic oscillator,” success may be
interpreted as a multi-dimensional extension of the corre-
spondence principle®® with a collection of weakly dependent
anharmonic oscillators whose wave functions are similar to
those of a simple harmonic oscillator, but with asymmetric
distortions.”®

Conclusion

Classical trajectory calculations for two unimolecular isomer-
isation reactions, NCNC == NCCN using a rudimentary ab
initio potential energy surface, and CH;NC = CH;CN using an
empirical potential energy surface, have been examined. These
surfaces are quite primitive, but exhibit correct asymptotic
behaviour and approximately correct energy values for the
stationary states. No effort was made to calculate rate
constants, only to examine the difference in behaviour with
respect to microscopic reversibility between the two different
basic types of potential energy surface.

It was shown, convincingly, that the primitive ab initio
surface allowed the atomic motions to become almost chaotic,
as required by unimolecular reaction theory, but that the
empirical surface did not. The details of this failure were not
revealed by these calculations, but (quoting Bowman et al.*")
“simple functional forms are highly problematic” and it may
be a consequence of the use of switching functions in the
empirical surface.

If this difficulty can be resolved, and if classical trajectory
calculations can give satisfactory reaction rates for one, or
more, of the reactions'”2%?* noted above, it could reveal how
to create semi-empirical potential energy surfaces that would
allow the prediction of useful rate constants for complex

1 A third option might be the cis-trans isomerisation of 1,2-dideuterioethylene
where, due to symmetry, generation of the ab initio potential surface is simpler,
but the experimental data®® are less extensive.
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reactions such as occur in combustion, or in biological
systems.
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