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Logical modelling of Drosophila signalling pathways†

Abibatou Mbodj,a Guillaume Junion,bc Christine Brun,a Eileen E. M. Furlongb and
Denis Thieffry*ad

A limited number of signalling pathways are involved in the specification of cell fate during

the development of all animals. Several of these pathways were originally identified in Drosophila. To

clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling

pathways recurrently used in metazoan development. In each case, we considered the associated

ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature.

Implemented using the logical modelling software GINsim, the resulting models qualitatively

recapitulate the main characteristics of each pathway, in wild type as well as in various mutant

situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that

can be used to assemble comprehensive models of complex developmental processes. Moreover, these

models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous

mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the

nine considered pathways.

Introduction

Deciphering the regulatory mechanisms enabling the develop-
ment of sophisticated multicellular animals and plants from a
single cell (a fertilised egg or seed) constitutes one of the most
intriguing and challenging tasks in biology. In this respect, the
use of Drosophila as a model system has been particularly
fruitful in molecular genetic and more recent genomic studies.
This has revealed a blueprint for animal development, leading
to the identification of crucial regulatory components, from
homeobox transcriptional factors to signalling pathways, which
turn out to be highly conserved throughout metazoans.1–3

Such studies have progressively led to the delineation of large
intertwined regulatory networks underlying developmental pro-
cesses, whose properties are difficult to grasp intuitively due to the
inherent pleiotropy, cross-talk and redundancy within these systems.
To deal with this complexity, diverse mathematical approaches are

increasingly used to study developmental networks, ranging from
statistical or probabilistic methods to mine large data sets, to
dynamical modelling frameworks to integrate relevant components
into full fledged mechanistic and predictive models.

Early Drosophila development has been the focus of a large
number of dynamical modelling studies, often using differential
equations (see e.g. ref. 4–10 and references therein). However, these
studies have typically considered relatively limited numbers of
regulatory components and required a quantitative determination
of poorly documented parameters. In this context, formal qualita-
tive modelling approaches constitute an interesting alternative, at
least as a first step towards more quantitative modelling. In
particular, logical modelling (Boolean or multilevel) has been
applied to various regulatory networks of increasing sizes (see
e.g. ref. 11–26 and references therein). Logical models have been
proposed for several Drosophila developmental processes, focus-
ing on early stages of embryo segmentation,27–31 on boundary and
compartment formation in imaginal discs,32,33 and also on the
specification of the mesoderm during stages 8 to 10 of Drosophila
development (Mbodj et al., in prep.). Because signalling pathways
are known to play important roles in these developmental
processes (see e.g. ref. 34–38 and references therein), these
models contain several signalling components (e.g. Wg, Hh,
Notch, and a limited number of downstream components)
belonging to different signalling pathways.

Noticeably, although Drosophila has been a prominent
model system to decipher cell signalling, in particular in the
context of development, bona fide dynamical models for these

a Technological Advances for Genomics and Clinics (TAGC), INSERM UMR_S 1090,
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pathways are still largely lacking. Furthermore, information about
pathway organisation and function is spread across many
publications and various databases (for links pointing to
Drosophila signalling pathways in public knowledge reposi-
tories, see Table 1). In particular, Flybase and Interactive Fly
provide rich textual descriptions of each pathway. However,
computational biologists must perform substantial analyses to
convert this vast array of information into a format that can be
used to derive formal graphical and dynamical models. There is
thus a clear need for reference models for each of the recur-
rently used signalling pathways in Drosophila, which would
undoubtedly constitute a valuable resource for the modelling of
developmental networks.

To address this issue, we have developed reference logical
models for the major Drosophila developmental pathways, with
extensive references as hyperlinks to relevant articles and
database entries. These pathway models can be used as build-
ing blocks to assemble more comprehensive models, as we are
currently doing for mesoderm specification during Drosophila
embryogenesis (Mbodj et al., in prep.). As they represent a
manually curated collection of the current knowledge on each
signalling cascade, they can also be used for teaching purposes.

Hereafter, we first introduce the logical framework used to
define the qualitative dynamical models of Drosophila signalling
pathways (see Methods), which are then briefly described in
the following section (Results). As comprehensive descriptions
of each of the nine presented models would be very lengthy,
these are provided in ESI.† The last section (Conclusions and
prospects) is devoted to the evocation of further developments
and potential exploitations of this model collection.

Methods

Logical modelling is adapted to the qualitative nature of genetic
data. It can offer a global view on the dynamics of large systems.
The logical modelling approach has been introduced in genetics by
Stuart Kauffman39,40 and René Thomas.41,42 Here, we used an
extension of Thomas’ original Boolean approach, which enables
the consideration of multi-level components, e.g. to account for
differential effects of different signal levels on their targets.11,42–44

In short, regulatory networks and their dynamics can be
represented using two kinds of graphs called logical regulatory
graphs (model structure) and state transition graphs (dynami-
cal behaviour).

In a logical regulatory graph, nodes (or vertices) usually denote
regulatory components or their targets. They can represent different
types of biomolecules (genes, mRNA, proteins, complexes, etc.) or
functional processes (e.g. entry in a specific cell cycle phase). A
logical function (or a logical rule) is associated with each regulatory
component. By default, a node can have two alternative levels: active
(1) or inactive (0). However, more levels can be considered when
justified by available data. When all entities take their values within
the [0, 1] interval, the model is said to be Boolean.

Signed arcs connecting graph components denote regulatory
interactions. Positive or negative signs denote activatory or inhibitory
effects on their targets, respectively. Multiple arcs between a pair of
nodes can be used to account for dual regulatory interactions, or for
differential qualitative effects of increasing regulator concentrations.
When a source node may take more than two levels, a threshold
(1 per default for the Boolean case) must be further associated
with each outgoing arc.

Table 1 Main public information resources regarding Drosophila developmental pathways

Database Drosophila pathways URL

KEGG Notch
Wg
Hh
JAK/STAT

http://www.genome.jp/dbget-bin/www_bget?dme04330
http://www.genome.jp/dbget-bin/www_bget?dme04310
http://www.genome.jp/dbget-bin/www_bget?dme04340
http://www.genome.jp/dbget-bin/www_bget?dme04630

Wikipathway Notch
Wg
Dpp
Hh

http://www.wikipathways.org/index.php/Pathway:WP208
http://www.wikipathways.org/index.php/Pathway:WP97
http://www.wikipathways.org/index.php/Pathway:WP230
http://www.wikipathways.org/index.php/Pathway:WP492

Reactome Notch
Wg
Dpp
FGF
EGF

http://www.reactome.org/entitylevelview/PathwayBrowser.html
(select Drosophila as organism and browse pathways)

InteractiveFly Dpp
Wg
Hh
JAK/STAT

http://www.sdbonline.org/fly/aignfam/sgmtplty.htm#Dpp
http://www.sdbonline.org/fly/aignfam/sgmtplty.htm#Wingless
http://www.sdbonline.org/fly/aignfam/sgmtplty.htm#Hedgehog
http://www.sdbonline.org/fly/aignfam/jakstat.htm

SignaLink Notch
Wg
Hh
EGF
Dpp
JAK/STAT
FGF

http://signalink.org/protein/P07207
http://signalink.org/protein/P09615
http://signalink.org/protein/Q02936
http://signalink.org/protein/P04412
http://signalink.org/protein/P07713
http://signalink.org/protein/Q24592
http://signalink.org/protein/P04412
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Arcs may represent different types of influences, from transcrip-
tional regulation (e.g. the activation or the repression of the
transcription of a particular gene), to biochemical reactions
(de/phosphorylation or degradation of a protein, etc.), to subtler
situations (e.g. modulation of the activity of another component,
co-factors participating in a complex, regulation through implicit
components, etc.).

The regulatory graph allows a first glance at a logical model, but
a logical model fundamentally consists of a set of logical rules
associated with the components, thereby enabling qualitative
simulations. Logical rules combine positive and negative influences
using NOT, AND and OR operators and define the target value of a
component depending on the values of its regulators.11,15,16

The dynamical behaviour of a logical model is represented in
terms of state transition graphs, where each node corresponds to a
state of the system, i.e. a vector giving the levels of all the compo-
nents of the regulatory graph (integers between 0 and the corres-
ponding maximal levels). Arcs connecting states represent
transitions enabled by the logical rules. More precisely, starting
from a given initial state (or a set of initial states), the successor
states are computed by comparing the values of the different
components for the current state with those returned by the logical
rules. Whenever the current value of a component differs from that
returned by its logical rule, there is an updating call on this
component. The computation of the next state(s) then depends on
the updating mode. In biology, only unitary changes (+1 or �1) are

Table 2 Main signalling pathways involved in the control of cell differentiation during Drosophila development. For each of the nine pathways currently considered,
signals, ligands, receptors, effectors (transcription factors) are listed, along with a description of developmental processes under their control, and a brief description of
the corresponding logical model proposed in this study

Pathway Ligands Receptors Effectors Biological processes Logical models

Wg WG FZ
ARR

PAN Wg is involved in cell specification, cell
proliferation and cell polarity during
development.

26 components (all Boolean).
The receptors Frizzled 1 and 2 are modeled
by a single node Fz. Activatory (ARM, Pan, CBP,
Hyx, BCL9 and Pygo) and inhibitory complexes
(ARM, Pan and Gro) are implicitly modelled.

Hh HH PTC CI
(act, rep)

Hh is required during embryo segmentation,
imaginal disc patterning, establishment of
cell polarity and eye development.

24 components (all Boolean).
CI processing into activatory and inhibitory
variants is explicitly modelled.

Notch DL
SER
SCA

NOTCH NICD Notch is required during tissue development,
cell fate determination, cell proliferation,
lateral inhibition, cell differentiation,
apoptosis, and wing patterning.

14 components (12 Boolean, 2 ternary).
Absence of Nicd and Da ON: high Twi.
Presence Nicd and Da ON: medium Twi.
Presence Nicd and Da OFF: Twi OFF.

Dpp DPP SAX
TKV

MAD/MED Dpp is responsible for dorsal/ventral
polarity and controls the growth of the
wing imaginal disc.

15 components (13 Boolean, 2 ternary).
Logical rules account for homodimer
and heterodimer formation. Morphogen
gradient establishment is implicitly
modelled by multi-level components.

JAK/STAT OS
UPD2
UPD3

DOME STAT92E JAK/STAT pathway is involved in embryo
segmentation, eye development, cell growth,
sex determination, hematopoiesis,
spermatogenesis, oogenesis, and signal
transduction in larva and adult.

17 components (15 Boolean, 2 ternary).
Binding of three different ligands, as well as the
effects of many inhibitors are modelled. The
model also takes into account the two forms of
Stat92E, the normal form and the truncated
form (Nstat92E).

EGF VN
SPI
KRN
GRK

DER PNT
RL

EGF pathway is involved in embryogenesis,
oogenesis, sex-determination, tissue
specification, tissue differentiation, patterning
of wing and eye imaginal discs, in adult
abdomen, brain and leg development.

25 components (16 Boolean, 9 ternary).
Gradient establishment through cell secreting
or receiving signal implicitly modelled.

FGF PYR
THS
BNL

BTL
HTL

PNT
RL

FGF regulates branching morphogenesis
during embryogenesis (e.g. tracheal system),
cell migration and differentiation, and
CNS development.

23 components (all Boolean).
Absence of ligand: targets OFF.
Binding of one ligand and Sty OFF: targets ON.
Presence of Sty (ligand ON or OFF): targets OFF.

VEGF PVF1
PVF2
PVF3

PVR PNT
RL

VEGF regulates cell migration (e.g. hematocytes,
salivary gland cells), cell size and
differentiation, metamorphosis, morpho-
genesis, dendritogenesis and neurogenesis.

18 components (all Boolean).
Absence of ligand: targets OFF.
Binding of one ligand and Sty OFF: targets ON.
Presence of Sty (ligand ON or OFF): targets OFF.

Toll SPZ TOLL DORSAL
DIF

Toll is implicated in early dorso-ventral
embryonic differentiation, eye, motoneuron
and muscle development, hematopoiesis,
and immune response.

11 components (all Boolean).
Absence of ligand: targets OFF.
Binding of ligand: targets ON.
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usually considered, while two main updating modes are generally
used. According to the synchronous mode,40 all updating calls are
considered simultaneously. Network behaviour is then deter-
ministic since each state can have at most one successor state
(although several paths may lead to the same state). In the case
of the asynchronous mode,11 updating calls are considered indi-
vidually. A successor state is then created for each updating call.

Various solutions have been proposed to refine logical
simulations and avoid the complexity of fully asynchronous
schemes, for example by distinguishing between fast and slow
subnetworks simulated sequentially,30 or by grouping transi-
tions into ranked (a) synchronous classes.15

A simulation can lead to a stable state, i.e. a state without
successor. From a biological point of view, a stable state may

correspond to a specific cell type. Alternatively, a simulation
can lead to a (simple or complex) cyclic attractor, which may
denote periodic behaviour, as in the case of the cell cycle.16

Whatever the updating mode, a logical model keeps the same
stable states, but cyclic attractors may differ. Interestingly, powerful
algorithms have been recently proposed to compute stable states in
large regulatory networks.45,46

To ease the simulation of large networks, we have developed a
flexible model reduction method, which allows hiding selected
components of the regulatory graph. Reduction is then applied
in an iterative way to hide multiple components. When a
component is masked, the effects of its regulators are transferred
to its targets, for which new logical functions are then computed.
By avoiding the masking of auto-regulated components, most

Fig. 1 Boolean model for the Drosophila Wingless (Wg/Wnt) pathway. (A) Wg pathway is displayed from regulatory (Wf, Dly and Dally) and ligand (Wg) components on the
left to the main downstream effectors (Dsh, Arm, Pan) and a generic ‘‘Targets’’ node, along with inhibitory and activatory partners on the right. Red blunt and green normal
arrows denote activatory and inhibitory interactions, respectively. The blue dot arrow denotes the fact that Pangolin (Pan) can activate or inhibit different sets of target genes.
(B) In the absence of Wg binding to its receptors, Arm is phosphorylated by the Axin–Sgg–APC complex and degraded by the proteasome; Pan then forms a complex with Gro,
which inhibits target genes. (C) Binding of Wg to Arrow or Frizzled triggers the accumulation of Arm, which forms a complex with Pan and other cofactors (Lgs, Nej, Hyx and
Pygo) for transcription activation. Grey nodes and arcs denote the lack of activity or influence depending on Wg pathway activity. Note that both inhibitory and activatory
complexes are modelled implicitly by considering interactions from their components onto their targets and using proper logical rules (i.e. using the AND operator).
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essential dynamical properties, including the stable states, are
preserved upon model reduction.47

The software GINsim (for Gene Interaction Network simula-
tion) implements the logical formalism and various analysis
tools, including stable state computation and model reduction.48

GINsim further supports the annotation of regulatory graphs
with free text and URLs, thereby enabling extensive documenta-
tion of the considered regulatory elements and interactions.
Once a model is defined, the user can launch simulations, which
are presented in the form of state transition graphs. GINsim also

Fig. 2 Logical models of Drosophila Hh, Notch, JAK/STAT and Dpp signalling pathways. Ellipses and rectangles denote Boolean and multilevel nodes, respectively. Red blunt
and green normal arrows denote activatory and inhibitory interactions, respectively, while the blue dot arrows denote dual effects of the source nodes on their targets.
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allows blocking the expression levels of specific components to
simulate different types of perturbations (e.g. loss-of-function,
gain-of-function, and combinations thereof).

All signalling pathway models described hereafter have been
implemented and annotated using GINsim. Extensive documenta-
tion is provided in ESI† for each of the nine pathway models.
Furthermore, we are providing these models in a dedicated reposi-
tory, in the form of an archive file that can be opened using GINsim
(release 2.4 or higher), which can be downloaded from the
GINsim web site (http://ginsim.org).

Results

Table 2 lists the nine main Drosophila signalling pathways
covered by this study, namely Wg, Hh, Notch, JAK/STAT, Dpp,
EGF, FGF, VEGF, and Toll pathways, mentioning the main
ligands, receptors, and effectors, along with reference develop-
mental processes. Based on an extensive literature analysis, and
predominantly focusing on the roles of signalling pathways
during Drosophila embryonic development, we have developed
a logical model for each of these pathways. Hereafter, for sake of
space, a general presentation of these models is given, comple-
mented by a more detailed presentation provided in ESI.†

The number of components considered in the model is mentioned
in the last column of Table 2, along with some key model properties.

The regulatory graphs corresponding to the nine considered
pathways are displayed in Fig. 1–4, using similar conventions.
In all regulatory graphs, ellipses denote Boolean components
(i.e. components with two possible values, 0 or 1, standing for
absent/inactive or present/active, respectively), while rectangular
contours denote multi-level components (here all ternary, i.e.
taking three possible values, 0, 1 and 2, corresponding to low/
insignificant, middle and high activity levels, respectively);
furthermore, components with yellow background denote mole-
cules (e.g. signals) acting from the exterior of the cell considered.

Logical rules have been defined for the components of these
models, so that they qualitatively recapitulate the effect of the
reported perturbations (effects of loss-of-function or gain-of-
function of pathway components).

Note that in all cases, only single signalling components
are explicitly modelled, while associations in complexes are impli-
citly modelled by arcs outgoing from complex partners onto their
targets, along with adequate logical rules (using the AND operator).

When one of these models is used to simulate the behaviour
of the pathway for various input configurations (potentially in
the presence of genetic perturbations such as loss-of-function

Fig. 3 Logical models of Drosophila EGF, FGF, and VEGF signalling pathways. Ellipses and rectangles denote Boolean and multilevel nodes, respectively. Red blunt and
green normal arrows denote activatory and inhibitory interactions, respectively. By comparing these regulatory graphs, one can easily detect the overlapping core
pathway, emphasised in green. To account for differential effects of SPI and VEIN on EGF target genes, we are using ternary components for the DRK–PNT signalling
cascade. Indeed, a gradient of SPI (we distinguish low, medium and high levels) can activate the pathway at medium or high levels, while VEIN is known to activate the
pathway only at medium levels.
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or gain-of-function), the levels/activities of pathway components are
encoded into a discrete vector or a logical state, while temporal
changes are represented by state transitions (cf. Methods). Such
simulations can be reproduced using the GINsim files provided
in ESI.† Hereafter, we focus on a limited number of represen-
tative results.

Fig. 1A displays the logical regulatory graph for the Wingless
(Wg) pathway, which acts recurrently during Drosophila
development.49,50

In the absence of Wingless, the protein complex composed of
Axin (AXN), Shaggy (SGG or ZW3) and APC sequesters Armadillo
(ARM), enabling its ubiquitination and a Slimb-dependent degrada-
tion by the proteasome. This absence of ARM facilitates the
formation of a Pangolin (PAN)–Groucho (GRO) inhibitory complex,

leading to the inhibition of Wg target genes. This corresponds to
the situation shown in Fig. 1B (an inactive Wg pathway), where
inactive (or irrelevant) regulatory components and interactions
are shown in grey.

In the presence of its co-receptor Frizzled (FRZ), binding of
Wingless (the ligand) to its receptor Arrow (ARR) triggers a set
of reactions, starting with the activation of Dishevelled, which
in turn inhibits the AXN–SGG–APC complex;51 this leads
(with the help of HIPK) to the stabilization and accumulation
of ARM. Next, ARM translocates into the nucleus, where it
can form an activatory complex with PAN and other co-factors
(LGS, NEJ, PYGO and HYX), leading to the activation of
WG target genes. This situation (an activated Wg pathway) is
illustrated in Fig. 1C.

Fig. 4 Boolean model of the Drosophila Toll signalling pathway. (A) Regulatory graph for Toll signalling upon activation by the ligand Spz. (B) Processing of Toll ligand
Spz depending on the developmental process or type of pathogen. Red blunt and green normal arrows denote activatory and inhibitory interactions, respectively.
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Fig. 2 shows the logical models for the Hedgehog (Hh), Notch,
JAK/STAT, and Decapentaplegic (Dpp) pathways, which are also
recurrently used during Drosophila development.34,52–60

The Hh pathway (Fig. 2A) consists of a regulatory cascade
leading to the activation of the pathway effectors encoded by the
gene cubitus interruptus (ci). CI can be released in a full-length
CI[act] form, which functions as a transcriptional activator, or in
a truncated CI[rep] form, which functions as a repressor. The
processing of CI is regulated by several kinases (cf. ref. 56).

The Hh and Wg pathways both play key roles in the antero-
posterior segmentation of the Drosophila embryo (many of their
signalling components are encoded by the so called ‘‘segment
polarity’’ genes). Consequently, they have been considered in
several models for Drosophila embryo segmentation, although
in very simplified ways.6,29–31

In this context, the more comprehensive pathway models
presented here may serve as references to extend already
published models, e.g. to recapitulate a broader collection of
experimental data, or yet to better ground the simplifications
made (e.g. applying model reduction tools to extended pathway
modules to obtain consistent simplified models).

The Notch pathway (Fig. 2B) is required during tissue develop-
ment, cell fate determination, cell proliferation (lateral inhibition),
cell differentiation, apoptosis, wing patterning and development.

Here, we particularly refer to its role in the specification of
the mesoderm, where it contributes to modulate the level of
Twist (TWI).35

The JAK/STAT pathway (Fig. 2C) is involved in various develop-
mental processes, including eye development, cell growth, sex
determination, hematopoiesis, spermatogenesis, oogenesis, and
signal transduction in larva and adult.34,52,60 Our model considers
three different ligands (OS, UPD2 and UPD3), several inhibitors, as
well as the differential action of the two forms of STAT92E, the
normal form and the truncated form (NSTAT92E).

Turning to the Dpp pathway (Fig. 2D), our model recapitu-
lates the establishment of the morphogen gradient, by the
implicit modelling (using proper logical rules) of different
homodimers of DPP itself, Screw (SCW) and Glass-bottom-boat
(GBB), which are involved in relatively low signalling, as well as
of heterodimers (DPP/SCW, DPP/GBB, SCW/GBB), which are
responsible for high signalling.

Dpp and Notch pathways both play important roles in the
delineation of boundaries and compartments in Drosophila
imaginal discs, which prefigure the organisation of adult
structures such as the wings, legs or eyes. Consequently,
these pathways have been implemented, albeit in very
simplified ways, in models of these differentiation processes
(see e.g. ref. 32, 61 and 62).

Table 3 Sample results from simulations of EGF and FGF pathway models. For each initial or final state, only active components are listed (omitted components are thus
absent or inactive). In the case of multi-level (ternary) components, high levels (value 2) are specified whenever it is used under initial conditions or reached at final states;
when not otherwise specified, the listed components are set to the value 1. In all simulations, all internal nodes were set to zero at the initial states. Significant changes in
activity levels between initial conditions or between initial and final states are emphasised in bold. Regarding EGF signalling (upper part), three simulations are shown,
which correspond to wild-type pathway activity in the absence of ligand, in the presence of medium levels, and in the presence of high levels of Spi, respectively. Note the
difference of levels of activation of the core components between the two latter situations. Next, the results of the simulations of Sprouty inhibition, of cnk loss-of-
function, and of aop gain-of-function (each time in the presence of a high signal) are shown. Note that Pnt gets expressed at a medium level in the first case, whereas
inhibitors get expressed in the latter cases. These results qualitatively recapitulate published data.79,80 Regarding FGF signalling (bottom part), three reference wild-type
simulations are shown, corresponding to ligand absence, to the activation of Htl by Ths and Pyr, and to the activation of Btl by Bnl, respectively. In the first situation, the
inhibitor Aop gets expressed and the target genes are consequently repressed, whereas the pathway and target genes become activated in the two later cases. The last
two rows recapitulate the effect of Htl loss-of-function, as well as of the (ectopic activatory) effect of Ras gain-of-function combined with a Stumps loss-of-function81,82

Initial state Final (stable) state

EGF signalling pathway
No ligand Shc, Cnk, Src42, Ksr, Msk Shc, Cnk, Src42, Ksr, Msk, Aop, Cic, Gro
Medium Spi Spi, Shc, Cnk, Src42, Ksr, Msk Spi, Vein, Shc, Der, Drk, Sos, Ras, PLCg, Gap1, Raf, Cnk,

Src42, Ksr, Dsor, Rl, Msk, Pnt, Targets
High Spi Spi (2), Shc, Cnk, Src42, Ksr, Msk Spi (2), Vein, Shc, Der (2), Drk (2), Sos (2), Ras (2), PLCg, Gap1,

Raf, Cnk, Src42, Ksr, Dsor1 (2), Rl (2), Msk, Pnt (2), Targets
High Spi in the presence
of Sprouty (Sty)

Spi (2), Shc, Cnk, Src42, Ksr,
Msk, Aop, Cic, Gro

Spi (2), Vein, Shc, Der (2), Drk (2), Sos (2), Ras, PLCg, Gap1,
Sty, Raf, Cnk, Src42, Ksr, Dsor1, Rl, Msk, Pnt, Targets

cnk loss-of-function Spi (2), Shc, Src42, Ksr, Msk Spi (2), Vein, Shc, Der (2), Drk (2), Sos (2), Ras (2), PLCg, Gap1,
Src42, Ksr, Msk, Aop, Cic, Gro

aop gain-of-function in the
presence of high Spi

Spi (2), Shc, Cnk, Src42, Ksr,
Msk, Aop

Spi (2), Vein, Shc, Der (2), Drk (2), Sos (2), Ras (2), PLCg, Gap1,
Raf (2), Cnk, Src42, Ksr, Dsor1 (2), Rl (2), Msk, Pnt (2), Aop

FGF signalling pathway
No ligand Csw, Cnk, Src42, Ksr, Msk Csw, Cnk, Src42, Ksr, Msk, Aop
Htl activation Ths, Pyr, Csw, Cnk, Src42, Ksr, Msk Ths, Pyr, Htl, Stumps, Drk, Csw, Sos, Ras, PLCg, Gap1, Raf,

Cnk, Src32, Ksr, Dosr1, Msk, Rl, Pnt, Targets
Btl activation Bnl, Csw, Cnk, Src42, Ksr, Msk Bnl, Btl, Stumps, Drk, Csw, Sos, Ras, PLCg, Gap1, Raf, Cnk,

Src42, Ksr, Dsor1, Msk, Rl, Pnt, Targets
Inhibition by Sprouty (Sty)
in the presence of all ligands

Ths, Pyr, Bnl, Csw, Sty, Cnk,
Src42, Ksr, Msk

Ths, Pyr, Htl, Bnl, Btl, Stumps, Drk, Csw, Sos, PLCg, Gap 1,
Sty, Cnk, Src42, Ksr, Msk, Aop

Htl loss-of-function in the
presence of Pyr and Ths

Ths, Pyr, Csw, Cnk, Src42, Ksr, Msk Ths, Pyr, Csw, Cnk, Src42, Ksr, Msk, Aop

Ras gain-of-function combined
with stumps loss-of-function in
the presence of Ths and Pyr

Ths, Pyr, Csw, Cnk, Src42, Ksr, Msk Ths, Pyr, Htl, Csw, Ras, Raf, Cnk, Src32, Ksr, Dosr1, Msk, Rl,
Pnt, Targets
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Fig. 3 shows the logical models derived for the EGF, FGF and
VEGF signalling pathways.63–67 For sake of simplicity, the
processing of the EGF ligand Spitz (SPI) is not modelled.
Noticeably, only two ligands have been selected when several
redundant ligands have been characterised (e.g. Gurken, Keren).
Various inhibitors known to function in the establishment of a
signalling gradient between expressing cells and receiving cells
are explicitly considered (Sprouty, Argos, Kekkon, etc.).

From these graphical representations, one can easily see
that the three pathways share an extensive core cascade (MAPK
cascade) encompassing eight components, including homologs
of the notorious vertebrate oncogenic factors RAS and RAF
(components coloured with light green). This emphasises the
fact that the same signalling cascade can respond to different
signals, with contextual regulatory variations, to finally affect
target genes through common effectors (i.e. the transcriptional
factors AOP and PNT). Examples of simulation results for EGF
and FGF pathway models are given in Table 3.

Finally, Fig. 4A shows our current logical model for the
Drosophila Toll signalling pathway,68,69 which is involved in
early dorso-ventral embryo differentiation. The Toll pathway
also plays a key role in innate immunity. Indeed, it can be
activated upon infection by various kinds of pathogens, a
process involving complex signals converging onto the produc-
tion of Spaetzle (SPZ), the main ligand of Toll in Drosophila
(Fig. 4B). At this stage, however, our logical model does not yet
account for potential differential effects of SPZ depending on
immunological challenges.

All nine pathway models are provided in ESI† (ZGINML files,
which can be opened using the public software GINsim), along
with extensive documentation (included in the model files, but

also provided in html and pdf formats). To ease simulations,
each model file includes sample parametrisations for typical
signalling situations.

Conclusions and prospects

We have presented a collection of logical models for the
prominent signalling pathways involved in Drosophila develop-
ment. Each of these models can be considered as a building
block to assemble more complex models for specific develop-
mental processes. In their present form, these logical modules
can be used to extend recent models for pattern formation in
Drosophila embryo30,31 or in imaginal discs.32,62

Overall, although the nine pathway models reported here will
require refinements as new data are gathered, or depending on
specific applications, they already constitute a comprehensive
knowledge repository that should facilitate the delineation of
sophisticated models by combining inter-cellular signalling and
other regulatory modules involved in Drosophila development. In
this respect, simplified versions of seven of these signalling
modules have been integrated in a novel model for mesoderm
specification (Fig. 5), which will be reported in detail elsewhere
(Mbodj et al., in prep.).

Several studies indicate that the proteins implicated in these
pathways are shared between species.70–75 Our collection of
pathway modules could thus be used to perform comparative
analyses or to build models of orthologous pathways in other
model organisms.

By and large, our modelling work mainly relied on genetic
data (gene expression patterns and mutant phenotypes). As can
be seen in Table 2 and Fig. 1–4, we modelled most signalling

Fig. 5 Logical model for Drosophila mesoderm specification at embryonic developmental stages 8–10, showing the combinatorial control of this developmental process by
seven signalling pathways, each represented here in a simplified way for sake of clarity. Notch, Hh, Dpp, Wg, EGF + FGF, and JAK/STAT signalling modules are emphasised with
different colours. Although the majority of the components are modelled by Boolean variables (denoted by ellipsoid nodes), the five rectangles denote multilevel components.
Red blunt and green normal arrows denote activatory and inhibitory interactions, respectively. This model is described in detail elsewhere (Mbodj et al., in prep.).
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components by Boolean variables. This is certainly an over-
simplification, which could be refined as novel data become
available, thanks to the recent technological advances (transcrip-
tomics, proteomics, interactomics, or high-throughput functional
assays such as RNAi screens).

Furthermore, the mutant developmental phenotypes used to
identify pathway components may only reflect extreme situa-
tions (loss-of-function or gain-of-function). This presumably
led to overlook many potential unknown pathway actors and
regulators, which can now be identified using high-throughput
methods.76

The pace of acquisition, the quantity and the nature of the
resulting data pose novel challenges to biologists. Indeed, efficient
exploitation of the resulting datasets and their integration with
relevant lower-throughput results is far from trivial. To do so,
several groups set to progressively complete and extend canonical
pathways with novel interactions and components identified by
large-scale interaction screens.77,78 Although still in its infancy,
there is no doubt that integration of large-scale datasets along
with more detailed molecular studies will open novel avenues
for signalling pathway mapping and modelling. In this respect,
the collection of signalling pathways proposed here may be
considered as seeds to build more comprehensive maps and
ultimately delineate more quantitative and predictive models.
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