REVIEW

View Article Online View Journal | View Issue

Triterpenoids

Cite this: Nat. Prod. Rep., 2013, 30, 1028

Robert A. Hill* and Joseph D. Connolly

Covering: 2011. Previous review: Nat. Prod. Rep., 2012, 29, 780-818.

Received 16th April 2013 DOI: 10.1039/c3np70032a

www.rsc.org/npr

This review covers the isolation and structure determination of triterpenoids including squalene derivatives, lanostanes, holostanes, cycloartanes, cucurbitanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, onoceranes and saponins; 308 references are cited.

- 1 Introduction
- 2 The squalene group
- 3 The lanostane group
- 4 The dammarane group
- 4.1 Tetranortriterpenoids
- 5 The lupane group
- 6 The oleanane group
- 7 The ursane group
- 8 The hopane group
- 9 Miscellaneous compounds
- 10 References

1 Introduction

Interest in the biological activities of triterpenoids continues with reviews on their anti-inflamatory,^{1,2} antiviral,³ antitumour,⁴⁻⁶ anti-HIV⁷ and insecticidal⁸ activities and for treatment of metabolic and vascular diseases.⁹ Surveys have appeared describing the triterpenoids isolated from *Anemone raddeana*,¹⁰ *Poria cocos*,¹¹ *Lantana*¹² and *Simaba*¹³ species and Pinaceae¹⁴ and Meliaceae¹⁵ families. Triterpenoid saponins show a range of biological activities¹⁶ and this has generated interest in their biosynthesis¹⁷ and improvement of yields from natural sources.¹⁸ Reviews covering triterpenoid saponins from *Camellia*¹⁹ and *Polygala*²⁰ species and the Theaceae²¹ and Caryophyllaceae and Illecebraceae²² families have appeared.

2 The squalene group

15-Dehydroxythyrsenol A **1**, prethyrsenol A **2** and 13-hydroxyprethyrsenol A **3** are new cytotoxic squalene derivatives from *Laurencia viridis.*²³ The related compounds 22-hydroxy-15(28)-dehydrovenustatriol **4**, secodehydrothyrsiferol **5**, iubol **6** and 1,2-dehydropseudodehydrothysiferol **7** have also been isolated from *Laurencia viridis* by the same group.²⁴ Squalene-1,10,24,25,30-pentol **8**, which shows moderate anti-

School of Chemistry, Glasgow University, Glasgow, UK G12 8QQ. E-mail: bob.hill@ glasgow.ac.uk

mycobacterial activity, has been reported from the leaves and twigs of *Rhus taitensis*.²⁵ The biochemistry and molecular biology of squalene has been reviewed.²⁶

3 The lanostane group

Schiglauzic acid **9** and schiglaucyclozic acid **10** are new lanostanes from the stems of *Schisandra glaucescens*.²⁷ The structures of both compounds were confirmed by X-ray analyses. The three lanostanes **11**, **12** and **13**, from the leaves of *Abies spectabilis*, are accompanied by the mariesane derivative **14** and the $18(13 \rightarrow 17)$ -*abeo*-lanostane **15**.²⁸ The rearranged lanostane **16** and 24,25,26-trihydroxylanost-7-en-3-one **17** have been isolated from *Abies nephrolepis*.²⁹ The tetradecanoyl ester **18** is a constituent of *Euphorbia sapinii*.³⁰

Bioactive lanostane derivatives from fungi include **19** and **20** from *Poria cocos*³¹ and 24,25,26-trinor-3-oxolanosta-7,9(11)-dien-24-oic acid **21**³² and methyl ganoderate A acetonide **22** and butyl ganoderate H **23**³³ from *Ganoderma lucidum*. The epoxy-ganoderic acid **24** is also a constituent of *Ganoderma lucidum*.³⁴ The biological properties of triterpenoids from *Poria cocos*³⁵ and *Ganoderma lucidum*³⁶ have been reviewed.

Fasciculols H **25** and I **26** are constituents of the Chinese mushroom *Naematoloma fasciculare*.³⁷ The entomopathogenic fungus *Hypocrella* sp. BCC 14524 is the source of the lanostanes hypocrellols A–G **27–33**.³⁸ Xylariacins A **34**, B **35** and C **36** have

been isolated from *Xylarialeum* sp. A45, an endophytic fungus isolated from *Annona squamosa*.³⁹ Inonotsutriols D **37** and E **38** have been reported from the white rot fungus *Inonotus obliquus*.⁴⁰

Erylosides R₁, T₁, T₂, T₃, T₄, T₅ and T₆ are lanostane saponins with known genins from the Caribbean sponge Erylus formosus.41 Of the five new saponins, scillanostasides A-E, isolated from the bulbs of Scilla scilloides, only A and B have new genins 39 and 40.42 Lanostan-3β-ol 41 is a new genin of a diglucuronoside from the flowers of Punica granatum.43

Cucumariosides H₅, H₆, H₇ and H₈ are new holostane glycosides from the sea cucumber Eupentacta fraudatrix.44 Cucumarioside H₈ has a new genin 42 with an unusual 16,22epoxide. Patagonicosides B and C, sulphated glycosides from the sea cucumber Psolus patagonicus, display antifungal activity.45 Patagonicoside B has the new genin 43. Two new

Ъ

ÒAc

٠H

 R^2

59 R¹ = R² = O

61 $R^1 = H_2; R^2 = O$

OGIc

glycosides with known genins, liouvillosides A₄ and A₅, have been isolated from the sea cucumber *Staurocucumis liouvillei*.⁴⁶

Interesting new compounds from Schisandra species include henrischinins A-C 44-46 from Schisandra henryi with an oxabicyclo[3.2.1]octane moiety in the side chain,⁴⁷ the bisnorderivative schinarisanlactone A 47 from Schisandra arisanensis48 and the tricyclic derivative schiglautone A 48 from the stems of Schisandra glaucescens.⁴⁹ The structure of henrischinin B 45 was confirmed by X-ray analysis. 2β-Hydroxymicrandilactone C 49,50 schintrilactone C 5051 and wilsoniadilactones D-F 51-5352 are new constituents of Schisandra chinensis, Schisandra sphenanthera and Schisandra wilsoniana, respectively. Four new peroxylactones, pseudodarolides Q2 54, T1 55 and T2 5653 and 25-epipseudolarolide Q 57,54 have been isolated from Pseudolarix kaempferi. Huangqiyenins G-J 58-61 are new saponins from Astragalus membranaceus.⁵⁵ The xyloside cimipodocarpaside 62 has been reported from Cimifuga racemosa.⁵⁶ The myxomycete Tubulifera arachnoidea afforded the new 9,10-secocycloartane tubiferic acid 63.57

Sinocalycanchinensins A–H **64–71** are 29-norcycloartanes from the leaves of *Sinocalycanthus chinensis*.⁵⁸ Sinocalycanchinensins A–E **64–68** are 3,4-*seco*-derivatives while sinocalycanchinensin F **69** has a 2,3-cleaved ring A. Other 3,4-cleaved cycloartanes include gardenoins I **72** and J **73** from the exudates of *Gardenia thailandica*⁵⁹ and coccinetanes B–G **74–79** from *Kadsura coccinea*.⁶⁰ Secopisonic acid from *Pisonia umbellifera*⁶¹ and gardenoin H from the apical buds of *Gardenia obtusifolia*⁶² are identical with coccinetane E **77**. Gardenoins E–G **80–82** are other constituents of *Gardenia obtusifolia*.⁶² Angustific acid A **83**, from *Kadsura angustifolia*, has an unusual bridged lactone.⁶³ It is accompanied by angustific acid B **84** and angustifodilactones A **85** and B **86**. The compounds are reported to have anti-HIV activity.

In separate studies ten new cycloartanes and glycosides 87– 96⁶⁴ and three new glycosides, two (97 and 98) with new genins,⁶⁵ have been reported from *Cimifuga foetida*. Six new glycosides 99–104 have been isolated from the rhizome of *Cimifuga heracleifolia*⁶⁶ and two, tareciliosides L and M with new genins

105 and **106**, from the leaves of *Tarenna gracilipes*.⁶⁷ Tareciliosides H–K have known genins.

The $18(13 \rightarrow 17)$ -abeocycloartane **107** is a constituent of the bark and leaves of *Garcinia benthami*, where it occurs along with the 14,17-friedolanostanes **108–110**.⁶⁸ Other new cycloartanes include combretanones A–G **111–117** and combretic acids A **118** and B **119** from *Combretum quadlangulare*,⁶⁹ bicusposides D–F **120–122** from *Astragalus bicuspis*,⁷⁰ macrostachyosides A **123** and B **124** from *Mallotus macrostachyus*,⁷¹ cycloart-24-ene-2 α ,3 β -diol **125** from the stigma of *Zea mays*⁷² and boniatic acids A **126** and B **127** from *Radermachera boniana*.⁷³ Bonianic acids A **126** and B **127** showed some antitubercular activity. Codonopilates A–C **128–130** are cycloartane esters from *Codonopsis pilosula*.⁷⁴

Novel cycloartane saponins with known genins include askendoside K from *Astragalus taschkendicus*,⁷⁵ cicerosides A and B from *Astragalus cicer*,⁷⁶ shengmaxinsides A–C from *Cimicifuga simplex*,⁷⁷ and unnamed saponins from *Astragalus mucidus*.⁷⁸ The biological activities of cycloartane triterpenoids have been reviewed.⁷⁹

Machilusides A **131** and B **132**, from the stem bark of *Machilus yaoshansis*, are cucurbitane glycosides with an unusual *C*-glycoside moiety.⁸⁰ The roots of *Machilus yaoshansis* afforded seven new glycosides **133–139**.⁸¹ These authors also revised the C-24 configurations of several known compounds, including cucurbitacins S and T and colocyhthins A, B and C, from 24*S* to 24*R*. Compounds **140** and **141**, from the roots of *Wilbrandia*

ebracteata, are reported to have cytotoxic activity.⁸² New cucurbitanes from *Momordica charantia* include the antioxidants taiwacins A **142** and B **143** from the stems and fruit,⁸³ **144–148**⁸⁴

and **149** and **150**.⁸⁵ Compound **148** is a 19-*nor*-derivative with an aromatic ring B. The biological activities of compounds from *Momordica charantia* have been reviewed.⁸⁶

NPR

HC

149

4 The dammarane group

Gypensapogenins A **151** and B **152** are modified dammaranes, with an unusual ring A, from *Gynostemma pentaphyllum*, where

HC

they are found with gypensapogenins C **153**, D **154** and the glucoside **155**⁸⁷ and the 21,24-cyclo derivative **156** and the nonanordammarane **157**.⁸⁸ The structure of gypensaponin A **151** was confirmed by X-ray analysis. Other new dammaranes

150

include gardaubryones A–C **158–160** from *Gardenia aubryi*,⁸⁹ **161–163** from the berries of *Panax ginseng*,⁹⁰ **164–170** from the floral spikes of *Betula platyphylla* var. *japonica*,⁹¹ the 24-epimers **171** and **172** from the apical buds of *Gardenia collinsae*,⁹² dammara-20(22),24-diene-3β,26,27-triol **173** from the leaves and twigs of *Rhus taitensis*²⁵ and the α -ketol **174** from the exudate of the leaves of *Cerasus yedoensis*.⁹³ The structure recently proposed for ailexcelone, from *Ailanthus excelsa*, is similar to that of gardaubryone B **159** but its spectroscopic data are inconsistent with this structure, The revised structure, 24,25-dihydroxytirucall-7-en-3-one, has been proposed and the structure of the corresponding 3β-hydroxy-derivative should also be revised.⁸⁹

Four new saponins, operculinosides A–D **175–178**, have been reported from the aerial parts of *Operculina turpethum*.⁹⁴ The structure of operculinoside A **175** was confirmed by X-ray analysis. Of the six saponins ginsenosides Re₁- Re₆ have been reported from the root of *Panax ginseng*, only ginsenoside Re₅ **179** has a new genin.⁹⁵ Panajaponol, from the roots of *Panax japonicus* var. *major*, is identical to ginsenoside Re₅ **179** but was drawn with the wrong double bond geometry.⁹⁶ Reviews on the pharmacological activities of the ginsenosides have appeared.^{97,98}

Novel dammarane saponins with known genins include betalnosides B and C from *Betula alnoides*,⁹⁹ centellosides A and B and ginsenosides Mc and Y from *Centella asiatica*,¹⁰⁰ ginsenosides Ra_4 - Ra_9^{101} and 20*R*-ginsenoside ST_2^{102} from *Panax*

ginseng, gypenosides GC1–GC7 from Gynostemma pentaphyllum,¹⁰³ notoginsenosides SFt₁–SFt₄ from Panax notoginseng,¹⁰⁴ pseudoginsenosides G₁ and G₂ from Panax quinquefolium,¹⁰⁵ yesanchinosides R₁ and R₂ from Panax japonicus¹⁰⁶ and unnamed saponins from Gynostemma pentaphyllum.¹⁰⁷

Toona ciliata var. pubescens is the source of the tirucallane derivatives toonapubesins A–G **180–186.**¹⁰⁸ Toonapubesin G **186** has a rearranged side chain. The tirucallanes **187–192**, together with dysoxylumstatins A–C **193–195**, have been reported from *Dysoxylum lukii.*¹⁰⁹ Dysoxylumstatin C **195** is an apotirucallane γ -lactone. Several *nor*-tirucallane derivatives **196–199** have been isolated from *Aphanamixis grandifolia.*¹¹⁰ Compound **199** was also isolated as dysolenticin G from the

twigs and leaves of *Dysoxylum lenticellatum*, a rich source of interesting tirucallane derivatives including dysolenticin A 200, with its rearranged side chain, and dysolenticins B–F 201–205 and H–J 206–208.¹¹¹ The structures of 200, 202, 203, 205 and 207 were confirmed by X-ray analyses. Other new tirucallane derivatives from *Aphanamixis grandifolia* include aphagranins A–G 209–215¹¹² and compounds 216–220.¹¹³ Several of these compounds look suspiciously like artefacts of the extraction process. *Cornus walteri* is also a good source of new tirucallane derivatives.¹¹⁴ The constituents of this plant include cornusalterins A–L 221–232. Ailanthusaltenin A, from the stem bark of *Ailanthus altissima*,¹¹⁵ is the same as cornusalterin D 224. Other new tirucallanes include 233 from *Euphorbia sapinii*,³⁰ 234 from the resin of *Boswellia carterii*,¹¹⁶ the dihydroxy acid

8

NPR

 $235~{\rm from}~{\rm Jordanian}~{\rm propolis}^{117}$ and $236~{\rm and}~237~{\rm from}~{\it Azadirachta}$ indica.^118

Only seven euphane triterpenoids have been reported. They are compounds **238–241** from the bark of *Broussonetia papyrifera*,¹¹⁹ nepetadiol **242** from *Nepeta suavis*¹²⁰ and the 21,24-

cycloeuphane 243 and cinamodiol acetate 244 from the bark of *Melia azedarach*.¹²¹

Cumingianols A–C **245–247** are cycloapotirucallane derivatives from *Dysoxylum cumingianum*.¹²² Other constituents include cumingianoside R **248**, a rare glycoside in this series,

the apotirucallane derivatives, cumingianols D 249 and E 250, and the tirucallane, cumingianol F 251.

4.1 Tetranortriterpenoids

Reviews have appeared on limonoids from the Meliaceae¹²³ and from *Trichilia emetica*¹²⁴ and on the synthesis of limonoid natural products.¹²⁵ Kokosanolides A 252 and C 253 are rearranged limonoids from the seeds and bark of *Lansium domesticum* cv. Kokossan.¹²⁶ Other interesting derivatives include chisomicines A 254, B 255 and C 256 from the bark of *Chisocheton ceramicus*,¹²⁷ 5,6-didehydrodesepoxyhaperforin C2 257 and harrpernoids B 258 and C 259 from the fruit of *Harrisonia perforata*,¹²⁸ aphapolynins A 260 and B 261¹²⁹ and aphanamolides A 262 and B 263¹³⁰ from *Aphanamixis polystachya*. The structures of kokosanolide A 252, chisomicines A–C 254–256 and aphapolyrin A 260 were all confirmed by X-ray analyses. The lack of a furan ring is the notable feature of the tris-nor derivatives toonapubesic acids A **264** and B **265** from *Toona ciliata* var. *pubescens*.¹⁰⁸ The structure of the methyl ester of toonapubesic acid A was confirmed by X-ray analysis. Ceramicines E–I **266–270** constitute a series of 1-oxo derivatives from *Chisocheton ceramicus*.¹³¹ The structure of the previously published ceramicine B **271** has been confirmed by X-ray analysis. Meliarachins A–K **272–282** are further limonoids from the twigs and leaves of *Melia azedarach*.¹³²

Dasylactones A **283** and B **284** are degraded derivatives from *Dictamnus dasycarpus*.¹³³ Raputiolide **285** is a ring-A cleaved limonoid from *Raputia heptaphylla*.¹³⁴ *Toona ciliata* var. *henryi* is a rich source of ring-B cleaved derivatives, affording toonacilianins A–L **286–297**.¹³⁵ Toonacilianins K **296** and L **297** are 29-nor derivatives. Two further 29-nor derivatives, toonaciliatins N **298** and O **299** have been reported from *Toona ciliata* var. *yunnanensis*, where they occur along with toonaciliatin P **300**.¹³⁶

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Open Access Article. Published on 05 June 2013. Downloaded on 8/23/2025 11:42:13 PM.

Three methyl angolensate derivatives **301–303** have been found in the root bark of *Entandrophragma angolense*, where they occur with the gedunin derivatives **304** and **305**.¹³⁷ Compound **301** is the same as moluccensin O which was published in 2010.

Thaimoluccensin A **306** is an andirobin derivative from the seeds of *Xylocarpus moluccensis*.¹³⁸ Although its structure was confirmed by X-ray analysis the wrong relative configuration was published in the original paper.

Four new ring C cleaved limonoids **307–310** have been isolated from the fruit of *Melia toosendan*, together with the tirucallane derivatives meliasenins S **311** and T **312**.¹³⁹ Meliasenin T **312** was also obtained from *Melia azedarach* seeds where it occurs with the tirucallane **313**, the toosendanin esters **314** and **315** and the nimbolinin C derivative **316**.¹⁴⁰ The ring-C cleaved hydroperoxide **317** has been isolated from *Azadirachta indica*.¹¹⁸

The flow of new mexicanolide and phragmalin derivatives continues unabated. *Chukrasia tabularis* var. *velutina* is a particularly rich source. The new derivatives reported from this source include velutabularins A–J 318–327,¹⁴¹ tabulalides F–N 328–336,¹⁴² tabulalins A–E 337–341,¹⁴³ chukvelutilide H 342 and tabularisin R 343,¹⁴⁴ tabulvelutins A 344 and B 345¹⁴⁵ and

tabulalin F **346**.¹⁴⁶ Many of these compounds are trivial variants of known systems. Velutabularins A–J **318–327** are cyclopropyl derivatives with a modified ring D and tabulvelutin A **344** is a 19-nor derivative. A similar range of phragmalin derivatives, swietenitins N–X **347–357**, has been isolated from the twigs of *Swietenia macrophylla*.¹⁴⁷ The structure of swietenitin N **347** was confirmed by X-ray analysis. The

stereochemistry of the known compound 14,15-dihydroepoxyfebrinin B **358** was also established during this study. The leaves of *Trichilia connaroides* produced trichagmalins A–F **359–364** and several acetyl derivatives **365–369**, together with trichanolide **370**.¹⁴⁸ The gedunin andirolide A **371**, the mexicanolides andirolides B–D **372–374** and the phragmalins andirolides E–G **375–377** have been reported from the flowers

NPR

of *Carapa guianensis*.¹⁴⁹ The structure of andirolide E **375** was confirmed by X-ray analysis. Other phragmalin derivatives include thaimoluccensins B **378** and C **379** from the seeds of Thai *Xylocarpus moluccensis*¹³⁸ and godvarin K **380** from the Godvari mangrove *Xylocarpus moluccensis*.¹⁵⁰

New quassinoids are few in number. They include 2'-isopicrasin A **381** from the stems of *Picrasma quassinoides*,¹⁵¹ bruceines K **382** and L **383** from the ripe fruit of *Brucea javanica*,¹⁵² yadanziolides T–V **384–386** from the stems of *Brucea mollis*¹⁵³ and nothospondin **387** from *Nothospondias staudtii*.¹⁵⁴

NPR

5 The lupane group

The pharmacological activities of lupeol¹⁵⁵ and lupane saponins¹⁵⁶ have been reviewed. Lactucenyl acetate **388**, from *Lactuca indica*, has a migrated lupane structure which is identical to the structure originally assigned to tarolupenyl acetate.¹⁵⁷ The structure of tarolupenyl acetate has been revised to lup-19(21)en-3 β -yl acetate **389**. Breynceanothanolic acid **390** is a 25-norceanothic acid derivative from roots of *Breynia fruticosa*.¹⁵⁸ The ring A-*seco* lupane dysoxyhainic acid H **391** is from *Dysoxylum hainanense*.¹⁵⁹ *Liquidambar formosana* is the source of liquidambarone **392** which is 18 α ,29-epoxy-20*R*-hydroxy-28-norlupan-3-one.¹⁶⁰ Sorbicins A **393** and B **394** are lupane derivatives from *Sorbus cashmiriana*.¹⁶¹ Olibanum, the gum resin of *Boswellia* *carterii*, is the source of olibanumols F **395** and G **396**.¹⁶² Other simple lupane derivatives include lupane- 3β , 18α , 19β -triol **397** from *Garcinia tetralata*,¹⁶³ lup-12-ene- 3β ,28-diol **398** from roots of *Diospyros virginiana*,¹⁶⁴ the 3β , 19β -dihydroxy derivatives **399** and **400** from *Paragonia pyrimidata*,¹⁶⁵ and the 23,27,28-trioic acid **401** from *Heteropanax fragrans*.¹⁶⁶ Pulsatilla triterpenic acid A **402**, from *Pulsatilla chinensis*, is an acetal of 5-hydroxymethylfurfural and 3β ,23-dihydroxylup-20(29)-en-28-oic acid.¹⁶⁷ The caffeate esters **403**¹⁶⁸ and **404**¹⁶⁹ are from *Alnus firma* and *Alangium salviifolium*, respectively, while the palmitate ester **405** is found in leaves of *Rauvolfia vomitoria*.¹⁷⁰ The 21-configuration of **405** has not been established. Seven lupane saponins with known genins have been isolated from *Stryphnodendron fissuratum*.¹⁷¹

405

6 The oleanane group

NPR

Several ring-A seco-oleanane triterpenoids have been isolated, including the 2,3-seco-oleanenetrioic acid 406 from Dillenia philippinensis,¹⁷² dysoxyhainic acid F 407, G 408, I 409 and J 410 from Dysoxylum hainanense,¹⁵⁹ the 12-ketone 411 and 13(18)-ene 412 from Betula pendula,¹⁷³ the 3-methyl ester 413 from Kalopanax pictus¹⁷⁴ and ivorengenin B 414 from Terminalia ivorensis.¹⁷⁵ The unusual 9,25-cycloolean-12-en-3β-yl β-D-glucofuranoside 415 has been reported to be a constituent of Celestris australis¹⁷⁶ and the same group has identified 9,25-cyclo-3β-(β-D-glucopyranosyloxy)-16a-hydroxyolean-12-en-28-oic acid 416 in Symplocos

paniculata.¹⁷⁷ The 24,30-dinoroleanane 417, 30-noroleanane 418 and 24-noroleanane 419 derivatives are present in the roots of Paeonia rockii ssp. rockii.178 A review covering the structures and pharmacological activity of noroleanane triterpenoids has been published.179 The antitumour activities of oleanane triterpenoids have been surveyed.180

Fatsicarpains A-G 420-426 are oleanane derivatives from leaves and twigs of Fatsia polycarpa.181 The structures of fatsicarpain A 420 and the co-occurring known oleananes 427 and 428 were confirmed by X-ray analyses. 15a-Hydroxysoyasapogenol B 429, 7β,15α-hydroxysoyasapogenol B 430 and 7β ,29-dihydroxysoyasapogenol 431 are metabolites of the

НÓ

419

ΗÓ

endophytic fungus *Pestalotiopsis clavispora*, isolated from *Bruguiera sexangula*.¹⁸² The structure of 15α -hydroxysoyasapogenol B **429** was confirmed by X-ray analysis. The structure of olean-13(18)-ene-3,12,19-trione **432**, from *Sedum linare*, was also established by X-ray analysis.¹⁸³

Other new simple oleanane derivatives include ambradiolic acid A **433** from *Liquidambar formosana*,¹⁶⁰ 16α,23,29-trihydroxy-

3-oxoolean-12-en-28-oic acid **434** from *Kalopanax pictus*,¹⁷⁴ ivorengenin A **435** from *Terminalia ivorensis*,¹⁷⁵ salacetal **436** from *Salacia longipes* var. *camerunensis*,¹⁸⁴ olean-12-ene-3α,23-diol **437** from *Salvia miltiorrhiza*,¹⁸⁵ camelliagenone **438** from *Barringtonia asiatica*,¹⁸⁶ the 1,3-diols **439** and **440** from *Viburnum chingii*,¹⁸⁷ 2α,3α,19α,23-tetrahydroxyolean-12-en-28-oic acid **441** from *Rosa laevigata*,¹⁸⁸ 3β-hydroxyolean-18-en-1-one **442** from

Juglans chinensis,¹⁸⁹ **443–449** from Nannoglottis carpesioides¹⁹⁰ and olibanumol E **450** from olibanum, the gum resin of Boswellia carterii.¹⁶²

Pulsatilla triterpenic acids B **451** and C **452**, from *Pulsatilla chinensis*, are hederagenin acetal derivatives.¹⁶⁷ The first gly-cyrrhetic acid amino acid conjugate, dendrophen **453**, has been

471 R¹ = angeloyi, R² = 2-methylbutanoyi, R³ = R⁴ = H; R⁵ = CHO **472** R¹ = angeloyi, R² = 2-methylbutanoyi, R³ = Ac; R⁴ = H; R⁵ = CHO **473** R¹ = angeloyi, R² = 2-methylbutanoyi, R³ = Ac; R⁴ = H; R⁵ = CO₂Me

isolated from *Dendronephthya hemprichi*.¹⁹¹ The aglycone **454** of the known castanopsinin E_a has been found in leaves of *Castanopsis fissa*.¹⁹² Other new oleanane ester derivatives include the caffeoyl ester of germanicol **455** from *Barringtonia asiatica*,¹⁸⁶ esters **456–459** from *Glochidion assamicum*,¹⁹³ uragogin **460** from *Crossopetalum uragoga*,¹⁹⁴ and the sulfate esters **461–463** from *Gypsolphila pacifica*.¹⁹⁵

Clethroidosides A–G are oleanane saponins from *Lysimachia clethroides*.¹⁹⁶ Clethroidosides F and G have the new genins **464** and **465**, respectively; the others have known genins. Heterogenoside F, from *Lysimachia heterogenea*, is identical to clethroidoside F and it is found with heterogenoside E that has a known genin.¹⁹⁷ The genins of glaucasides A and B, from *Atriplex glauca* var. *ifiniensis*, are the new compounds **466** and **467** whereas glaucaside C has the known genin saikogenin G. *Camellia sinensis* is a rich source of saponins including rogchaponins R1–R10.¹⁹⁸ Rogchaponins R1, R2 and R4–R7 have the new genins **468–473**, respectively. Myrseguinoside D, from *Myrsine seguinii*, has the new genin **474**.¹⁹⁹ It is accompanied by myrseguinoside E which is the same as the known ardisicrenoside J. Dianthosaponins A–F are found in *Dianthus japonicus*.²⁰⁰ Dianthosaponins E and F have the new genins **475** and **476**, respectively. Bridgesides A1, C1, C2, D1, D2, E1 and E2, from *Echinopsis macrogona*, include the new genins **477** and

Table 1		
Trivial name	Plant species	Reference
Androsacin	Androsace integra	206
Apodytines A–F	Apodytes dimidiata	207
Ardisicrenosides I, J, M	Ardisia crenata	208
Ardisicrenoside N	Ardisia crenata	209
Azafrines 1, 2	Crocus sativus	210
Bifinosides A–C	Panax bipinnatifidus	211
Blighosides A–C	Blighia sapida	212
Caraganosides C, D	Caragana microphylla	213
Caryophyllacosides A, B	Gypsophila paniculata	214
Catunarosides A–D	Catunaregam spinosa	215
Catunarosides E–H	Catunaregam spinosa	216
Celosins A, B	Celosia argentea	217
Celosins E, G	Celosia argentea	218
Dexyloprimulanin	Labisia pumila	219
Dialiumoside	Dialium excelsum	220
Dipsacus saponins J, K	Dipsacus asper	221
Elatoside L	Aralia elata	222
Esculentoside T	Phytolacca acinosa	223
Gordonosides I–P	Gordonia chrysandra	224
Halimodendrin I	Halimodendron	225
	halodendron	
Libericosides A ₁ , A ₂ , B ₁ , B ₂ , C ₂	Atroxima liberica	226
Lonimacranthoide I	Lonicera macranthoides	227
Mandshunosides A, B	Clematis mandshurica	228
Micranthosides A–C	Polygala micrantha	229
Mollusides A, B	Albizia mollis	230
Onjisaponin Wg	Polygala tenuifolia	231
Parkiosides A–C	Butyrospermum parkii	232
Platycoside O	Platycodon grandiflorum	233
Pseudoginsenoside RT1 butyl ester	Panax japonicus var. major	96
Puberosides C–E	Glochidion puberum	234
Rheedeiosides A–D	Entada rheedei	235
Scoposides F, G	<i>Cephalaria</i> spp.	236
Umbellatosides A, B	Hydrocotyle umbellata	237

Table 2

Plant species	Reference
Albizia inundata	238
Anemone rivularis var. flore-minore	239
Anemone taipaiensis	240
Aralia elata	241
Arenaria montana	242
Bellis perennis	243
Catunaregam spinosa	244
Cylicodiscus gabunensis	245
Dianthus superbus	246
Erthrophleum fordii	247
Ganoderma applanatum	248
Gymnocladus chinensis	249
Gypsophila perfoliata	250
Juglans sinensiss	189
Kalopanax pictus	174
Lathyrus rattan	251
Medicago polymorpha	252
Microsechium helleri	253
Nephelium lappaceum	254,255
Panacis majoris	256
Phytolacca americana	257
Salsola imbricata	258
Sanguisorba tenuifolia var. alba	259
Symplocos caudata	260
Symplocos lancifolia	261

478.²⁰¹ Other oleanane saponins with new genins include 3β ,12 β ,30-trihydroxyoleanan-28,13 β -olide **479** from *Patrinia scabiosaefolia*,²⁰² the esters **480** and **481** from *Maesa lanceolata*,²⁰³ oleana-11,13(18)-diene-3 β ,16 α ,21 β ,28-tetrol **482** and the corresponding 21 ketone **483** from *Bupleurum falcataum* and *Bupleurum rotundifolium*,²⁰⁴ and coryternic acid **484** from *Corydalis ternate*.²⁰⁵

New oleanane saponins with known genins that have been assigned trivial names are listed in Table 1.

The sources of new oleanane saponins with known genins that have not been assigned trivial names are listed in Table 2.

Pachanosides C1, E1, F1 and G1 are pachanane saponins from *Echinops macrogona* with the genins **485–488**, respectively.²⁰¹ The structure of pachanol C **485** has been revised.

The rearranged oleanane derivatives phlomishexaols C **489** and D **490** have been found in the roots of *Phlomis umbrosa*.^{262,263} The biosynthetic origin of the spirotriterpenoid cleistanone **491**, from *Cleistanthus indochinensis*, is not clear from its structure.²⁶³ The rearranged oleanane derivative **492** has been claimed from *Rhododendron campanulatum*.²⁶⁴ The

stereochemistry of the methyl group at C-18 of **492** is unusual. The multiflorane endoperoxide dibenzoate **493** is a constituent of processed seeds of *Trichosanthes kirilowii*.²⁶⁵ 3β-Acetoxyglutin-5(10)-en-6-one **494** has been found in roots of *Scorzonera austriaca*.²⁶⁶

New friedelane triterpenoids include 21α -hydroxyfriedelane-1,3-dione **495** from *Salacia verrucosa*,²⁶⁷ 12 α -hydroxyfriedelane-3,16-dione **496**²⁶⁸ and 12 α ,29-dihydroxyfriedelan-3-one **497**²⁶⁹ from *Maytenus gonoclada*, 3 β -hydroxyfriedelane-7,12,22-trione **498** from *Drypetes laciniata*²⁷⁰ and 11 α -friedelan-3-one **499** from *Myrica rubra*.²⁷¹ The norfriedelane derivative 3-O-methyl-6-oxopristimerol **500** is a constituent of *Maytenus chubensis*.²⁷² Blepharodin **501**, from *Maytenus magellanica*, is an adduct with a phenylpropanoid derivative.¹⁹⁴

7 The ursane group

The 18,19-secoursane derivatives 502 and 503 have been isolated from Rosa laevigata together with 28-norursa-12,17-diene- 2α , 3β , 23-triol **504** and the arabinoside **505** whose genin has an unusual 19a-stereochemistry.188 The related 18,19-secoursane derivative 506 has been reported from leaves of Diospyros kaki.273 Atriplicaide A 507 is an unusual N-acetyl lactam from Zygophyllum eurypterum where it is found with atriplicaide B 508 which is 3β,24dihydroxyursan-28,13-olide.²⁷⁴ Related 28,13olides 509 and 510 have been isolated from Isodon coetsa275 and Schefflera heptaphylla,276 respectively. Proceraursenolide 511, from the roots of Calatropis procera, is claimed to be 18αH-urs-12-en-25,3β-olide.277 Other new simple ursane derivatives include cordinoic acid 512 from Cordia latifolia,278 urs-12-ene-3a,23-diol 513 from Salvia miltiorrhiza,185 18aH-

ursene-3β,20β-diol 514 Boswellia carterii,116 from 1α,2α,3β,16α,19α,20β-hexahydroxyurs-12-en-28-oic acid 515 from Pedicularis kansuensis,279 glutinolic acid 516 from *Rehmannia glutinosa*,²⁸⁰ and 3β,7β,24-trihydroxyurs-12-en-28-oic acid 517 from Saurauja roxburghii.281 New ursane ester derivatives include conrauidienol 518 from Ficus conraui,282 3β-acetoxyursa-11,13(18)-dien-28-oic acid 519 from Eucalyptus camaldulensis,²⁸³ 3-O-acetyluncaric acid 520 from Radermachera boniana.73 sambucilate 521 from Sambucus adnata²⁸⁴ and the palmitate esters 522 and 523 from Viburnum betulifolium.285

Clethroidoside H, from *Lysimchia clethroides*, is an ursane saponin with the new genin ursa-9(11),12-diene- 2α ,3 β ,21 β ,30-tetrol **524**.¹⁹⁶ The 18,19-secoursane derivative **525** is the genin of dunnianolactones A–C from *Ilex dunniana*.²⁸⁶ A saponin given the duplicate name ilexsaponin C, from *Ilex pubescens*, has the

new genin 28-norursa-12,17-dien-2 β -ol **526**.²⁸⁷ Other unnamed ursane saponins with the new genins include 3 β ,23-dihydroxyurs-12-en-28-oic acid **527** from *Jugalans sinensis*,¹⁸⁹ and 2,3 β ,16 α ,23-tetrahydroxyurs-12-en-28-oic acid **528** from *Lathyrus aphaca*.²⁵¹

Ursane saponins with known genins include asiaticoside G from *Centella asiatica*,²⁸⁸ clethric acid 28-*O*-β-D-glucopyransyl ester and mussaendoside T from *Anthocephalus chinensis*,²⁸⁹ ilekudinchosides A-D²⁹⁰ and W²⁹¹ from *Ilex kudincha*, symplocosins A and B from *Symplocos cochinchinensis* var. *philippensis*,²⁹² zygophylloside S from *Zygophyllum coccineum*²⁹³ and unnamed saponins from *Ilex chamaedryfolia*,²⁹⁴ *Juglans sinensis*,¹⁸⁹ *Sanguisorba tenuifolia* var. *alba*²⁵⁹ and *Symplocos lancifolia*.²⁶¹

19β-Hydroxy-3,4-seco-4(23),20(30)-taraxastadien-3-oic acid **529** has been isolated from buds of *Betula pendula*.¹⁷³ The

tannin ester **530** of 2α , 3β ,23,24-tetrahydroxytaraxastan-28, 20β olide is a constituent of leaves of *Castanopsis fissa*.¹⁹² The taraxastane hemiacetal **531** has been found in *Geum japonicum*.²⁹⁵ Celosin F **532** appears to be a taraxastane xyloside from *Celosia argentea*.²¹⁸

8 The hopane group

The current knowledge of squalene-hopene cyclases has been reviewed.²⁹⁶ The unusual 9,25-cyclo-29-propylhopan-31-ol **533** and 3β -hydroxy-29-propylhopan-31-one **534** have been identified in

Celestris australis.¹⁷⁶ The same group claim that the cyclohexylhopane derivative **535** is also found in *Celestris australis*²⁹⁷ and that the 29-ethylhopane derivative **536** and 32,33,34-trimethylbacteriohopan-3β-yl β-D-glucopyranoside **537** are constituents of *Symplocos paniculata*.¹⁷⁷ Several *N*-acylated bacteriohopanehexol mannosamine derivatives **538** have been identified in the thermophilic bacterium *Alicyclobacillus* *acidoterrestris*.²⁹⁸ The simple hopane derivatives **539–541**²⁹⁹ and **542–547**³⁸ are metabolites of the entomopathogenic fungi *Conoideocrella tenuis* and *Hypocrella* sp. BCC 14524, respectively.

Twelve arborinane triterpenoids have been isolated from *Rubia yunnanensis* including rubiyunnanols A–C **548–550**, rubiarbonone E **19**-acetate **551**, 2-hydroxyrubiarbonone E **552**, **19**,28-didehydroxyrubiarbonol A **553**, rubiarbonol A **7**-acetate **554**, the

rubiarbonol A glycoside **555**, rubiarboside G 28-acetate **556**, rubiarboside G 28-aldehyde **557**, 2α -acetoxyrubiarboside 28acetate **558** and the rubianol E glycoside **559**.³⁰⁰ Adiantum capillusveneris is the source of filicane-3 β , 4α -diol **560** and the corresponding 3 α -methyl ether **561**.³⁰¹ Canarene **562** is an unusual rearranged filicane derivative from *Canarium schweinfurthii*.³⁰² The structure of canarene **562** was confirmed by X-ray analysis and a biosynthetic scheme for its formation has been proposed.

9 Miscellaneous compounds

Phyteumosides A and B, from *Phyteuma orbiculare*, have as aglycones the partially cyclised onocerane triterpenoid **563** and the polypodane derivative **564**, respectively.³⁰³ The structures of

the aglycones **563** and **564** were established by X-ray analysis. *Lansium domesticum* is the source of the onocerane derivatives lamesticumin A **565** and the corresponding ethyl ester **566**, lamesticumins B-E **567–570**, the 3-ethyl ester of lansic acid **571** and ethyl lansiolate **572** together the polypodane derivative lamesticumin F **573**.³⁰⁴ Other onocerane derivatives include cupacinoxepin **574**, from *Cupania cinerea*³⁰⁵ and kokosanolide B **575** and onocera-7,14-diene-3,21-dione **576** from *Lansium domesticum* cv. Kokossan.¹²⁶

The isomalabaricane triterpenoids stelliferins J–N 577–581 are constituents of the sponge *Rhabdastrella cf. globostellata*.³⁰⁶ Stelliferins L–N 579–581 have a cyclised side-chain similar to rhabdastins D–G. A sponge of the genus *Lipastrotethya* is the source of pouosides F–I 582–585 and pouogenins A–E

586–590.³⁰⁷ Three iridal triterpenoids **591–593** have been isolated from *Iris delavayi*.³⁰⁸

10 References

- 1 M. B. Sporn, K. T. Liby, M. M. Yore, L. Fu, J. M. Lopchuk and G. W. Gribble, *J. Nat. Prod.*, 2011, **74**, 537–545.
- 2 A. Braca, P. F. Dal, S. Marzocco, G. Autore, A. Vassallo and T. N. De, *Curr. Drug Targets*, 2011, **12**, 302–321.
- 3 Z. Meng, N.-g. Li, L. Zhang and A.-w. Ding, *Zhonghua Zhongyiyao Xuekan*, 2011, **29**, 1152–1154.
- 4 Y. Zhang, X. Zhang and G. Chen, *Hainan Shifan Daxue Xuebao, Ziran Kexueban*, 2011, 24, 92–95.
- 5 M. E. Juan and J. M. Planas, *Bioact. Foods Extr.*, 2011, 403–413.
- 6 A. Bishayee, S. Ahmed, N. Brankov and M. Perloff, *Front. Biosci.*, 2011, **16**, 980–996.
- 7 B. K. Cassels and M. Asencio, *Phytochem. Rev.*, 2011, **10**, 545–564.

- 8 A. Gonzalez-Coloma, C. Lopez-Balboa, O. Santana, M. Reina and B. M. Fraga, *Phytochem. Rev.*, 2011, **10**, 245–260.
- 9 H. Sheng and H. Sun, Nat. Prod. Rep., 2011, 28, 543-593.
- 10 Y.-X. Sun, J.-C. Liu and D.-Y. Liu, *Pharmazie*, 2011, **66**, 813–821.
- 11 X.-s. Zhang and X.-m. Hu, Anhui Nongye Kexue, 2011, 39, 817-818, 825.
- 12 H. Hussain, J. Hussain, A. Al-Harrasi and Z. K. Shinwari, *Pak. J. Bot.*, 2011, **43**, 51–62.
- 13 L. F. Barbosa, R. Braz-Filho and I. J. C. Vieira, *Chem. Biodiversity*, 2011, **8**, 2163–2178.
- 14 T. P. Kukina and E. N. Shmidt, *Khim. Interesakh Ustoich.* Razvit., 2011, **19**, 655–659.
- 15 Q.-G. Tan and X.-D. Luo, Chem. Rev., 2011, 111, 7437-7522.
- 16 A. Osbourn, R. J. M. Goss and R. A. Field, *Nat. Prod. Rep.*, 2011, **28**, 1261–1268.
- 17 J. M. Augustin, V. Kuzina, S. B. Andersen and S. Bak, *Phytochemistry*, 2011, 72, 435–457.

Review

- 18 E. Lambert, A. Faizal and D. Geelen, *Appl. Biochem. Biotechnol.*, 2011, **164**, 220–237.
- 19 P. Zhao, D.-F. Gao, M. Xu, Z.-G. Shi, D. Wang, C.-R. Yang and Y.-J. Zhang, *Chem. Biodiversity*, 2011, **8**, 1931–1942.
- 20 J. Ni, M. Chen and Y. Lin, Zhongyaocai, 2011, 34, 317-319.
- 21 X. Xia, C. Zheng, C. Feng and C. Xia, *Chaye Kexue*, 2011, **31**, 391–398.
- 22 S. Boettger and M. F. Melzig, *Phytochem. Lett.*, 2011, 4, 59–68.
- 23 F. Cen-Pacheco, J. A. Villa-Pulgarin, F. Mollinedo, M. Norte,
 A. H. Daranas and J. J. Fernández, *Eur. J. Med. Chem.*, 2011,
 46, 3302–3308.
- 24 F. Cen-Pacheco, J. A. Villa-Pulgarin, F. Mollinedo, M. N. Martin, J. J. Fernández and A. H. Daranas, *Mar. Drugs*, 2011, 9, 2220–2235.
- 25 R. C. Jadulco, M. Koch, W. R. M. Van, C. Pond, O. G. Gideon, T. Matainaho, P. Piskaut and L. R. Barrows, *Planta Med.*, 2011, 77, 1651–1654.
- 26 M. Spanova and G. Daum, Eur. J. Lipid Sci. Technol., 2011, 113, 1299–1320.
- 27 F.-Y. Meng, J.-X. Sun, X. Li, H.-F. Pi, P. Zhang and H.-L. Ruan, *Helv. Chim. Acta*, 2011, **94**, 1778–1785.
- 28 S. Dall'Acqua, P. Minesso, S. Comai, B. B. Shrestha, M. B. Gewali, P. K. Jha and G. Innocenti, *Nat. Prod. Commun.*, 2011, 6, 793–798.
- 29 D.-W. Ou-Yang, L. Wu, Y.-L. Li, P.-M. Yang, D.-Y. Kong, X.-W. Yang and W.-D. Zhang, *Phytochemistry*, 2011, 72, 2197–2204.
- 30 A. Tsopmo and P. Kamnaing, *Phytochem. Lett.*, 2011, 4, 218–221.
- 31 T.-G. Cai and Y. Cai, Chem. Biodiversity, 2011, 8, 2135-2143.
- 32 X.-Q. Zhang, F. C. F. Ip, D.-M. Zhang, L.-X. Chen, W. Zhang, Y.-L. Li, N. Y. Ip and W.-C. Ye, *Nat. Prod. Res.*, 2011, 25, 1607–1613.
- 33 I. S. Lee, B. R. Ahn, J. S. Choi, M. Hattori, B. S. Min and K. H. Bae, *Bioorg. Med. Chem. Lett.*, 2011, 21, 6603–6607.
- 34 S. Joseph, K. K. Janardhanan, V. George and S. Baby, *Phytochem. Lett.*, 2011, 4, 386–388.
- 35 J.-L. Rios, Planta Med., 2011, 77, 681-691.
- 36 M. R. Camargo and R. Kaneno, *Annu. Rev. Biomed. Eng.*, 2011, **13**, 1–8.
- 37 X.-W. Shi, X.-J. Li, J.-M. Gao and X.-C. Zhang, *Chem. Biodiversity*, 2011, **8**, 1864–1870.
- 38 M. Isaka, P. Chinthanom, M. Sappan, R. Chanthaket, J. J. Luangsa-ard, S. Prabpai and P. Kongsaeree, *J. Nat. Prod.*, 2011, 74, 2143–2150.
- 39 T. Lin, X. Lin, C.-H. Lu and Y.-M. Shen, *Helv. Chim. Acta*, 2011, 94, 301–305.
- 40 R. Tanaka, M. Toyoshima and T. Yamada, *Phytochem. Lett.*, 2011, 4, 328–332.
- 41 A. S. Antonov, A. I. Kalinovsky, P. S. Dmitrenok,
 V. I. Kalinin, V. A. Stonik, E. Mollo and G. Cimino, *Carbohydr. Res.*, 2011, 346, 2182–2192.
- 42 M. Ono, D. Toyohisa, T. Morishita, H. Horita, S. Yasuda, Y. Nishida, T. Tanaka, M. Okawa, J. Kinjo, H. Yoshimitsu and T. Nohara, *Chem. Pharm. Bull.*, 2011, **59**, 1348–1354.
- 43 Z. Jabbar and M. Ali, Int. Res. J. Pharm., 2011, 2(7), 141-144.

- 44 A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjaschenko, P. S. Dmitrenok, E. A. Yurchenko and V. I. Kalinin, *Nat. Prod. Commun.*, 2011, **6**, 1075– 1082.
- 45 V. P. Careaga, C. Muniain and M. S. Maier, *Chem. Biodiversity*, 2011, **8**, 467–475.
- 46 A. S. Antonov, S. A. Avilov, A. I. Kalinovsky, P. S. Dmitrenok,
 V. I. Kalinin, S. Taboada, M. Ballesteros and C. Avila, *Nat. Prod. Res.*, 2011, 25, 1324–1333.
- 47 Y.-B. Xue, J.-H. Yang, X.-N. Li, X. Du, J.-X. Pu, W.-L. Xiao, J. Su, W. Zhao, Y. Li and H.-D. Sun, *Org. Lett.*, 2011, 13, 1564–1567.
- 48 Y.-C. Lin, I. W. Lo, S.-Y. Chen, P.-H. Lin, C.-T. Chien, S.-y. Chang and Y.-C. Shen, *Org. Lett.*, 2011, **13**, 446–449.
- 49 F.-Y. Meng, J.-X. Sun, X. Li, H.-Y. Yu, S.-M. Li and H.-L. Ruan, *Org. Lett.*, 2011, 13, 1502–1505.
- 50 J.-R. Wang, Z.-B. Zhao and Y.-W. Guo, J. Asian Nat. Prod. Res., 2011, 13, 551–555.
- 51 Y. Jiang, G.-Z. Yang, Y. Chen, M.-C. Liao, X.-M. Liu, S. Chen, L. Liu and X.-X. Lei, *Helv. Chim. Acta*, 2011, **94**, 491–496.
- 52 G.-Y. Yang, Y.-K. Li, X.-J. Zhang, X.-N. Li, L.-M. Yang, Y.-M. Shi, W.-L. Xiao, Y.-T. Zheng and H.-D. Sun, *Nat. Prod. Bioprospect.*, 2011, **1**, 33–36.
- 53 J.-M. Tan, Y.-H. Qiu, X.-Q. Tan and C.-H. Tan, *Helv. Chim. Acta*, 2011, **94**, 1697–1702.
- 54 W.-J. He, H.-B. Chu, Y.-M. Zhang, H.-J. Han, H. Yan, G.-Z. Zeng, Z.-H. Fu, O. Olubanke and N.-H. Tan, *Planta Med.*, 2011, 77, 1924–1931.
- 55 H.-X. Kuang, Q.-H. Wang, B.-Y. Yang, Z.-B. Wang, Y. Okada and T. Okuyama, *Helv. Chim. Acta*, 2011, **94**, 2239–2247.
- 56 M. K. Jamroz, M. H. Jamroz, J. C. Dobrowolski, J. A. Glinski, M. H. Davey and I. Wawer, *Spectrochim. Acta, Part A*, 2011, 78A, 107–112.
- 57 Y. Ippongi, T. Ohtsuki, K. Toume, M. A. Arai, Y. Yamamoto and M. Ishibashi, *Chem. Pharm. Bull.*, 2011, **59**, 279–281.
- 58 Y. Kashiwada, K. Nishimura, S.-i. Kurimoto and Y. Takaishi, *Bioorg. Med. Chem.*, 2011, 19, 2790–2796.
- 59 T. Nuanyai, R. Sappapan, T. Vilaivan and K. Pudhom, *Phytochem. Lett.*, 2011, 4, 26–29.
- 60 Y. Shu, L. Cheng and P. Yang, Zhongcaoyao, 2011, 42, 805– 813.
- 61 H.-T. Kuo, C.-F. Peng, H.-Y. Huang, C.-H. Lin, I.-S. Chen and I.-L. Tsai, *Planta Med.*, 2011, 77, 736–741.
- 62 T. Nuanyai, R. Sappapan, T. Vilaivan and K. Pudhom, *Chem. Pharm. Bull.*, 2011, **59**, 385–387.
- 63 R. Sun, H.-C. Song, C.-R. Wang, K.-Z. Shen, Y.-B. Xu, Y.-X. Gao, Y.-G. Chen and J.-Y. Dong, *Bioorg. Med. Chem. Lett.*, 2011, 21, 961–965.
- 64 Y. Nian, X.-M. Zhang, Y. Li, Y.-Y. Wang, J.-C. Chen, L. Lu,
 L. Zhou and M.-H. Qiu, *Phytochemistry*, 2011, 72, 1473–1481.
- 65 D.-S. Li, Y. Nian, Y. Sun and M.-H. Qiu, *Helv. Chim. Acta*, 2011, **94**, 632–638.
- 66 M. Nishida and H. Yoshimitsu, *Chem. Pharm. Bull.*, 2011, 59, 1243–1249.
- 67 Z. Zhao, K. Matsunami, H. Otsuka, T. Shinzato and Y. Takeda, *Chem. Pharm. Bull.*, 2011, **59**, 902–905.

- 68 H. D. Nguyen, B. T. D. Trinh, Q. N. Tran, H. D. Nguyen, H. D. Pham, P. E. Hansen, F. Duus, J. D. Connolly and L.-H. D. Nguyen, *Phytochemistry*, 2011, 72, 290–295.
- 69 K. Toume, T. Nakazawa, T. Ohtsuki, M. A. Arai, T. Koyano, T. Kowithayakorn and M. Ishibashi, *J. Nat. Prod.*, 2011, 74, 249–255.
- 70 S. Jan, A. Abbaskhan, S. G. Musharraf, S. A. Sattar, Samreen,
 S. I. Resayes, Z. A. Al-Othman, A. M. Al-Majid, R. Attaur and
 M. I. Choudhary, *Planta Med.*, 2011, 77, 1829–1834.
- 71 H. N. Nguyen, P. V. Kiem, N. K. Ban, P. T. Nguyen,
 X. N. Nguyen, X. C. Nguyen, C. Tistaert, B. Dejaegher,
 H. Y. Vander, J. Quetin-Leclercq, D. T. Thao and
 M. C. Van, *Phytochem. Lett.*, 2011, 4, 348–352.
- 72 Y. Qiang, J.-M. Ni, Y.-B. Shi, X.-Y. Zhang, X. Yang and S.-T. Li, *J. Chem. Res.*, 2011, **35**, 664–665.
- 73 N. B. Truong, C. V. Pham, H. T. M. Doan, H. V. Nguyen, C. M. Nguyen, H. T. Nguyen, H.-j. Zhang, H. H. S. Fong, S. G. Franzblau, D. D. Soejarto and M. V. Chau, *J. Nat. Prod.*, 2011, 74, 1318–1322.
- 74 D. Wakana, N. Kawahara and Y. Goda, *J. Nat. Med.*, 2011, 65, 18–23.
- 75 I. M. Isaev and M. I. Isaev, *Chem. Nat. Compd.*, 2011, 47, 587–591.
- 76 J. Linnek, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, T. Paululat, S. Avunduk, Ö. Alankuş-Çalişkan and M.-A. Lacaille-Dubois, *Helv. Chim. Acta*, 2011, 94, 230–237.
- 77 H. Kuang, Y. Su, B. Yang, Y. Xia, Q. Wang, Z. Wang and Z. Yu, *Molecules*, 2011, 16, 4348–4357.
- 78 T. K. Naubeev, K. K. Uteniyazov and M. I. Isaev, *Chem. Nat. Compd.*, 2011, 47, 250–253.
- 79 Z. Tian, Y. Sun, P. Xiao and E. Wu, *Recent Prog. Med. Plants*, 2011, **31**, 49–63.
- 80 M. Liu, M. Gan, S. Lin, Y. Zhang, J. Zi, W. Song, X. Fan, Y. Liu, Y. Yang and J. Shi, *Org. Lett.*, 2011, 13, 2856–2859.
- 81 M. Gan, M. Liu, B. Liu, S. Lin, Y. Zhang, J. Zi, W. Song, F. Ye,
 X. Chen and J. Shi, *J. Nat. Prod.*, 2011, 74, 2431–2437.
- 82 K. L. Lang, T. de R. Guimarães, V. R. Machado, L. A. Zimmermann, I. T. Silva, M. R. Teixeira, F. J. Duran, J. A. Falermo, C. M. O. Simões, M. S. B. Caro and E. P. Schenkel, *Planta Med.*, 2011, 77, 1648–1651.
- 83 K.-W. Lin, S.-C. Yang and C.-N. Lin, *Food Chem.*, 2011, 127, 609–614.
- 84 C. Hsu, C.-L. Hsieh, Y.-H. Kuo and C.-j. Huang, J. Agric. Food Chem., 2011, 59, 4553–4561.
- 85 J.-Q. Cao, Y. Zhang, J.-M. Cui and Y.-Q. Zhao, *Chin. Chem. Lett.*, 2011, 22, 583–586.
- 86 H. M. Ekramul, A. M. Badrul and H. M. Sarowar, *Int. J. Pharm. Sci. Res.*, 2011, 2, 1135–1146.
- 87 N. Li, C.-F. Wu, X.-Y. Xu, Z.-Y. Liu, X. Li and Y.-Q. Zhao, *Eur. J. Med. Chem.*, 2012, **50**, 173–178.
- 88 X. Li, J. Q. Cao, L. Shi and Y. Q. Zhao, *Chin. Chem. Lett.*, 2011, 22, 1461–1464.
- 89 R. Grougnet, P. Magiatis, S. Mitaku, A.-L. Skaltsounis, P. Cabalion, F. Tillequin and S. Michel, *Helv. Chim. Acta*, 2011, 94, 656–661.
- 90 J.-M. Zhao, N. Li, H. Zhang, C.-f. Wu, H.-R. Piao and Y.-Q. Zhao, *Bioorg. Med. Chem. Lett.*, 2011, 21, 1027–1031.

- 91 J. Xiong, M. Taniguchi, Y. Kashiwada, T. Yamagishi and Y. Takaishi, *J. Nat. Med.*, 2011, **65**, 217–223.
- 92 T. Nuanyai, R. Sappapan, T. Vilaivan and K. Pudhom, *Phytochem. Lett.*, 2011, 4, 183–186.
- 93 T. Asai and Y. Fujimoto, *Phytochem. Lett.*, 2011, **4**, 38–42.
- 94 W. Ding, F. Zeng, L. Xu, Y. Chen, Y. Wang and X. Wei, J. Nat. Prod., 2011, 74, 1868–1874.
- 95 G.-Y. Zhu, Y.-W. Li, D. K.-P. Hau, Z.-H. Jiang, Z.-L. Yu and W.-F. Fong, J. Agric. Food Chem., 2011, 59, 200–205.
- 96 H.-H. Chan, T.-L. Hwang, M. V. B. Reddy, D.-T. Li, K. Qian, K. F. Bastow, K.-H. Lee and T.-S. Wu, *J. Nat. Prod.*, 2011, 74, 796–802.
- 97 L.-W. Qi, C.-Z. Wang and C.-S. Yuan, *Phytochemistry*, 2011, 72, 689–699.
- 98 K. Radad, R. Moldzio and W.-D. Rausch, CNS Neurosci. Ther., 2011, 17, 761–767.
- 99 M.-G. Phan, T.-T. C. Truong, T.-S. Phan, K. Matsunami and H. Otsuka, *Phytochem. Lett.*, 2011, 4, 179–182.
- 100 X.-X. Weng, Y. Shao, Y.-Y. Chen, W. Gao, L. Cheng and D.-Y. Kong, *J. Asian Nat. Prod. Res.*, 2011, **13**, 749–755.
- 101 G.-Y. Zhu, Y.-W. Li, D. K.-P. Hau, Z.-H. Jiang, Z.-L. Yu and W.-F. Fong, *Chem. Biodiversity*, 2011, **8**, 1853–1863.
- 102 S.-J. Qu, J.-J. Tan, J.-G. Cai, Y.-P. Ling, S.-F. Zhang, C.-H. Tan and D.-Y. Zhu, *J. Asian Nat. Prod. Res.*, 2011, 13, 178–181.
- 103 J. H. Kim and Y. N. Han, *Phytochemistry*, 2011, **72**, 1453–1459.
- 104 Q. Liu, J.-J. Lv, M. Xu, D. Wang, H.-T. Zhu, C.-R. Yang and Y.-J. Zhang, *Nat. Prod. Bioprospect.*, 2011, 1, 124–128.
- 105 J.-P. Liu, D. Lu and P.-Y. Li, J. Asian Nat. Prod. Res., 2011, 13, 198–204.
- 106 M. Zhou, M. Xu, D. Wang, H.-T. Zhu, C.-R. Yang and Y.-J. Zhang, *Helv. Chim. Acta*, 2011, 94, 2010–2019.
- 107 L. Shi, J.-Q. Cao, S.-M. Shi and Y.-Q. Zhao, J. Asian Nat. Prod. Res., 2011, 13, 168–177.
- 108 J.-R. Wang, H.-L. Liu, T. Kurtán, A. Mándi, S. Antus, J. Li, H.-Y. Zhang and Y.-W. Guo, *Org. Biomol. Chem.*, 2011, 9, 7685–7696.
- 109 J. Hu, X. Wang and X. Shi, *Eur. J. Org. Chem.*, 2011, 2011, 7215–7223.
- 110 Y. Zhang, J.-S. Wang, J. Luo and L.-Y. Kong, *Chem. Pharm. Bull.*, 2011, **59**, 282–286.
- 111 H.-L. Huang, C.-M. Wang, Z.-H. Wang, M.-J. Yao, G.-T. Han, J.-C. Yuan, K. Gao and C.-S. Yuan, *J. Nat. Prod.*, 2011, 74, 2235–2242.
- 112 J. Wang, Y. Zhang, J. Luo and L. Kong, *Magn. Reson. Chem.*, 2011, **49**, 450–457.
- 113 J.-S. Wang, Y. Zhang, D.-D. Wei, X.-B. Wang, J. Luo and L.-Y. Kong, *Chem. Biodiversity*, 2011, **8**, 2025–2034.
- 114 K. H. Kim, S. U. Choi, Y. C. Kim and K. R. Lee, *J. Nat. Prod.*, 2011, **74**, 54–59.
- 115 X.-J. Zhou, M. Xu, X.-S. Li, Y.-H. Wang, Y. Gao, R. Cai and Y.-X. Cheng, *Bull. Korean Chem. Soc.*, 2011, **32**, 127–130.
- 116 F. Wang, Z.-L. Li, H.-H. Cui, H.-M. Hua, Y.-K. Jing and S.-W. Liang, *J. Asian Nat. Prod. Res.*, 2011, **13**, 193–197.
- 117 S. A. Shaheen, Z. M. H. Abu, I. K. Nazer, R. M. Darwish and H. I. Al-Jaber, *Nat. Prod. Res.*, 2011, 25, 1312–1318.

- 118 J. X. Chen, J. C. Chen, Y. Sun, Y. X. Yan, L. M. Kong, Y. Li and M. H. Qiu, *Planta Med.*, 2011, 77, 1844–1847.
- 119 H.-T. Zhong, F. Li, B. Chen and M.-K. Wang, *Helv. Chim. Acta*, 2011, **94**, 2061–2065.
- 120 F. U. Khan, J. Hussain, I. U. Khan, R. Ullah, I. Ali, Z. Muhammad, H. Hussain and M. R. Shah, *Chem. Nat. Compd.*, 2011, 47, 234–236.
- 121 S.-B. Wu, Q.-Y. Bao, W.-X. Wang, Y. Zhao, G. Xia, Z. Zhao, H. Zeng and J.-F. Hu, *Planta Med.*, 2011, 77, 922–928.
- 122 S.-i. Kurimoto, Y. Kashiwada, K.-H. Lee and Y. Takaishi, *Phytochemistry*, 2011, **72**, 2205–2211.
- 123 X. Fang, Y. T. Di and X. J. Hao, *Curr. Org. Chem.*, 2011, **15**, 1363–1391.
- 124 B. M. Komane, E. I. Olivier and A. M. Viljoen, *Phytochem. Lett.*, 2011, 4, 1–9.
- 125 B. Heasley, Eur. J. Org. Chem., 2011, 19-46.
- 126 T. Mayanti, R. Tjokronegoro, U. Supratman, M. R. Mukhtar, K. Awang and A. H. A. Hadi, *Molecules*, 2011, **16**, 2785–2795.
- 127 I. A. Najmuldeen, A. H. A. Hadi, K. Awang, K. Mohamad, K. A. Ketuly, M. R. Mukhtar, S.-L. Chong, G. Chan, M. A. Nafiah, N. S. Weng, O. Shirota, T. Hosoya, A. E. Nugroho and H. Morita, *J. Nat. Prod.*, 2011, 74, 1313–1317.
- 128 X.-H. Yan, Y.-T. Di, X. Fang, S.-Y. Yang, H.-P. He, S.-L. Li, Y. Lu and X.-J. Hao, *Phytochemistry*, 2011, 72, 508–513.
- 129 Y. Zhang, J.-S. Wang, X.-B. Wang, D.-D. Wei, J.-G. Luo, J. Luo, M.-H. Yang and L.-Y. Kong, *Tetrahedron Lett.*, 2011, **52**, 2590–2593.
- 130 S.-P. Yang, H.-D. Chen, S.-G. Liao, B.-J. Xie, Z.-H. Miao and J.-M. Yue, *Org. Lett.*, 2011, **13**, 150–153.
- 131 C. P. Wong, M. Shimada, Y. Nagakura, A. E. Nugroho, Y. Hirasawa, T. Kaneda, K. Awang, A. H. A. Hadi, K. Mohamad, M. Shiro and H. Morita, *Chem. Pharm. Bull.*, 2011, 59, 407–411.
- 132 Z.-S. Su, S.-P. Yang, S. Zhang, L. Dong and J.-M. Yue, *Helv. Chim. Acta*, 2011, **94**, 1515–1526.
- 133 J.-L. Yang, L.-L. Liu and Y.-P. Shi, *Planta Med.*, 2011, 77, 271–276.
- 134 C. A. C. Barrera, E. D. C. Barrera, D. S. G. Falla, G. D. Murcia and L. E. C. Suarez, *Chem. Pharm. Bull.*, 2011, **59**, 855–859.
- 135 J. Liu, S.-P. Yang, Z.-S. Su, B.-D. Lin, Y. Wu and J.-M. Yue, *Phytochemistry*, 2011, **72**, 2189–2196.
- 136 F. Zhang, S.-G. Liao, C.-R. Zhang, X.-F. He, W.-S. Chen and J.-M. Yue, *Planta Med.*, 2011, 77, 1617–1622.
- 137 T. K. Nsiama, H. Okamura, T. Hamada, Y. Morimoto, M. Doe, T. Iwagawa and M. Nakatani, *Phytochemistry*, 2011, 72, 1854–1858.
- 138 W. Ravangpai, D. Sommit, T. Teerawatananond, N. Sinpranee, T. Palaga, S. Pengpreecha, N. Muangsin and K. Pudhom, *Bioorg. Med. Chem. Lett.*, 2011, 21, 4485– 4489.
- 139 J.-F. Hu, H. Fan, L.-J. Wang, S.-B. Wu and Y. Zhao, *Phytochem. Lett.*, 2011, 4, 292–297.
- 140 H.-B. Liu, C.-R. Zhang, S.-H. Dong, L. Dong, Y. Wu and J.-M. Yue, *Chem. Pharm. Bull.*, 2011, **59**, 1003–1007.
- 141 J. Luo, J.-S. Wang, J.-G. Luo, X.-B. Wang and L.-Y. Kong, *Tetrahedron*, 2011, **67**, 2942–2948.

- 142 J. Luo, J.-S. Wang, X.-B. Wang, J.-G. Luo and L.-Y. Kong, *Chem. Pharm. Bull.*, 2011, **59**, 225–230.
- 143 J. Luo, Y. Li, J.-S. Wang and L.-Y. Kong, *Chem. Biodiversity*, 2011, **8**, 2261–2269.
- 144 Y. Li, J. Luo, Q. Wang and L.-Y. Kong, *J. Asian Nat. Prod. Res.*, 2011, **13**, 781–786.
- 145 J.-L. Yin, Y.-T. Di, X. Fang, E.-D. Liu, H.-Y. Liu, H.-P. He, S.-L. Li, S.-F. Li and X.-J. Hao, *Tetrahedron Lett.*, 2011, 52, 3083–3085.
- 146 J. Luo, J.-S. Wang, W.-J. Cao and L.-Y. Kong, *Zhongguo Tianran Yaowu*, 2011, 9, 98–100.
- 147 B.-D. Lin, C.-R. Zhang, S.-P. Yang, Y. Wu and J.-M. Yue, *Chem. Pharm. Bull.*, 2011, **59**, 458–465.
- 148 Q. Zhang, Y.-T. Di, H.-P. He, X. Fang, D.-L. Chen, X.-H. Yan, F. Zhu, T.-Q. Yang, L.-L. Liu and X.-J. Hao, *J. Nat. Prod.*, 2011, 74, 152–157.
- 149 Y. Tanaka, T. Yamada, Y. In, O. Muraoka, T. Kajimoto and R. Tanaka, *Tetrahedron*, 2011, **67**, 782–792.
- 150 J. Li, M.-Y. Li, T. Satyanandamurty and J. Wu, *Helv. Chim. Acta*, 2011, **94**, 1651–1656.
- 151 W.-H. Jiao, H. Gao, F. Zhao, F. He, G.-X. Zhou and X.-S. Yao, *Chem. Biodiversity*, 2011, **8**, 1163–1169.
- 152 M. Zhao, S. T. Lau, X. Q. Zhang, W. C. Ye, P. S. Leung, C.-T. Che and Z.-X. Lin, *Helv. Chim. Acta*, 2011, 94, 2099– 2105.
- 153 H. Chen, J. Bai, Z.-F. Fang, S.-S. Yu, S.-G. Ma, S. Xu, Y. Li, J. Qu, J.-H. Ren, L. Li, Y.-K. Si and X.-G. Chen, *J. Nat. Prod.*, 2011, 74, 2438–2445.
- 154 T. Diyabalanage, R. Ratnayake, J. A. Wilson, C. J. Henrich, J. A. Beutler, N. H. Colburn, J. B. McMahon and K. R. Gustafson, *Bioorg. Med. Chem. Lett.*, 2011, 21, 4397– 4399.
- 155 H. R. Siddique and M. Saleem, Life Sci., 2011, 88, 285-293.
- 156 C. Gauthier, J. Legault, M. Piochon-Gauthier and A. Pichette, *Phytochem. Rev.*, 2011, **10**, 521–544.
- 157 J. Shinozaki, T. Nakane, N. Onodera, A. Takano and K. Masuda, *Chem. Pharm. Bull.*, 2011, **59**, 767–769.
- 158 Y.-P. Liu, X.-H. Cai, T. Feng, Y. Li, X.-N. Li and X.-D. Luo, *J. Nat. Prod.*, 2011, 74, 1161–1168.
- 159 X.-F. He, X.-N. Wang, S. Yin, L. Dong and J.-M. Yue, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 125–129.
- 160 N.-Y. Yang, J.-H. Chen, G.-S. Zhou, Y.-P. Tang, J.-A. Duan, L.-J. Tian and X.-H. Liu, *Fitoterapia*, 2011, **82**, 927–931.
- 161 M. H. Kazmi, I. Fatima, A. Malik, L. Iqbal, M. Latif and N. Afza, J. Asian Nat. Prod. Res., 2011, 13, 1081–1086.
- 162 T. Morikawa, H. Oominami, H. Matsuda and M. Yoshikawa, J. Nat. Med., 2011, 65, 129–134.
- 163 Y.-E. Guo, L.-L. Wang, Z.-L. Li, S.-L. Niu, X.-Q. Liu, H.-M. Hua, H. Chen, J. Chu and T.-C. Zhang, *J. Asian Nat. Prod. Res.*, 2011, **13**, 440–443.
- 164 X. Wang, E. Habib, F. Leon, M. M. Radwan, N. Tabanca, J. Gao, D. E. Wedge and S. J. Cutler, *Chem. Biodiversity*, 2011, 8, 2331–2340.
- 165 X.-L. Wang, A.-E. Hay, A. Matheeussen, M. P. Gupta and K. Hostettmann, *Magn. Reson. Chem.*, 2011, 49, 184–189.
- 166 S. Zhao, Z. Huang and J. Gao, *Bull. Korean Chem. Soc.*, 2011, 32, 1368–1370.

- 167 Z. Shu, Z. Chen, X.-j. Ding, B.-q. Lu, C.-j. Ji, Q.-m. Xu, X.-r. Li and S.-l. Yang, *Heterocycles*, 2011, **83**, 2365–2372.
- 168 P. Pailee, V. Prachyawarakorn, C. Mahidol, S. Ruchirawat and P. Kittakoop, *Eur. J. Org. Chem.*, 2011, 2011, 3809–3814.
- 169 M. Lee, M. K. Lee, Y. C. Kim and S. H. Sung, *Bioorg. Med. Chem. Lett.*, 2011, 21, 2906–2910.
- 170 S. V. Fannang, V. Kuete, C. D. Mbazoa, J. I. Momo, H. T. Van-Dufat, F. Tillequin, E. Seguin, E. Chosson and J. Wandji, *Chem. Nat. Compd.*, 2011, 47, 404–407.
- 171 A. Yokosuka, S. Kawakami, M. Haraguchi and Y. Mimaki, *Phytochem. Lett.*, 2011, 4, 259–266.
- 172 R. A. S. Macahig, K. Matsunami and H. Otsuka, *Chem. Pharm. Bull.*, 2011, **59**, 397-401.
- 173 D. N. Vedernikov and V. I. Roshchin, *Khim. Rastit. Syr'ya*, 2011, 95–102.
- 174 T. H. Quang, T. T. N. Nguyen, C. V. Minh, P. V. Kiem,
 X. N. Nguyen, B. H. Tai, P. T. Nguyen, H. T. Nguyen,
 S. B. Song and Y. H. Kim, *J. Nat. Prod.*, 2011, 74, 1908–1915.
- 175 B. K. Ponou, R. B. Teponno, M. Ricciutelli, T. B. Nguelefack, L. Quassinti, M. Bramucci, G. Lupidi, L. Barboni and L. A. Tapondjou, *Chem. Biodiversity*, 2011, 8, 1301–1309.
- 176 R. Badoni, D. K. Semwal, U. Rawat and M. S. M. Rawat, *Helv. Chim. Acta*, 2011, **94**, 464–473.
- 177 R. B. Semwal, D. K. Semwal, R. Semwal, R. Singh and M. S. M. Rawat, *J. Ethnopharmacol.*, 2011, 135, 78–87.
- 178 T. Mencherini, P. Picerno, M. Festa, P. Russo, A. Capasso and R. Aquino, *J. Nat. Prod.*, 2011, 74, 2116–2121.
- 179 Y. Qu, J. Liang and X. Feng, *Tianran Chanwu Yanjiu Yu Kaifa*, 2011, **23**, 577–581.
- 180 Z. Zhang, C. Zhao, S. Chen and H. Ji, *Yaoxue Jinzhan*, 2011, 35, 353–359.
- 181 S.-Y. Cheng, C.-M. Wang, Y.-M. Hsu, T.-J. Huang, S.-C. Chou, E.-H. Lin and C.-H. Chou, *J. Nat. Prod.*, 2011, 74, 1744–1750, 2030.
- 182 D.-Q. Luo, H.-Y. Deng, X.-L. Yang, B.-Z. Shi and J.-Z. Zhang, *Helv. Chim. Acta*, 2011, 94, 1041–1047.
- 183 X.-F. Niu, X. Liu, L. Pan and L. Qi, *Fitoterapia*, 2011, **82**, 960–963.
- 184 B. M. Mba'ning, B. N. Lenta, S. Ngouela, D. T. Noungoue, F. Tantangmo, F. M. Talontsi, E. Tsamo and H. Laatsch, Z. Naturforsch., B: J. Chem. Sci., 2011, 66, 1270–1274.
- 185 P. Liu, P. Hu, R.-X. Deng, R. Li, L. Yang and W.-P. Yin, *Helv. Chim. Acta*, 2011, **94**, 136–141.
- 186 C. Y. Ragasa, D. L. Espineli and C.-C. Shen, *Chem. Pharm. Bull.*, 2011, **59**, 778–782.
- 187 X.-Q. Chen, Y. Li, J. He, X. Cheng, K. Wang, M.-M. Li, Z.-H. Pan, L.-Y. Peng and Q.-S. Zhao, *Chem. Pharm. Bull.*, 2011, **59**, 496–498.
- 188 N. Zeng, Y. Shen, L.-Z. Li, W.-H. Jiao, P.-Y. Gao, S.-J. Song, W.-S. Chen and H.-W. Lin, *J. Nat. Prod.*, 2011, 74, 732–738.
- 189 H. Yang, E. J. Jeong, J. Kim, S. H. Sung and Y. C. Kim, *J. Nat. Prod.*, 2011, **74**, 751–756.
- 190 C.-B. Xue, D.-W. Chai, X.-J. Jin, Y.-R. Bi, X.-J. Yao, W.-S. Wu and Y. Zhu, *Phytochemistry*, 2011, 72, 1804–1813.
- 191 M. Shaaban, K. A. Shaaban, H. I. Abd-Alla, A. G. Hanna and H. Laatsch, Z. Naturforsch., B: J. Chem. Sci., 2011, 66, 425– 432.

- 192 Y.-L. Huang, T. Tsujita, T. Tanaka, Y. Matsuo, I. Kouno, D.-P. Li and G.-i. Nonaka, *Phytochemistry*, 2011, **72**, 2006–2014.
- 193 X.-Q. Liu, H.-L. Huang, M.-J. Yao, G.-T. Han, N. Liu, J.-C. Yuan and C.-S. Yuan, *Helv. Chim. Acta*, 2011, 94, 2264–2271.
- 194 M. J. Nunez, M. L. Kennedy, I. A. Jimenez and I. L. Bazzocchi, *Tetrahedron*, 2011, **67**, 3030–3033.
- 195 J.-G. Luo, W. Nie and L.-Y. Kong, *J. Asian Nat. Prod. Res.*, 2011, **13**, 529–533.
- 196 D. Liang, Z.-Y. Hao, G.-J. Zhang, Q.-J. Zhang, R.-Y. Chen and D.-Q. Yu, *J. Nat. Prod.*, 2011, 74, 2128–2136.
- 197 X.-A. Huang, X.-L. Shen, Y.-J. Hu, Y.-M. Liu, K.-L. Liu, F.-X. Zhang and X.-X. Zhou, *Molecules*, 2011, 16, 8076–8082.
- 198 T. Varughese, M. M. Manir, M. Rahaman, J. K. Kim, B.-G. Lee and S.-S. Moon, *Planta Med.*, 2011, 77, 2029–2036.
- 199 K. Matsunami, H. Otsuka and Y. Takeda, *Chem. Pharm. Bull.*, 2011, **59**, 1274–1280.
- 200 T. Nakano, S. Sugimoto, K. Matsunami and H. Otsuka, *Chem. Pharm. Bull.*, 2011, **59**, 1141–1148.
- 201 S. Okazaki, K. Kinoshita, S. Ito, K. Koyama, H. Yuasa and K. Takahashi, *Phytochemistry*, 2011, **72**, 136–146.
- 202 L. Gao, L. Zhang, N. Li, J.-Y. Liu, P.-l. Cai and S.-l. Yang, Carbohydr. Res., 2011, 346, 2881–2885.
- 203 L. O. A. Manguro, J. O. Midiwo, L. F. Tietze and P. Hao, *ARKIVOC*, 2011, (ii), 172–198.
- 204 Y. Nakahara, M. Okawa, J. Kinjo and T. Nohara, *Chem. Pharm. Bull.*, 2011, **59**, 1329–1339.
- 205 K. H. Kim, I. K. Lee, S. U. Choi, J. H. Lee, E. Moon, S. Y. Kim and K. R. Lee, *Planta Med.*, 2011, 77, 1555–1558.
- 206 W. Dong, X. Liu, X. Li, D. Yang and L. Ding, *Fitoterapia*, 2011, **82**, 782–785.
- 207 K. Foubert, F. Cuyckens, A. Matheeussen, A. Vlietinck, S. Apers, L. Maes and L. Pieters, *Phytochemistry*, 2011, 72, 1414–1423.
- 208 D.-L. Liu, N.-L. Wang, X. Zhang and X.-S. Yao, *Helv. Chim. Acta*, 2011, **94**, 693–702.
- 209 D. Liu, X. Zhang, S. Wang, N. Wang and X. Yao, *Chin. Chem. Lett.*, 2011, **22**, 957–960.
- 210 A. Rubio-Moraga, G. J. Gerwig, N. Castro-Diaz, M. L. Jimeno, J. Escribano, J.-A. Fernandez and J. P. Kamerling, *Ind. Crops Prod.*, 2011, 34, 1401–1409.
- 211 H. T. Nguyen, H. Q. Tran, T. T. N. Nguyen, V. M. Chau, K. A. Bui, Q. L. Pham, M. C. Nguyen and Y. H. Kim, *Chem. Pharm. Bull.*, 2011, **59**, 1417–1420.
- 212 E. P. Mazzola, A. Parkinson, E. J. Kennelly, B. Coxon, L. S. Einbond and D. I. Freedberg, *Carbohydr. Res.*, 2011, 346, 759–768.
- 213 G.-L. Jin, C.-J. Zheng, W.-B. Xin, Z.-J. Mao, P.-X. Sun, Z.-X. Zeng and L.-P. Qin, Arch. Pharmacal Res., 2011, 34, 869–873.
- 214 S. Yao, J.-G. Luo, L. Ma and L.-Y. Kong, *Zhongguo Tianran Yaowu*, 2011, **9**, 401–405.
- 215 G. Gao, Z. Lu, S. Tao, S. Zhang and F. Wang, *Carbohydr. Res.*, 2011, **346**, 2200–2205.
- 216 G.-C. Gao, Z.-X. Lu, S.-H. Tao, S. Zhang, F.-Z. Wang and Q.-X. Li, *Can. J. Chem.*, 2011, **89**, 1277–1282.

- 217 Q. Xue, Z.-L. Sun, M.-L. Guo, Y. Wang, G. Zhang and X.-K. Wang, *Nat. Prod. Res.*, 2011, **25**, 772–780.
- 218 Q. Wu, Y. Wang and M. Guo, *Chem. Pharm. Bull.*, 2011, **59**, 666–671.
- 219 Z. Ali and I. A. Khan, Phytochemistry, 2011, 72, 2075–2080.
- 220 A. F. Awantu, B. N. Lenta, T. Bogner, Y. F. Fongang, S. Ngouela, J. D. Wansi, E. Tsamo and N. Sewald, Z. Naturforsch., B: J. Chem. Sci., 2011, 66, 624–628.
- 221 J.-J. Liu, X.-L. Wang, B.-L. Guo, W.-H. Huang, P.-G. Xiao, C.-Q. Huang, L.-Z. Zheng, G. Zhang, L. Qin and G.-Z. Tu, *J. Asian Nat. Prod. Res.*, 2011, 13, 851–860.
- 222 X. N. Nguyen, H. Y. Lim, P. V. Kiem, C. V. Minh, V. K. Thu,
 B. H. Tai, T. H. Quang, S. B. Song and Y. H. Kim, *Bioorg. Med. Chem. Lett.*, 2011, 21, 6143–6147.
- 223 J. He, J. Ma, D.-W. Lai, Y.-m. Zhang and W.-J. Sun, *Nat. Prod. Res.*, 2011, 25, 1771–1775.
- 224 H.-Z. Fu, C.-J. Li, J.-Z. Yang, Z.-F. Shen and D.-M. Zhang, *J. Nat. Prod.*, 2011, 74, 1066–1072.
- 225 Z. A. Kozhamkulova, M. M. Radwan, G. E. Zhusupova,Z. A. Abilov and S. A. Ross, *Phytochem. Lett.*, 2011, 4, 323–327.
- 226 T. K. Tabopda, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, J.-F. Mirjolet, O. Duchamp, B. T. Ngadjui and M.-A. Lacaille-Dubois, *Helv. Chim. Acta*, 2011, **94**, 2066–2076.
- 227 Y. Chen, Y. Zhao, M. Wang, H. Sun, Y. Dong and X. Feng, *Chem. Nat. Compd.*, 2011, 47, 940–943.
- 228 Y.-X. He, L. Li, K. Zhang and Z.-R. Liu, *J. Asian Nat. Prod. Res.*, 2011, **13**, 1104–1109.
- 229 T. K. Tabopda, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, B. T. Ngadjui, J.-F. Mirjolet, O. Duchamp and M.-A. Lacaille-Dubois, *Helv. Chim. Acta*, 2011, 94, 914–922.
- 230 Z.-Q. Cheng, D. Yang, Q.-Y. Ma, X.-H. Yi, N.-L. Zhang, J. Zhou and Y.-X. Zhao, *Bull. Korean Chem. Soc.*, 2011, 32, 1403–1406.
- 231 C.-J. Li, J.-Z. Yang, S.-S. Yu, D.-M. Zhang, W. Xue, Y.-H. Yuan and N.-H. Chen, *Zhongguo Tianran Yaowu*, 2011, **9**, 321– 328.
- 232 L. A. Tapondjou, L. B. T. Nyaa, P. Tane, M. Ricciutelli,
 L. Quassinti, M. Bramucci, G. Lupidi, B. K. Ponou and
 L. Barboni, *Carbohydr. Res.*, 2011, 346, 2699–2704.
- 233 W.-W. Fu, J.-N. Fu, W.-M. Zhang, L.-X. Sun, Y.-H. Pei and P. Liu, *Molecules*, 2011, **16**, 4371–4378.
- 234 Z. Zhang, X. Fang, Y.-H. Wang, G.-M. Liu, H. Xiao, X.-J. Hao and H.-P. He, *J. Asian Nat. Prod. Res.*, 2011, **13**, 838–844.
- 235 S. Sugimoto, K. Matsunami and H. Otsuka, *Chem. Pharm.* Bull., 2011, **59**, 466–471.
- 236 N. B. Sarikahya, M. Pekmez, N. Arda, P. Kayce,
 N. U. K. Yavasoglu and S. Kirmizigul, *Phytochem. Lett.*,
 2011, 4, 415–420.
- 237 A. Sosa, C. Rosquete, L. Rojas, L. Pouysegu, S. Quideau, T. Paululat, A.-C. Mitaine-Offer and M.-A. Lacaille-Dubois, *Helv. Chim. Acta*, 2011, 94, 1850–1859.
- 238 H. Zhang, A. K. Samadi, K. V. Rao, M. S. Cohen and B. N. Timmermann, *J. Nat. Prod.*, 2011, 74, 477–482.
- 239 Y. Ding, H.-F. Tang, J.-B. Wang, D. Liu, X.-R. Tian, X.-Y. Wang and X.-M. Zhou, *Biochem. Syst. Ecol.*, 2011, **39**, 236–239.

- 240 X.-Y. Wang, X.-L. Chen, H.-F. Tang, H. Gao, X.-R. Tian and P.-H. Zhang, *Planta Med.*, 2011, 77, 1550–1554.
- 241 Q.-H. Wang, J. Zhang, X. Ma, X.-Y. Ye, B.-Y. Yang, Y.-G. Xia and H.-X. Kuang, *Zhongguo Tianran Yaowu*, 2011, **9**, 17–21.
- 242 G. Timite, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, J.-F. Mirjolet, O. Duchamp and M.-A. Lacaille-Dubois, *Phytochemistry*, 2011, **72**, 503–507.
- 243 T. Morikawa, X. Li, E. Nishida, S. Nakamura, K. Ninomiya,
 H. Matsuda, M. Hamao, O. Muraoka, T. Hayakawa and
 M. Yoshikawa, *Chem. Pharm. Bull.*, 2011, 59, 889–895.
- 244 K. Yang, Y. Li, L. Ge and Z. Qin, *Adv. Mater. Res. (Durnten-Zurich, Switz.*), 2011, **236–238**, 1731–1737.
- 245 M. Tene, P. Chabert, O. Note, T. J. N. Kenla, P. Tane and A. Lobstein, *Phytochem. Lett.*, 2011, 4, 89–92.
- 246 J.-G. Luo, X. Chen and L.-Y. Kong, *Chem. Pharm. Bull.*, 2011, **59**, 518–521.
- 247 D. Du, L. Fang, J. Qu, S. Yu, S. Ma, H. Lv, J. Liu, Y. Liu, J. Wang and X. Wang, *Planta Med.*, 2011, 77, 1631–1638.
- 248 S. Y. Lee, J. S. Kim, S. H. Shim and S. S. Kang, *Bull. Korean Chem. Soc.*, 2011, **32**, 3650–3654.
- 249 Q. Wen, D. Yuan, K.-H. Xie, T.-Z. Cai and H.-Z. Fu, *J. Asian Nat. Prod. Res.*, 2011, **13**, 869–878.
- 250 Q. Chen, J.-G. Luo and L.-Y. Kong, *Carbohydr. Res.*, 2011, 346, 2206–2212.
- 251 N. A. Khan, Nat. Prod. Res., 2011, 25, 1687-1694.
- 252 A. Tava, L. Pecetti, M. Romani, M. Mella and P. Avato, J. Agric. Food Chem., 2011, **59**, 6142–6149.
- 253 B. Hernandez-Carlos, A. Gonzalez-Coloma, A. U. Orozco-Valencia, M. V. Ramirez-Mares, M. F. Andres-Yeves and P. Joseph-Nathan, *Phytochemistry*, 2011, 72, 743–751.
- 254 Y.-X. Zhao, W.-J. Liang, H.-J. Fan, Q.-Y. Ma, W.-X. Tian, H.-F. Dai, H.-Z. Jiang, N. Li and X.-F. Ma, *Carbohydr. Res.*, 2011, **346**, 1302–1306.
- 255 W.-J. Liang, Q.-Y. Ma, H.-Z. Jiang, J. Zhou, J. Pang and Y.-X. Zhao, *Chem. Nat. Compd.*, 2012, **47**, 935–939.
- 256 X.-m. Song, Y. Liu and B.-c. Cai, *Shenyang Yaoke Daxue Xuebao*, 2010, **27**, 627–629, 647.
- 257 M. Z. Getiya, M. A. Gabelaya, V. D. Mshvildadze, A. Pichette, S. Lavoie and G. E. Dekanosidze, *Chem. Nat. Compd.*, 2011, 47, 764–766.
- 258 A. I. Hamed, M. Masullo, M. G. Sheded, U. A. Mahalel, M. M. Tawfik, A. Perrone and S. Piacente, *Phytochem. Lett.*, 2011, 4, 353–356.
- 259 H.-X. Kuang, H.-W. Li, Q.-H. Wang, B.-Y. Yang, Z.-B. Wang and Y.-G. Xia, *Molecules*, 2011, **16**, 4642–4651.
- 260 J.-S. Jiang, Z.-Z. Liu, Z.-M. Feng, Y.-N. Yang and P.-C. Zhang, J. Asian Nat. Prod. Res., 2011, 13, 276–280.
- 261 I. L. Acebey-Castellon, L. Voutquenne-Nazabadioko,
 D. T. M. Huong, N. Roseau, N. Bouthagane,
 D. Muhammad, M. D. E. Le, S. C. Gangloff, M. Litaudon,
 T. Sevenet, V. H. Nguyen and C. Lavaud, *J. Nat. Prod.*,
 2011, 74, 163–168.
- 262 R.-X. Deng, W.-L. Duan, P. Liu, Y.-L. Yang and W.-P. Yin, J. Asian Nat. Prod. Res., 2011, 13, 230–237.
- 263 V. T. T. Thanh, V. C. Pham, H. H. Nguyen, H. D. T. Mai, H. N. T. Minh, V. H. Nguyen, M. Litaudon, F. Gueritte and V. M. Chau, *Eur. J. Org. Chem.*, 2011, **2011**, 4108–4111.

- 264 M. A. Tantry, R. Khan, S. Akbar, A. R. Dar, A. S. Shawl and M. S. Alam, *Chin. Chem. Lett.*, 2011, 22, 575–579.
- 265 Y.-P. Ma, N. Li, J. Gao, K.-L. Fu, Y. Qin, G.-Y. Li and J.-H. Wang, *Helv. Chim. Acta*, 2011, **94**, 1881–1887.
- 266 Q.-X. Wu, Y.-B. Su and Y. Zhu, Fitoterapia, 2011, 82, 493-496.
- 267 P. Somwong, R. Suttisri and A. Buakeaw, *Fitoterapia*, 2011, 82, 1047–1051.
- 268 F. C. Silva, V. G. Rodrigues, L. P. Duarte, G. D. F. Silva, R. R. S. Miranda and S. A. V. Filho, *J. Chem. Res.*, 2011, 35, 555–557.
- 269 F. C. Silva, L. P. Duarte, G. D. F. Silva, S. A. V. Filho, I. S. Lula, J. A. Takahashi and W. S. T. Sallum, *J. Braz. Chem. Soc.*, 2011, 22, 943–949.
- 270 S. V. Fannang, V. Kuete, C. M. Djama, M. D. J. Dongfack, J. D. Wansi, F. Tillequin, E. Seguin, E. Chosson and J. Wandji, *Chin. Chem. Lett.*, 2011, 22, 171–174.
- 271 G. Li, D. Wang and S. Xu, Nat. Prod. Res., 2011, 25, 136-140.
- 272 M. L. Kennedy, G. G. Llanos, S. Castanys, F. Gamarro, I. L. Bazzocchi and I. A. Jimenez, *Chem. Biodiversity*, 2011, 8, 2291–2298.
- 273 G. Chen, H. Ren and C. Yu, *Chem. Nat. Compd.*, 2011, 47, 918–920.
- 274 S. Iqbal, A. Khan, V. U. Ahmad, M. A. Khan, S. Bader, U. Farooq, S. S. Khan, A. Zahoor and R. B. Tareen, *Nat. Prod. Commun.*, 2011, 6, 179–182.
- 275 W. Zhao, J. X. Pu, X. Du, Y. L. Wu, Y. Zhao, F. He,
 H. B. Zhang, Y. B. Xue, W. L. Xiao, G. Q. Chen and
 H. D. Sun, Arch. Pharmacal Res., 2011, 34, 2007–2014.
- 276 C. Wu, L. Wang, X.-X. Yang, Y.-H. Duan, Y. Dai, R.-W. Jiang, W.-C. Ye and Y.-L. Li, *J. Asian Nat. Prod. Res.*, 2011, 13, 434– 439.
- 277 A. Mittal and M. Ali, Int. Res. J. Pharm., 2011, 2(9), 52-54.
- 278 S. Begum, S. Perwaiz, B. S. Siddiqui, S. Khan, S. Fayyaz and M. Ramzan, *Chem. Biodiversity*, 2011, **8**, 850–861.
- 279 B.-b. Zhang, K. Shi, Z.-x. Liao, Y. Dai and Z.-h. Zou, *Fitoterapia*, 2011, **82**, 854–860.
- 280 S. Y. Lee, J. S. Kim, R. J. Choi, Y. S. Kim, J.-H. Lee and S. S. Kang, *Chem. Pharm. Bull.*, 2011, 59, 742–746.
- 281 K. Mazumder, E. R. O. Siwu, S. Nozaki, Y. Watanabe, K. Tanaka and K. Fukase, *Phytochem. Lett.*, 2011, 4, 287–291.
- 282 R. T. Kengap, G. D. W. F. Kapche, J.-P. Dzoyem, I. K. Simo, P. Ambassa, L. P. Sandjo, B. M. Abegaz and B. T. Ngadjui, *Helv. Chim. Acta*, 2011, 94, 2231–2238.
- 283 G. Topcu, G. Yapar, Z. Turkmen, A. C. Goren, S. Oksuz, J. K. Schilling and D. G. I. Kingston, *Phytochem. Lett.*, 2011, 4, 421–425.
- 284 T. Sasaki, W. Li, H. Morimura, S. Li, Q. Li, Y. Asada and K. Koike, *Chem. Pharm. Bull.*, 2011, **59**, 1396–1399.
- 285 J. Hu, X.-Q. Chen and Q.-S. Zhao, J. Asian Nat. Prod. Res., 2011, 13, 105–110.
- 286 Y. Zhang, L.-J. Li, P. Zhang, H.-F. Pi, H.-L. Ruan and J.-Z. Wu, *Helv. Chim. Acta*, 2011, **94**, 2207–2214.

- 287 L. P. Lin, W. Qu and J. Y. Liang, *Chin. Chem. Lett.*, 2011, 22, 697–700.
- 288 X. N. Nguyen, B. H. Tai, T. H. Quang, P. V. Kiem, C. V. Minh, H. N. Nguyen, J.-H. Kim, L.-R. Im, Y.-M. Lee and Y. H. Kim, *Bioorg. Med. Chem. Lett.*, 2011, **21**, 1777–1781.
- 289 X.-Y. Xu, X.-H. Yang, S.-Z. Li and Q.-S. Song, J. Asian Nat. Prod. Res., 2011, 13, 1008–1013.
- 290 W.-J. Zuo, H.-F. Dai, J. Chen, H.-Q. Chen, Y.-X. Zhao, W.-L. Mei, X. Li and J.-H. Wang, *Planta Med.*, 2011, 77, 1835–1840.
- 291 Y.-Y. Che, N. Li, L. Zhang and P.-F. Tu, *Zhongguo Tianran Yaowu*, 2011, **9**, 22–25.
- 292 W.-H. Cai, K. Matsunami, H. Otsuka and Y. Takeda, *Am. J. Plant Sci.*, 2011, **2**, 609–618.
- 293 E. Amin, S. S. El-Hawary, M. M. Fathy, R. Mohammed, Z. Ali, N. Tabanca, D. E. Wedge, J. J. Becnel and I. A. Khan, *Planta Med.*, 2011, 77, 488–491.
- 294 C. L. Lencina, C. M. C. de, I. Zancanaro, G. Gosmann, V. S. Pires, P. Sonnet, D. Guillaume and E. P. Schenkel, *Quim. Nova*, 2011, 34, 222–225.
- 295 X. Cheng, J. Qin, Q. Zeng, S. Zhang, F. Zhang, S. Yan, H. Jin and W. Zhang, *Planta Med.*, 2011, 77, 2061–2065.
- 296 G. Siedenburg and D. Jendrossek, *Appl. Environ. Microbiol.*, 2011, 77, 3905–3915.
- 297 R. Badoni, D. K. Semwal, P. P. Badoni, S. K. Kothiyal and U. Rawat, *Chin. Chem. Lett.*, 2011, 22, 81–84.
- 298 T. Rezanka, L. Siristova, K. Melzoch and K. Sigler, *Lipids*, 2011, **46**, 249–261.
- 299 M. Isaka, S. Palasarn, S. Supothina, S. Komwijit and J. J. Luangsa-ard, *J. Nat. Prod.*, 2011, **74**, 782–789.
- 300 J.-T. Fan, B. Kuang, G.-Z. Zeng, S.-M. Zhao, C.-J. Ji, Y.-M. Zhang and N.-H. Tan, *J. Nat. Prod.*, 2011, 74, 2069– 2080.
- 301 Z. Z. Ibraheim, A. S. Ahmed and Y. G. Gouda, *Saudi Pharm. J.*, 2011, **19**, 65–74.
- 302 R. S. T. Kamdem, P. Wafo, S. Yousuf, Z. Ali, A. Adhikari, S. Rasheed, I. A. Khan, B. T. Ngadjui, H.-K. Fun and M. I. Choudhary, *Org. Lett.*, 2011, 13, 5492–5495.
- 303 C. Abbet, M. Neuburger, T. Wagner, M. Quitschau, M. Hamburger and O. Potterat, *Org. Lett.*, 2011, 13, 1354– 1357.
- 304 S.-H. Dong, C.-R. Zhang, L. Dong, Y. Wu and J.-M. Yue, *J. Nat. Prod.*, 2011, 74, 1042–1048.
- 305 M. S. Gachet, O. Kunert, M. Kaiser, R. Brun, M. Zehl, W. Keller, R. A. Muñoz, R. Bauer and W. Schuehly, *J. Nat. Prod.*, 2011, 74, 559–566.
- 306 N. Tanaka, R. Momose, A. Shibazaki, T. Gonoi, J. Fromont and J.-i. Kobayashi, *Tetrahedron*, 2011, **67**, 6689–6696.
- 307 J.-H. Lee, K. H. Jang, Y.-J. Lee, H.-S. Lee, C. J. Sim, K.-B. Oh and J. Shin, *J. Nat. Prod.*, 2011, 74, 2563–2570.
- 308 Y. Hasegawa, X. Gong and C. Kuroda, *Nat. Prod. Commun.*, 2011, **6**, 789–792.