

COMMUNICATION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Synthesis of 2-substituted quinazolines *via* iridium catalyst†

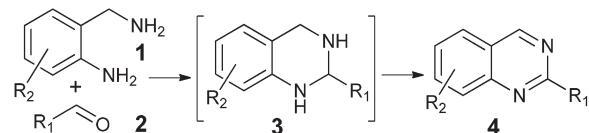
Cite this: *RSC Advances*, 2013, **3**, 334

Received 25th September 2012,

Accepted 5th November 2012

DOI: 10.1039/c2ra22278g

www.rsc.org/advances


An iridium-catalyzed hydrogen transfer reaction was successfully applied in the synthesis of 2-substituted quinazolines in moderate yields starting from aldehydes or alcohols with 2-aminobenzylamines.

Quinazolines occur frequently in natural products and synthetic pharmaceuticals which exhibit important biological properties,¹ such as antidiabetic, antibacterial, anticonvulsant and anticancer activities. For example, prazosin was an effective medicine as α -adrenergic blockers for the treatment of high blood pressure, panic disorder and anxiety,² and lapatinib was used to treat solid tumor and breast cancer.³

Syntheses of substituted quinazolines have been widely explored,⁴ and many efficient methods have been developed recently. As shown in Scheme 1, one of the synthetic methods to quinazolines utilizes condensations between aldehydes **2** and 2-aminobenzylamines **1** followed by oxidation of the aminal intermediate **3**. However, stoichiometric or large excess amounts of toxic oxidants were required for this oxidation; *e.g.*, DDQ, *p*-chloranil,^{4c} NaClO^{4k} and MnO₂^{4l} were used. In continuation of our work in the application of hydrogen transfer catalysis in the syntheses of quinazolinones,⁵ we were interested to test if a hydrogen transfer catalyst⁶ will catalyze the oxidation of aminal **3** to 2-substituted quinazoline **4** in one-pot as shown in Scheme 1.

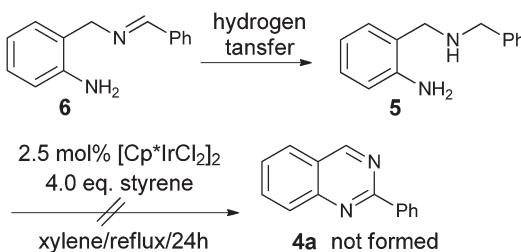
Firstly, 2-aminobenzylamine **1a** with benzaldehyde **2a** was selected as the model substrate to test the one-pot reaction and the results are summarized in Table 1. We discovered that without a hydrogen acceptor, only 10% product **4a** was formed using $[\text{Cp}^*\text{IrCl}_2]_2$ (2.5 mol%) as the catalyst (Cp^* = pentamethylcyclopentadienyl, entry 1). The major byproduct isolated was the *N*-benzylation product **5**⁷ as shown in Scheme 2.

This byproduct formation could have originated from hydrogen transfer⁸ to the imine intermediate **6**. Compound **5** could not be

Scheme 1 One-pot synthesis of quinazolines.

further transformed to the product quinazoline **4a** under hydrogen transfer catalysis, which accounted for the low yield of **4a** in this reaction. To improve the yields of **4a**, we decided to add a hydrogen acceptor to the reaction mixture. To our delight, the

Table 1 Optimization of conditions for the synthesis of quinazoline **4a** between **1a** and **2a**^a

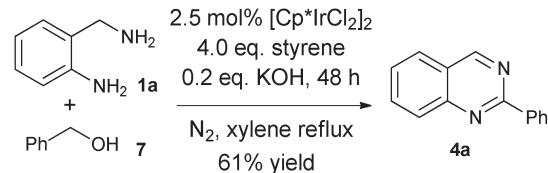

Entry	Catalyst	Additive	Acceptor	Solvent	Yield ^b
1	$[\text{Cp}^*\text{IrCl}_2]_2$	No	No	xylene	10%
2	$[\text{Cp}^*\text{IrCl}_2]_2$	No	styrene	xylene	66% ^c
3	$[\text{Cp}^*\text{IrCl}_2]_2$	No	<i>E</i> -crotonitrile	xylene	50% ^c
4	$[\text{Cp}^*\text{IrCl}_2]_2$	AcOH 0.2 eq.	styrene	xylene	43%
5	$[\text{Cp}^*\text{IrCl}_2]_2$	KOH 0.2 eq.	styrene	xylene	54%
6	$[\text{Cp}^*\text{IrCl}_2]_2$	<i>t</i> -BuONa 0.2 eq.	styrene	xylene	60%
7	$[\text{Cp}^*\text{IrCl}_2]_2$	K_2CO_3 0.2 eq.	styrene	xylene	46%
8	$[\text{Cp}^*\text{IrCl}_2]_2$	No	styrene	toluene	35%
9	$[\text{Cp}^*\text{IrCl}_2]_2$	No	styrene	DMF	50%
10	$[\text{Cp}^*\text{IrCl}_2]_2$	No	styrene	xylene	57%
11	$\text{RuCl}_2(\text{PPh}_3)_3$	KOH 0.2 eq.	styrene	xylene	26%
12	$[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2^d$	KOH 0.2 eq.	styrene	xylene	52%

^a Conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), catalyst (2.5 mol%), styrene (4.0 eq.) in refluxing temperature of the solvent listed (1 mL) under N_2 , 24 h. ^b ¹H-NMR yield. ^c Isolated yield, 12% of byproduct **5** was also isolated in entry 2. ^d 2.5 mol% dpdp was added.

^aChemical and Analytical Development, Suzhou Novartis Pharma Technology Co. Ltd, Changshu, Jiangsu, China 215537. E-mail: jianguang.zhou@novartis.com

^bSchool of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, China 210094

† Electronic supplementary information (ESI) available: Experimental procedures and compound characterization data. See DOI: [10.1039/c2ra22278g](https://doi.org/10.1039/c2ra22278g)

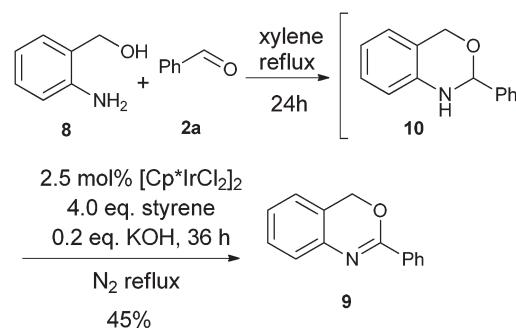

Scheme 2 Possible pathway to **5** from hydrogenation of imine **6** and reaction of **5** under hydrogen transfer conditions.

yields of **4a** were improved to 66% with addition of styrene (entry 2) and 50% with *E*-crotonitrile (entry 3). Further optimizations of the reaction by using acid or base additives were also tried (entries 4 to 7), but the best yield of 60% obtained by addition of NaOtBu (entry 6) was inferior to the results of 66% without such additives in entry 2. The effects of solvents (entries 8 and 9) and catalysts (entries 10 to 12) were also examined briefly with no increase of the yield of **4a**. After examining the reaction profiles, we decided to select the conditions of entry 2 (2.5 mol% $[\text{Cp}^*\text{IrCl}_2]_2$ in refluxing xylene with addition of 4.0 eq. styrene) for our investigations of the substrate scope of the reaction.

Table 2 One-pot synthesis of quinazolines via Ir-catalyzed hydrogen transfers^a

Entry	R_1	R_2	Yield ^b
1	H	C_6H_5	4a 66%
2	H	3-Cl- C_6H_4	4b 54%
3	H	3-Br- C_6H_4	4c 48%
4	H	3-NO ₂ - C_6H_4	4d 58%
5	H	3-Me- C_6H_4	4e 54%
6	H	3-OMe- C_6H_4	4f 51%
7	H	4-F- C_6H_4	4g 51%
8	H	4-Br- C_6H_4	4h 55%
9	H	4-NO ₂ - C_6H_4	4i 57%
10	H	4-Me- C_6H_4	4j 50%
11	H	Furyl	4k 55%
12	H	Benzyl	4l 49%
13	H	<i>n</i> -Pentanyl	4m 57%
14	F	C_6H_5	4n 56%
15	F	4-Br- C_6H_4	4o 60%
16	F	4-Me- C_6H_4	4p 62%
17	F	<i>n</i> -Pentanyl	4q 65%

^a Conditions: Entries 1–13: **1a** (1.0 mmol), **2** (1.0 mmol), catalyst (2.5 mol%), styrene (4.0 eq.) in refluxing xylene (2 mL) under N_2 , 24 h. Entries 14–17: **1b** (1.0 mmol), **2** (1.0 mmol), catalyst (2.5 mol%), styrene (4.0 eq.) in refluxing xylene (2 mL) under N_2 , 24 h. ^b Isolated yield.



Scheme 3 One-pot synthesis of 2-phenylquinazoline starting with benzyl alcohol.

Subsequently, a variety of substituted quinazolines were synthesized using our optimized conditions. As shown in Table 2, both aliphatic and aromatic aldehydes reacted with 2-aminobenzylamines to give the corresponding quinazolines **4** in moderate yields. Reactions between **1a** and aromatic aldehydes with either electron-withdrawing or electron-donating groups (entries 2 to 10) showed that the yields were not affected significantly in the range of 48% to 58%. Furthermore, the reactions also performed well when 2-furyl aldehyde (55% yield, entry 11), 2-phenylacetaldehyde (49% yield, entry 12) and hexanal (57% yield, entry 13) were involved. Investigations of 2-(amino-methyl)-3-fluoroaniline **1b** with several aldehydes again gave substituted quinazolines **4n** to **4q** in moderate yields (56% to 65%, entries 14 to 17).

It was our next interest to test the employment of benzyl alcohol **7** instead of benzaldehyde **2a** in the synthesis of quinazoline **4a**. The above described conditions using benzaldehyde did not give a satisfactory yield of **4a** (only 10%) when benzylalcohol **7** was used. Some optimizations (see supporting information, ESI†) identified that the addition of base additives, such as KOH (0.2 eq.) was necessary to increase the yield of **4a** to 61% (Scheme 3).

When 2-aminobenzyl alcohol **8** was used, the condensation with benzaldehydes **2a** gave 2-phenyl-4*H*-benzo[d][1,3]oxazine **9** in 45% yield as shown in Scheme 4.⁹ The optimized conditions also involved the use of KOH (2 eq.) to give a better yield (see supporting information, ESI†).

Scheme 4 One-pot synthesis of 2-phenyl-4*H*-benzo[d][1,3] oxazine between **8** and **2a**.

Conclusion

We have demonstrated a one-pot synthesis of 2-substituted quinazolines between 2-aminobenzylamines **1** and aldehydes **2** via iridium-catalyzed hydrogen transfers using styrene as a hydrogen acceptor. The use of benzyl alcohol **7** instead of benzaldehyde also successfully gave a quinazoline product in moderate yield. Further extension for the synthesis of 4*H*-3,1-benzoxazine was also demonstrated by the example using 2-aminobenzyl alcohol **8**.

References

- (a) J. B. Hynes and J. M. Buck, *J. Med. Chem.*, 1975, **18**, 1191; (b) J. H. Chan, J. S. Hong, L. F. Kuyper, M. L. Jones, D. P. Baccanari, R. L. Tansik, C. M. Boytos, S. K. Rudolph and A. D. Brown, *J. Heterocycl. Chem.*, 1997, **34**, 145; (c) J. P. Michael, *Nat. Prod. Rep.*, 1999, **16**, 697; (d) B. A. Foster, H. A. Coffrey, M. J. Morin and F. Rastinejad, *Science*, 1999, **286**, 2507; (e) J. P. Michael, *Nat. Prod. Rep.*, 2002, **19**, 742; (f) J. P. Michael, *Nat. Prod. Rep.*, 2003, **20**, 476; (g) L. A. Doyle and D. D. Ross, *Oncogene*, 2003, **22**, 7340; (h) A. Lewerenz, S. Hentschel, Z. Vissiennon, S. Michael and K. Nieber, *Drug Dev. Res.*, 2003, **58**, 420; (i) A. Lüth and W. Löwe, *Eur. J. Med. Chem.*, 2008, **43**, 1478; (j) R. Gundla, R. Kazemi, R. Sanam, R. Muttineni, J. A. R. P. Sarma, R. Dayam and N. Neamati, *J. Med. Chem.*, 2008, **51**, 3367.
- J. F. Mendes da Silva, M. Walters, S. Al-Damluji and C. R. Ganellin, *Bioorg. Med. Chem.*, 2008, **16**, 7254.
- H. A. III. Burris, *Oncologist*, 2004, **9**, 10.
- For reviews: (a) A. Witt and J. Bergman, *Curr. Org. Chem.*, 2003, **7**, 659; (b) D. J. Connolly, D. Cusack, T. P. O'Sullivan and P. J. Guiry, *Tetrahedron*, 2005, **61**, 10153; (c) For examples: J. J. E. Vanden, J. Godin, A. Mayence, A. Maquestiau and E. Anders, *Synthesis*, 1993, 867; (d) T. Kitazume, F. Zulfiqar and G. Tanaka, *Green Chem.*, 2000, **2**, 133; (e) W. H. Correa, S. Papadopoulos, P. Radnidge, B. A. Roberts and J. L. Scott, *Green Chem.*, 2002, **4**, 245; (f) J. Sinkkonen, K. N. Zelenin, A. K. A. Potapov, I. V. Lagoda, V. V. Alekseyev and K. Pihlaja, *Tetrahedron*, 2003, **59**, 1939; (g) N. Coskun and M. Cetin, *Tetrahedron Lett.*, 2004, **45**, 8973; (h) N. Coskun and M. Cetin, *Tetrahedron*, 2007, **63**, 2966; (i) F. Portela-Cubillo, J. S. Scott and J. C. Walton, *Chem. Commun.*, 2008, **44**, 2935; (j) F. Portela-Cubillo, J. S. Scott and J. C. Walton, *J. Org. Chem.*, 2009, **74**, 4934; (k) Y. Peng, Y. Zeng, G. Qiu, L. Cai and V. W. Pike, *J. Heterocycl. Chem.*, 2010, **47**, 1240; (l) C. U. Maheswari, G. S. Kumar, M. Venkateshwar, R. A. Kumar, M. L. Kantam and K. R. Reddy, *Adv. Synth. Catal.*, 2010, **352**, 341; (m) C. Wang, S. Li, H. Liu, Y. Jiang and H. Fu, *J. Org. Chem.*, 2010, **75**, 7936; (n) J. Zhang, D. Zhu, C. Yu, C. Wan and Z. Wang, *Org. Lett.*, 2010, **12**, 2841; (o) B. Han, X. L. Yang, C. Wang, Y. W. Bai, T. C. Pan, X. Chen and W. Yu, *J. Org. Chem.*, 2012, **77**, 1136.
- (a) J. Zhou and J. Fang, *J. Org. Chem.*, 2011, **76**, 7730; (b) J. Fang and J. Zhou, *Org. Biomol. Chem.*, 2012, **10**, 2389.
- For reviews: (a) K. Fujita and R. Yamaguchi, *Synlett*, 2005, **4**, 560; (b) T. D. Nixon, M. K. Whittlesey and J. M. J. Williams, *Dalton Trans.*, 2009, 753; (c) M. J. Krische, *Angew. Chem., Int. Ed.*, 2009, **48**, 34; (d) G. E. Debereiner and R. H. Crabtree, *Chem. Rev.*, 2010, **110**, 681; (e) T. Suzuki, *Chem. Rev.*, 2011, **111**, 1825; (f) J. Choi, A. H. R. MacArthur, M. Brookhart and A. S. Goldman, *Chem. Rev.*, 2011, **111**, 1761.
- Compound **5** was formed in 5% under these conditions; intermediates of **3** and **6** were also detectable in LC-MS.
- For hydrogen transfer in C–N bond formations: (a) R. Yamaguchi, K. Fujita and M. W. Zhu, *Heterocycles*, 2010, **81**, 1093; (b) A. J. Blacker, M. M. Farah, M. I. Hall, S. P. Marsden, O. Saidi and J. M. J. Williams, *Org. Lett.*, 2009, **11**, 2039; (c) W. X. Zhang, X. C. Dong and W. L. Zhao, *Org. Lett.*, 2011, **13**, 5386; (d) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann and M. Beller, *ChemCatChem.*, 2011, **3**, 1853.
- The assay yield of intermediate **10** is 62%, the rest of compound **8** decomposed under the reaction conditions, which accounted for the overall lower yield of compound **9**.