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Synergetic regulatory networks mediated by
oncogene-driven microRNAs and transcription factors
in serous ovarian cancer†

Min Zhao,a Jingchun Suna and Zhongming Zhao*abcd

Although high-grade serous ovarian cancer (OVC) is the most lethal gynecologic malignancy in women,

little is known about the regulatory mechanisms in the cellular processes that lead to this cancer.

Recently, accumulated lines of evidence have shown that the interplay between transcription factors

(TFs) and microRNAs (miRNAs) is critical in cellular regulation during tumorigenesis. A comprehensive

investigation of TFs and miRNAs, and their target genes, may provide a deeper understanding of the

regulatory mechanisms in the pathology of OVC. In this study, we have integrated three

complementary algorithms into a framework, aiming to infer the regulation by miRNAs and TFs in

conjunction with gene expression profiles. We demonstrated the utility of our framework by inferring

67 OVC-specific regulatory feed-forward loops (FFL) initiated by miRNAs or TFs in high-grade serous

OVC. By analyzing these regulatory behaviors, we found that all the 67 FFLs are consistent in their

regulatory effects on genes that are jointly targeted by miRNAs and TFs. Remarkably, we unveiled an

unbalanced distribution of FFLs with different oncogenic effects. In total, 31 of the 67 coherent FFLs

were mainly initiated by oncogenes. On the contrary, only 4 of the FFLs were initiated by tumor

suppressor genes. These overwhelmingly observed oncogenic genes were further detected in a sub-

network with 32 FFLs centered by miRNA let-7b and TF TCF7L1 to regulate cell differentiation. Closer

inspection of 32 FFLs revealed that 75% of the miRNAs reportedly play functional roles in cell

differentiation, especially when enriched in epithelial–mesenchymal transitions. This study provides a

comprehensive pathophysiological overview of recurring coherent circuits in OVC that are co-regulated

by miRNAs and TFs. The prevalence of oncogenic coherent FFLs in serous OVC suggests that oncogene-driven

regulatory motifs could cooperatively act upon critical cellular processes such as cell differentiation in a highly

efficient and consistent manner.

Introduction

Ovarian cancer (OVC) refers to heterogeneous cancers arising
from the ovary. There are estimated to be 22 280 new cases and
15 500 deaths in the United States in 2012.1 OVC is regarded as
a ‘‘silent killer’’ due to its high mortality and low cure rates.2

These facts are largely due to the absence of symptoms in this
cancer’s early stages. Patients are difficult to diagnose until the

disease is in an advanced stage and has spread beyond the
ovary. Most OVCs originate from ovarian surface epithelia,
which can be classified into four major types in histology: serous
(70%), endometrioid (10–15%), clear-cell (10%), and mucinous
(3%) carcinomas.3 According to the degree of differentiation,
OVCs are grouped into well-differentiated low-grade and poorly
differentiated high-grade. Additionally, it is known that serous
OVCs account for 90% of high-grade tumors.4 Despite that
numerous genetic and pathogenic studies have been reported
for OVC, the molecular mechanisms underlying this cancer,
especially high-grade serous OVC, are largely unknown.

Like other types of tumors, OVC is characterized by uncontrolled
cell growth, which is caused by the deregulated gene expression of
tumor suppressors and oncogenes in controlling cell proliferation
and apoptosis.5,6 In these deregulated gene expression processes,
two major groups of regulators affect cancer gene expression at the
transcriptional and post-transcriptional levels. The first group is
transcription factors (TFs), which operate through the transcription
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activation or suppression of target genes with specific binding sites
in regulatory regions.7 The second group is microRNAs (miRNAs),
which mediate degradation or translational repression of target
genes by binding target genes with small complementary
sequences.8 In addition, these two types of regulatory mechanisms
have reciprocal regulation and joint effects on their shared target
genes, which form complex regulatory motifs such as feed-forward
loops (FFLs) to influence gene expressions in cancer.9–11

Recently, numerous individual identifications of transcriptional
dysregulation of TFs and miRNAs in OVC have provided further
implication of TFs and miRNAs in the etiology of OVC.12,13

Though our previous TF–miRNA FFL study in GBM10 and other
studies of TF–miRNA FFLs in other types of cancers11,14,15 high-
light the interplay of miRNAs and TFs and their involvement in
cancer development, the structure and function of the TF–miRNA
regulatory FFLs based on genome-wide expression profiles in OVC
have not been explored. Recent genome-wide studies performed by
the Cancer Genome Atlas (TCGA) project provided vast quantities of
gene expression profiling and other molecular profiling from
hundreds of OVC samples, which might provide a promising
opportunity to uncover the basic building blocks of regulatory
networks in OVC.16

Usually, genome-wide data or de novo prediction can produce
thousands of regulatory relationships. However, how does one
compile a compendium of key regulators from mass data? To
achieve this goal, most previous studies choose to focus on a
specific biological question or use motif-finding algorithms to
pinpoint the potential interesting regulators. To identify a relatively
small subset of regulators to coordinate multiple cellular processes
at an appropriate scale to generate reliable hypotheses, we com-
bined the two best performing and complementary algorithms into
a framework to infer regulation by miRNAs and TFs from collected
co-expressed and reported OVC candidate genes. We applied this
approach to identifying 67 significant co-regulating FFLs consisting
of miRNAs, TFs, and OVC genes for in-depth analysis. Based on
statistical tests, we discovered that all 67 FFL are coherent type,
which means the regulators (miRNAs and TFs) have consistent
regulatory effects on their joint target genes. In addition, these
coherent FFLs are overwhelmingly initiated by oncogenic genes.
Based on all the coherent significant FFLs with 25 TFs, 27 miRNAs
and 23 target genes, we constructed a central regulatory network in
OVC, which contained enriched genes involved in cell differentia-
tion, cell cycle regulators, and OVC-specific signaling pathways. We
have observed the prevalence of a coherent regulatory pattern of
oncogenic miRNA and TF to their targets. This result may spotlight
the importance of recurring coherent circuit elements, which have
a tendency to initiate through oncogenic genes and promote
oncogenic processes in a highly efficient and consistent style.

Methods
Expression profiles for TFs, miRNAs, and OVC-related genes

As shown in Fig. 1, our workflow started from TFs, miRNAs,
and OVC-related genes using the gene expression data from
TCGA.16 The gene expression data were generated from three
microarray gene expression platforms (Affymetrix Exon 1.0 array,

Agilent 244K whole genome expression array, and Affymetrix
HT-HG-U133A array) for the 489 high-grade serous OVC
samples.16 To provide unified expression measures, the TCGA
investigators first normalized and calculated the expression values
on each platform separately. Then, to obtain relative gene expres-
sion scores, they subtracted the mean value across samples for
the same gene followed by dividing the expression value using
standard deviation across samples. Finally, a factor analysis model
was used to integrate the relative expression data from three
platforms into a single data set of 11 864 mRNAs without batch
effects.16,17 The final unified expression data was downloaded
from the TCGA website as a matrix, which was formatted
as one row for each gene and one column for each sample
(https://tcga-data.nci.nih.gov/docs/publications/ov_2011/).

To obtain the protein-coding transcriptional regulator informa-
tion, we obtained 524 human TF genes from the TRANSFAC
Professional database (release 2011.4) (Table S1, ESI†).18 By over-
lapping the TF genes with the 11 864 genes with expression profile,
we obtained 441 human TFs for follow-up analyses.

To focus on OVC-related genes, we utilized our previous
OVC-specific gene set containing 1257 non-redundant OVC-
related genes collected from fourteen data sources (Table S1,
ESI†).6 Among the 1257 OVC-related genes, 957 were found in
the 11 864 genes with expression profiles from TCGA.

To correlate miRNA gene expression with TF and OVC-
related gene expression, we selected 267 Grade 3 OVC matched
samples with miRNA and mRNA gene expression data. In these
expression profiles, there were 11 864 coding genes and 799
miRNAs in total (Table S1, ESI†). For the miRNA set, we
excluded 241 miRNAs from human virus or minor forms
(miR*) and compiled 558 unique mature miRNAs from the
TCGA Level 3 archive that contains normalized and processed
miRNA expression data using Agilent miRNA microarray (8 � 15K
human miRNA-specific microarrays).16

Expression correlation among miRNAs, TFs, and OVC-related
genes

Based on the expression profiles of OVC-related genes, human
TFs, and miRNAs, we first computed expression correlation
scores for three types of pairs: TF 2 miRNA, miRNA $ OVC-related
gene, and TF - OVC-related gene. Here, symbols $ and -

represent miRNA initiated repression and TF initiated regulation,
respectively. The symbol 2 represents the mutual regulation
between TF and miRNA. We estimated the expression correlation
among these regulatory pairs using the Spearman’s correlation
method that is implemented in the R language package (version
2.14.0) to calculate their expression correlation scores and corre-
sponding p-values.19 For all the p-values in each type of pair, a false
discovery rate (FDR) was applied to correct the statistical signifi-
cance of multiple testing. For all the pairs from both miRNA $
OVC-related gene and miRNA $ TF, we required their expression
correlation scores be less than�0.2 and the FDR adjusted p-values
be less than 0.01. For all the possible pairs of TF - miRNA and
TF - OVC-related gene, we extracted the pairs with absolute
expression correlation scores greater than 0.2 and corresponding
FDR adjusted p-values less than 0.01. According to these criteria,
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we have an appropriate number of pairs in each type of
regulatory relationship for follow up analysis (data not shown).

Regulatory relationship of miRNA to gene/TF (miRNA $ gene/TF)

The posttranscriptional repression of miRNAs to protein-
coding genes can be typically inferred from information such
as evolutionary conservation of seed sites on sequence.20,21

Among those available prediction tools based on binding sites,
TargetScan is the most popular and has the highest accuracy.20,21

Therefore, we downloaded data from the TargetScan server
(version 6.0, November 2011) to prepare the regulatory pairs
between miRNAs and OVC-related genes/TFs.22 Among the 558
human mature miRNAs with expression profiles we compiled
above, 253 miRNAs have evolutionarily conserved targets in four
organisms (human, mouse, rat, and dog). In total, 8162 target

genes of the 253 miRNAs were collected after filtering based on
their context score (higher than �0.30), which is a quantitative
measure for the overall target binding efficacy.20,21 After over-
lapping the predicted miRNA target relationships with the pairs
of miRNAs and OVC-related genes with significantly negative
correlation of expression profiles, we obtained 311 pairs with 103
miRNAs and 131 OVC-related genes in total (Table 1). Similarly, we
obtained 222 pairs with 97 miRNAs and 80 human TFs after
intersecting the results from TargetScan and TF–miRNA pairs with
the significant correlation based on expression profiles (Table 1).

Regulatory relationship between TF and gene/miRNA
(TF - gene/miRNA)

In our pipeline, we required any regulatory relationship between
TF and gene/miRNA to have evidence from both computational

Fig. 1 Schematic of the discovery of microRNAs (miRNAs) and transcription factors (TFs) mediated feed-forward loops (FFLs) in serous ovarian cancer (OVC). The
pipeline involves four main steps. (1) Identification of regulatory relationships in OVC. Based on the compiled 957 OVC-related genes, 799 miRNAs, and 264 known
human TFs with expression profiles from the 267 tumor samples from The Cancer Genome Atlas (TCGA), we predicted four types of regulations (TF - gene, TF -

miRNA, miRNA $ gene, and miRNA $ TF) by integrating miRNA-target data, TF-target data, and gene expression profiles (see Methods). (2) Detection of significant
regulatory pairs between miRNAs and TFs using a hypergeometric test. (3) Identification of significant coherent FFLs by integrating regulatory directions with
significant TF–miRNA pairs and their joint target genes. (4) Construction of the OVC-specific regulatory network based on significant FFLs. Other abbreviations in the
figure: TMN-TGP: a coherent FFL initiated by a TF that negatively regulates a miRNA and positively regulates their joint target gene. TMP-TGN: a coherent FFL initiated
by a TF that positively regulates a miRNA and negatively regulates their joint target gene. MTN-TGP: a coherent FFL initiated by a miRNA that negatively regulates a TF
and their joint target genes, while the regulated TF positively regulates their joint target gene.
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prediction and experimental gene expression. To predict reliable
regulatory relationships, we only isolated the conserved TF -

OVC-related gene regulations across human, mouse, and rat.23

For all the 1257 OVC-related genes, we first extracted 1050 mouse
homologous genes and 1019 rat homologous genes from the
NCBI HomoloGene database (build 65, February 15, 2011).24

Next, we inputted 1257 human OVC-related genes and their
1050 mouse and 1019 rat homologous genes to the UCSC
Genome Browser25 to obtain their sequence, separately. Then,
we extracted promoter regions from �1500 to +500 around
transcription start sites (TSS). Next, we performed a search of
TF binding sites on these sequences using the TRANSFAC
Matcht software (release 2011.4).26 We searched the mouse
and rat genes that were homologous to the 524 human TF genes
using the HomoloGene database (build 65, February 15, 2011)24

and then predicted the human, mouse, and rat TF-gene regula-
tions separately. As a result, the 524 human TFs were linked to
2869 mouse and 2858 rat TRANSFAC sequence matrix IDs, which
were used to predict TF targets. In our prediction of the targets of
human, mouse and rat TFs, we applied stringent cut-off values to
minimize false positive matches: a core similarity of 1.00 and a
matrix similarity of 0.95. These are the two most important
scores to evaluate the quality of a match based on its corre-
sponding TF matrix from TRANSFAC. Finally, 16 953 conserved
human TF–target gene pairs were identified using Matcht
(conserved among human, mouse, and rat). These pairs contained
291 human TFs and 397 OVC related genes. Following our pipeline,
the 16 953 TF - OVC-related gene pairs were intersected with
TF-gene expression correlation scores from TCGA. Here, the
correlation of expression profiles between TF and OVC-related
genes could be negative or positive. An absolute value of the
correlation score higher than 0.2 was used as a cut-off. This cut-
off resulted in a total of 2369 TF - OVC-related gene pairs,
which included 207 TFs and 341 OVC-related genes (Table 1).

To predict the TF - miRNA relationship, we first obtained
genomic locations of the 558 mature miRNAs by searching
miRBase (release 17).27 The resulting genomic locations were
used to extract their respective promoter regions around TSSs

(�1500 to +500). Next, Matcht was applied to identify possible
TF - miRNA regulatory pairs. In this procedure, we obtained
44 625 TF - miRNA pairs between 405 TFs and 542 miRNAs
that satisfied the core score of 1.00 and matrix score over 0.95.
After checking expression correlation scores between TF and
miRNA pairs with an absolute value greater than 0.2, we
obtained 1988 TF - miRNA regulatory pairs. Those pairs
included 235 TFs and 342 miRNAs (Table 1).

Significant TF–miRNA co-regulation pairs

To improve the reliability of the predicted regulatory pairs, we
adopted a cumulative hypergeometric test to sort out signifi-
cant TF–miRNA co-regulation pairs with the same joint target
genes. Using the function below, we calculated a p-value for
each TF–miRNA pair in our data:10,28

P ¼
Xmin NðmiRÞj j; NðtfÞj jð Þ

i¼ NðmiRÞj j\ NðtfÞj j

�
NðmiRÞ
�� ��

i

 !
Total� NðmiRÞ

�� ��
NðtfÞ
�� ��� i

0
@

1
A, Total

NðtfÞ
�� ��

 !8<
:

9=
;

In this formula, N(miR) is the count of genes regulated by a
miRNA, N(tf) is the number of genes regulated by a TF, and Total
is the number of jointly regulated genes between all human
genes regulated by all human miRNAs and all human genes
regulated by all human TFs. The FDR was applied to adjust the
false positive rate for multiple testing.29 Finally, we selected the
335 significant TF–miRNA co-regulation pairs if their FDR
corrected p-values were less than 0.01.

Coherent FFLs, network construction, and statistical functional
evaluation

To reduce the complexity of regulatory networks and distill
critical regulatory elements, we added the direction of the edges
(regulation) using the expression correlation scores (i.e., positive
or negative co-expression). Using the significant TF–miRNA
co-regulation pairs obtained above, we constructed a compre-
hensive TF–miRNA regulatory network, which was comprised
of 67 FFLs with regulatory directions. This network included
27 miRNAs, 25 TFs, and 23 OVC-related genes (Table S2, ESI†).

We specifically examined the features of FFLs and OVC
regulatory networks for those TFs and target genes that are
categorized as tumor suppressors and oncogenes. We down-
loaded 196 protein-coding tumor suppressor genes with multiple
sources of literature evidence from the tumor suppressor gene
database TSGene (http://bioinfo.mc.vanderbilt.edu/TSGene/).30

Additionally, we collected a list of 296 protein-coding oncogenes,
each of which had evidence from both the UniProtKB keyword
‘‘Proto-oncogene’’31 and the Tumor Associated Gene (TAG) data-
base (http://www.binfo.ncku.edu.tw/TAG/).

To detect biological pathways overrepresented in our con-
structed regulatory network, we performed a pathway enrich-
ment analysis using the Ingenuity Pathway Analyses (IPA) tool
from Ingenuity Systems.32 Given a list of genes, Fisher’s exact
tests were conducted to detect the enrichment of these genes in

Table 1 Summary of relationships among OVC TFs, miRNAs, and OVC-related
genes

Relationship

Number of the elements

Method (+EXP Core)Pairs miRNAs OVC genes TFs

miRNA $ genea 311 103 131 — TargetScan
miRNA $ TFb 222 97 — 80 TargetScan
TF - genec 2369 — 341 207 Matcht
TF - miRNAd 1988 342 — 235 Matcht

a miRNA $ gene: miRNA repression of OVC-related gene expression.
b miRNA $ TF: miRNA repression of TF expression. c TF - gene: TF
regulation of OVC-related gene expression. d TF - miRNA: TF regula-
tion of miRNA expression. e EXP Cor: all the methods in the table were
overlapped to expression correlation scores. For all the predicted pairs
from both miRNA $ gene and miRNA $ TF, their expression correlation
scores are less than �0.2 and FDR adjusted p-values o0.01. For all the
detected pairs from both TF - gene and TF - miRNA, the absolute
values of their expression correlation scores are higher than 0.2 and
FDR adjusted p-values o0.01.
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Ingenuity’s manually curated canonical pathways. To control
the error rate in the analysis results, we selected the significant
pathways with a corrected p-value less than 0.05 (IPA provided
this cut-off based on the Benjamini–Hochberg method29). We
conducted functional enrichment tests using the online tool
DAVID33 to further assess the enrichment of interesting genes
with Gene Ontology (GO) annotation and other functional
terms enrichment. Only those functional terms were selected
if their adjusted p-values were less than 0.0001 (hypergeometric
test followed by the Benjamini–Hochberg correction).29

Randomization analyses

To evaluate the robustness of the final regulatory network in
OVC, we applied an empirical re-sampling approach. Take the
TF gene list as an example here. First, for 441 TFs mapped to
the OVC gene expression data, we randomly selected 25 TFs.
Similarly, we randomly selected 27 miRNAs from the 799
miRNAs and 23 OVC-related genes from the 957 genes with
expression profile across the 267 high-grade serous OVC samples.
We obtained all the regulatory pairs if their absolute expression
correlation coefficients were less than 0.2 (this cutoff value was
�0.2 for the regulatory pairs initiated by miRNAs) and the FDR
adjusted p-values were less than 0.01. Based on the regulatory
pairs TF - gene, TF - miRNA, miRNA $ TF, and miRNA $ gene,
we examined how many FFLs could be formed. We repeated
this randomization process 10 000 times. Next, we counted the
number of randomly generated datasets (N) whose number of
FFLs was greater than the observed number of FFLs (67 in our
study). Lastly, we calculated an empirical p-value by N/10 000 for
the observed number of FFLs being greater than 67. We obtained
an empirical p-value 0.0017, indicating that the observed network
with 67 FFLs was unlikely generated by chance. For the 17
datasets with more than 67 FFLs, we checked their number of
coherent FFLs and the number of coherent FFLs initiated by
oncogenes and tumor suppressors (TSGs). In our final regulatory
network, there were 31 oncogene-initiated FFLs (46.3%) and 4
TSG-initiated FFLs (5.97%). As shown in Table S5 (ESI†), none of
the 17 randomly selected datasets had a larger proportion of
oncogene-initiated FFLs than the observed one.

Results
A computational pipeline to construct a TF–miRNA FFL
regulatory network

To explore the regulatory relationships among miRNAs, TFs,
and OVC-related genes, we applied a novel computational
framework to our collected OVC-related genes by incorporating
transcriptome data from TCGA. The pipeline has four critical
steps to construct a final regulatory network (Fig. 1). First, we
predicted four types of regulatory pairs, including miRNA $ TF,
miRNA $ OVC-related gene, TF - miRNA and TF - OVC-related
gene, which were combined using sequence-based regulatory pre-
dictions and gene expression data. In this step, the evolutionarily
conserved miRNA targeting TFs and OVC-related genes were
predicted using TargetScan;22 meanwhile the evolutionarily con-
served regulatory pairs initiated by TFs were predicted using the

TRANSFAC Matcht software.26 To reduce false positive possibi-
lities and determine the positive or negative regulatory effects of
miRNAs and TFs on their target genes, we further overlapped our
predicted regulatory pairs to miRNA and mRNA expression from
267 Grade 3 OVC samples from TCGA. In the second step,
significant TF–miRNA pairs were identified based on their
shared target genes using a hypergeometric test. Thirdly, regu-
latory feed-forward loops (FFLs) between miRNAs, TFs and their
joint target genes were formed based on the overlapping of these
three elements to the significant co-occurring TF–miRNA pairs.
In each loop, the three regulatory links with positive or negative
regulatory effect were established to determine the joint regula-
tory direction. Finally, this extensive exploration of regulatory
motifs initiated by TFs and miRNAs with regulatory flows
resulted in a total of 67 FFLs with 25 TFs, 27 miRNAs, and 23
OVC-related genes (Fig. 2).

Complete coherent feed-forward regulatory loops

Previous studies showed that one of most abundant and significant
regulatory network motifs in E. coli and Yeast is the FFL, which
consists of two regulators and one joint target.34 According to
regulators’ regulatory effects on their joint targets, the FFLs with
two regulators can be divided into two main types. One is coherent
FFLs, in which the two regulators have consistent effects on their
joint target. The other is incoherent FFLs, which have inconsistent
effects from two regulators to their joint target.35 As shown in Fig. 2,
all the 67 FFLs identified from OVC are coherent FFLs. More
specifically, there are three consistent regulatory patterns. The first
is TMN-TGP (TF–miRNA negative and TF–gene positive), which is
initiated by a TF with a negatively regulating effect on a miRNA and
positive regulatory effect on its joint target genes. As the miRNA
represses the joint target, the negative control of the initial TF to
the miRNA leads to an expression increase of their joint target
genes. The second is TMP-TGN (TF–miRNA positive and TF–gene
negative). In this type of FFL, the initial regulator is a TF to activate
a miRNA and repress its joint target genes. Combined with the
negative effect of the miRNA to the target gene, the activation of the
initial TF to a miRNA will strength the reduction of their joint
target. The third type of FFL is MTN-TGP (miRNA–TF negative and
TF–gene positive), which is initiated by a miRNA with a negative
effect on a TF while, at the same time, the repressed TF has a
positive effect on its joint target gene. Thus, in this FFL, the joint
target gene will be depressed by both the miRNA and the
decreased TF.

In each FFL, there is one ‘‘fast’’ regulatory arm with direct
regulation and a ‘‘slow’’ regulatory arm with two consecutive
regulatory steps. The integration of the signals from both the
fast and slow regulatory arms often emerges as a signal delay in
each FFL. According to the theoretical analysis from ref. 34, all
the coherent FFLs are sign-sensitive delays that contrast to the
sign-sensitive acceleration of incoherent FFLs. The MTN-TGP
and TMN-TGP show their delays on the initial sign-on. How-
ever, TMP-TGN will have a delay on the initial sign-off. These
sign-sensitive delays can help the FFLs reject short initial
pulses and assist them in responding only to persistent stimuli.
Combined with their consistent effects, the three coherent FFLs
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in OVC can respond to the initial cellular signals in a consistent
and persistent style.

The previous study in E. coli and yeast revealed that the most
common coherent FFLs with two TFs are formed with three
positive regulations.34 However, the inherent negative regula-
tion on the miRNA targets causes a lack of the three positive
links in coherent FFL co-regulated by TFs and miRNAs. Among
the three types of coherent FFLs, TF-initiated TMN-TGP and
TMP-TGN FFLs show relatively dominant numbers (83.58%) in
our detected 67 FFLs.

Compared to MTN-TGP, both the TMN-TGP and TMP-TGN
FFLs involve more unique miRNAs, TFs, and target genes
(Fig. 3A–C), which means they have wider effects on cellular
processes. In addition, most of target genes from MTN-TGP are
covered by the other two types of FFLs. These comparisons
might highlight the more important regulatory role of TFs as
compared to miRNAs in serous OVC. Compared to the two
TF-regulating FFLs, TMN-TGP and TMP-TGN in our network not
only strengthen the regulatory effects at both the transcriptional
and post-transcriptional level, but also consolidate the robust-
ness with backup regulators. Compared to incoherent FFLs, even
if the initial regulator in a coherent FFL is transiently ineffective,

the secondary regulator is still able to confer fidelity to the
regulation of the joint target gene.

The prevalence of oncogenes as initial regulators

The molecular mechanism underlying a coherent FFL shows
that the final output of the joint target is influenced by both the
initial regulator and its regulated regulator. In the three types of
FFLs, the joint target genes from TMP-TGN and MTN-TGP show
an inverted output compared to the input signals from its
initial regulators. In contrast, TMN-TGP has the properties to
stimulate the output of the joint targets. In this study, nearly
half of the 67 FFLs belong to the TMN-TGP category in OVC. For
the TMN-TGP FFLs, the final output of the joint targets is
positively correlated with its initial TFs. By contrast, the final
outputs of the joint targets from TMP-TGN and MTN-TGP are
negatively correlated with its initial TFs or miRNAs. As shown
in Fig. 3D, the expressions of seven targets are not inverted by
their initial regulator since they only belong to TMN-TGP FFLs.
However, the expression of another six targets will be inverted
by their initial regulators, as they belong within TMP-TGN or
MTN-TGP FFLs. Most interestingly, ten target genes can either
be inverted or non-inverted, and their fate is determined by the

Fig. 2 MicroRNAs (miRNAs) and transcription factors (TFs) mediated feed-forward loops (FFLs) and regulatory networks in serous ovarian cancer (OVC). In the
network, red nodes denote miRNAs, green nodes denote TFs, and blue nodes denote joint target genes. TBP is marked as an orange hexagon because it acts as both a
TF and a target gene in this network. The links with green arrow ends are positive regulations from the initial TF to the end node. The links with blue ‘‘$’’ ends are
negative regulations initiated by TFs. The lines with black ‘‘$’’ ends represent a negative regulatory relationship initiated by miRNAs. FFLs involved in cell differentiation
are marked with a light navy background.
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strength of their initial regulators from different FFL types.
Taking this information into consideration, the numbers of
target genes with the inverted and non-inverted expression are
finely balanced in the identified 67 FFLs in OVC.

However, the same equilibrium does not exist in inverted and
non-inverted effects if we explore the initial regulators and their
roles in cancer development. Based on the known tumor suppres-
sors and oncogenes, we classified the FFLs into three types: the
oncogenic style, tumor suppressor style and unknown regulatory
style (Table 3). In the tumor suppressor style, FFLs initiated by
tumor suppressors are more likely to behave as the ‘‘the guardians
of the cell’’ to establish cell-cycle checkpoints, induce apoptosis and
control the cell to grow normally. For the same effect, the loops
with the initial oncogene regulator can be classified as oncogenic
FFLs. With their consistent regulatory effect on joint targets, the
oncogenic FFLs can behave like oncogenes, which might promote
cancer progression. As shown in Table 2, there are 12 oncogenes
enriched in our final regulatory network of 67 FFLs (adjusted
p-value, 1.60 � 10�10). Ten of the oncogenes are the initial TFs in
FFLs and result in 30 oncogenic FFLs. Adding in one additional
oncogenic FFL initiated by an oncogenic miRNA miR-222, there are
31 oncogenic FFLs in total in our OVC regulatory network (Table 3).
In contrast, there are only four tumor-suppressor-style FFLs in total.
One is initiated by the protein-coding tumor suppressor WT1, while
the other three are initiated by two miRNAs let-7b and miR-30c.
Furthermore, in our constructed regulatory network consisting of
27 miRNAs, 25 TFs and 23 genes (Fig. 2), the WT1-governed FFL is

not connected with the other FFLs. In fact, 65 FFLs in our
composite network are connected which shows that 97% of the
FFLs can communicate with each other.

In sum, for the connected 65 FFLs, only three tumor sup-
pressor FFLs (let-7b 2 MYCN-HIF3A, miR-30c 2 MAFG-CAC-
NA1C, and miR-30c 2 RUNX2-CACNA1C) are initiated by the
miRNA tumor suppressors let-7b and miR-30c. All the remaining
31 FFLs with known roles on initial regulators belong to the
oncogenic style category. This imbalanced distribution of FFLs is
a striking feature in our constructed OVC regulatory network
(Fig. 2 and Table 3), which might lead to a whole system collapse
toward the oncogenic direction if the entire oncogenic initial
regulators are able to play their roles as expected.

Nearly half of FFLs to regulate cell differentiation centered by
TF TCF7L1

Network topological analyses (Fig. S1, ESI†) show that the
constructed network with 67 FFLs is relatively compact, which

Fig. 3 The overlap of involved miRNAs, TFs and genes in three coherent FFLs.
The overlap of all the involved miRNAs (A), TFs (B), and target genes (C) are
shown for the three types of coherent FFLs. The definitions of the three types of
coherent FFLs (TMN-TGP, TMP-TGN and MTN-TGP) are provided in Fig. 1. The
output of the 23 target genes that overlap with tumor suppressor genes and
oncogenes and their gene expression output status compared to their initial
regulators (D). The changes of gene expression for target genes from TMN-TGP
are consistent with those of their initial regulators (not inverted); however, the
gene expression output of target genes from TMP-TGN and MTN-TGP were
inverted by their initial regulators (inverted output).

Table 2 Functional terms and pathways overrepresented in the 47 coding
genes involved in the OVC-specific regulatory network with coherent feed-
forward loops

Ingenuity canonical pathways Adjusted p-valuea

Acute myeloid leukemia signaling 8.0 � 10�3

Cell cycle: G1/S checkpoint regulation 0.012
Ovarian cancer signaling 0.019
Molecular mechanisms of cancer 0.025
Telomerase signaling 0.028
ERK/MAPK signaling 0.033

Functional terms Adjusted p-valueb

Transcription regulator activity 3.1 � 10�15

Proto-oncogene 1.6 � 10�10

Positive regulation of macromolecule
metabolic process

4.8 � 10�10

Multicellular organismal development 2.7 � 10�7

Regulation of cell differentiation 6.1 � 10�5

Regulation of cell proliferation 9.7 � 10�5

Regulation of cell cycle 1.8 � 10�4

Cell differentiation 4.5 � 10�4

Regulation of homeostatic process 5.5 � 10�4

a Adjusted p-value was calculated by Fisher’s exact test followed by
Benjamini–Hochberg multiple testing correction using Ingenuity Path-
way Analysis (IPA) tool (http://www.ingenuity.com/products/ipa).
b Adjusted p-value was calculated by hypergeometric test followed by
Benjamini–Hochberg multiple testing correction using David Classifi-
cation Tool (http://david.abcc.ncifcrf.gov/).

Table 3 Summary of three types of coherent feed-forward loops

Motif

Number of coherent FFLs

All TSa OCGb Unknownc

TMN-TGPd 33 0 18 15
TMP-TGNd 23 1 12 10
MTN-TGPd 11 3 1 7
Total 67 4 31 32

a The coherent FFL initiated by a TF or miRNA as tumor suppressors
(TSs). b The coherent FFL initiated by a TF or miRNA as oncogenes
(OCGs). c The coherent FFL initiated by a TF or miRNA without known
oncogenic roles. d The definitions of the three types of coherent FFLs
are provided in Fig. 1.
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means the nodes easily communicate with each other in short
steps. Among the network, there are 18 and 22 nodes without
in-degree and out-degree, which correspond to 18 regulators
and 22 target genes (Fig. S1a and b, ESI†). Aside from the nodes
without in-degree or out-degree, the remaining nodes are
highly connected. This feature made the shortest path distribu-
tion for the whole network skewed to a smaller number such as
1 and 2, which means most of the communications have
occurred only by 1 or 2 steps (Fig. S1c, ESI†). This compact
network can run with high efficiency if it is utilized for a
specific cellular process.

In our network, the TF TCF7L1 has the highest out-degree,
controlling 10 FFLs (Fig. 2). This gene belongs to the Wnt
signaling pathway and antagonizes with the TGF-beta signaling
pathway.36 As is well-known, TGF-beta is a tumor suppressor in
normal epithelial cells and anti-proliferative factor at the early
stages of oncogenesis.37 Not surprisingly, TCF7L1 was reported
to regulate the cell cycle38 in prostate cancer. In addition,
TCF7L1 is also important to the regulation of cell differentia-
tion.39,40 Additionally, it is reportedly necessary to the terminal
differentiation of epithelial cells.40 Piecing together this evi-
dence, TCF7L1 might be important in the epithelial cell differ-
entiation process in ovarian cancer progression. Compared to
TCF7L1, another most connected node, miRNA let-7b, is all but
passively regulated in our constructed network. In total, let-7b
only initiates a single FFL and is regulated by the other 14 TFs,
including TCF7L1. let-7b is one of most important miRNA
tumor suppressors.41 In contrast, the TCF family was reported
to play its oncogenic roles during cancer progression.42,43 In
summary, for the two most connected nodes in our network,
the tumor suppressor let-7b is mostly passively regulated and
can be regulated by another highly connected regulating onco-
gene, TCF7L1.

Systematic functional and pathway analyses on all 47 coding
genes in the network revealed that the majority of these genes
are enriched in cancer related pathways and cell growth
(Table 2). The most interesting revelation is that 17 genes are
related to cell differentiation (adjusted p-value, 4.53 � 10�4).
To create consistency, only the 267 samples belonging to the
Grade 3 category of tumor were used to build the regulatory
networks in this study. Grade 3 OVCs are characterized as
poorly differentiated, which means that the tumor cells do not
look like ovarian tissue. Thus, the enriched gene list in our
coherent FFLs might provide a potential molecular mechanism
for the dysregulation of cell differentiation in serous OVC.

In total, there are 13 more protein-coding genes that parti-
cipate in the regulation of cell differentiation, including
TCF7L1, TCF3, RUNX1, MAFG, RUNX2, MAFB, ETS1, CCND2,
BCL2, KIT, ACVR2B, LZTS1, and ZBTB7A. Moreover, 11 of these
13 genes are oncogenes (LZTS1 and ZBTB7A are the exceptions).
For the 11 oncogenes, six play their roles as initial TFs in our
network (TCF7L1, TCF3, RUNX1, ETS1, RUNX2, and MAFB) and
form 32 oncogenic coherent FFLs (Fig. 2 and Table S3, ESI†).
These 32 FFLs contain 6 TFs, 20 miRNAs and 17 joint target genes.
Most interestingly, among the 20 miRNAs, 15 were recently reported
to regulate cell differentiation, including let-7b,44 miR-17,45

miR-20a,45 miR-21,46–48 miR-27b,49 miR-30b,50 miR-30c,51

miR-30e,52 miR-96,53 miR-125b,54 miR-148b,55 miR-222,56

miR-301a,57 miR-301b,58 and miR-361-3p.59 In summary, 75%
of the miRNAs regulated by 6 oncogenic TFs had literature
evidence to support their functions in cell differentiation. In
addition, seven of the 15 reported miRNAs are related to
epithelial differentiation or epithelial–mesenchymal transition,
including miR-21,46–48 miR-27b,49 miR-30b,50 miR-30c,51 miR-30e,52

miR-96,53 and miR-361-3p.59 Furthermore the other 6 miRNAs
are reported to regulate cell differentiation in other cancers,
including let-7b,44 miR-17,45 miR-20a,45 miR-125b,54 miR-148b,55

and miR-301a.57 Combining the FFLs’ oncogenic behaviors, the
sub-network in cell differentiation might terminate the epithelial
cells development and change the cancer cell fate to poorly
differentiated cells.

Discussion

To facilitate an understanding of the cancer at the systems
biology level, numerous studies have successfully utilized
genome-wide data to uncover thousands of regulatory motifs
and modules involved in tumor development. In this study, we
developed a novel computational framework to construct and
analyze the regulatory networks consisting of feed-forward
loops, and we successfully demonstrated the power of recruit-
ing critical cellular circuits in ovarian cancer. The key aspect of
our approach is the utilization of gene expression profile
correlations to infer the regulatory direction of miRNAs and
TFs to their joint target genes, which is expected to generate an
interlocked network with complex behaviors. To improve the
robustness of our approach to identify conserved regulatory
modules, we required all the predicted regulatory relationships
to be conserved across human, mouse, rat and dog in our
pipeline. This generalizable FFL and network analysis pipeline
is highly useful to discover critical regulators and their down-
stream targets in tumorigenesis, and this approach can be
applied to explore the regulation systems among miRNAs,
TFs, tumor suppressors, oncogenes and other cancer related
genes in other tumor types or other complex diseases. However,
this process involves a series of computational methods, such
as regulatory prediction using predefined gene sets, gene
expression correlations, the identification of statistical co-regulation
pairs, and functional enrichment analyses of interlocked networks.
Each step, which can produce significant results for interpretation,
should therefore be approached with due caution.

Most of the prior approaches to construct gene regulatory
networks were based on co-expression data or sequence-based
prediction results individually, which often generate undirected
networks with a large number of genes.10,11,15 Our results are
preliminary, benefiting from simultaneous genomic measurements
of expression in miRNAs and mRNAs in the same tumor samples.
From our data flow, the correlations with gene-expression change
can significantly narrow down co-expression networks and
discovered functionary modules. To improve sensitivity and
specificity for an in-depth analysis, we employed both co-expression
and sequence-based predictions to characterize the complex
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regulatory relationships with associated directions rather than
the undirected protein–protein interaction network. In our
results, TF related regulatory pairs were still too large and
consisted of thousands of regulatory pairs (Table 1). However,
benefiting from the small number of regulatory pairs related to
miRNAs, we further adopted a co-regulating pair analysis to
reduce the number of regulatory pairs to an appropriate scale
(Table 1). This finding implied that the bottleneck regulators,
participating in co-regulation, may assist in excluding inappropriate
molecules by employing co-occurring enrichment techniques
and following false positive controls in the particular biological
processes involved in the tumor formation and development.

Our pipeline provides a framework to generate an appro-
priate scaled network from mass genomic data. However, we
lack the ability to detect other genes that may be outside the
network, yet still play important roles in the structure of the
networks and cancer development. Our results showed that
41 of the 47 protein-coding genes (87.23%) detected by our
method were previously reported to associate with cancer and
other related diseases. In addition, the 47 protein-coding genes
are mutated in 63.3% of all OVC cases from TCGA using the
cBio Cancer genomics Portal.60 Those protein-coding genes
were also categorized by the Gene Ontology to have functions
in many fundamental cellular processes such as regulation of
cell cycles. Due to these genes’ important roles, it is easy to
expand the key regulatory network by incorporating direct or
long-range protein–protein interaction networks or pathway
regulatory information. For example, for the hub node TCF7L1
in our network, we identified five additional interesting OVC-
related genes that interact with TCF7L1 including AXIN2,
CCND1, CTNNB1, SMARCA4, and TERT.

Besides TF–miRNA FFLs, we may apply similar computa-
tional approaches to investigate two or multiple TFs, or two or
multiple miRNAs, regulate gene(s), which has been often found
in cellular systems. So far, the role of FFLs with two TFs in
cancer has not been extensively explored by computational
approaches. There are FFLs with two TFs found by experi-
mental work61 and theoretical analyses.34,62 In addition to
TF–TF FFLs, two TF regulators may form regulatory TF dimers63

or more complex regulatory units to affect the downstream
gene expression.64

Compared to a single oncogene analysis, oncogenic FFLs
with miRNAs and TFs provide more robust tools to uncover the
regulatory mechanisms and biomarkers in cancer.34 By intro-
ducing the coherent FFL concept to cancer regulatory network
analyses, we have demonstrated their power to generate unan-
ticipated hypotheses for oncogenic regulatory networks. It is
worth noting that incoherent FFLs exist too. In fact, incoherent
FFLs are common in bacteria and yeast and have been found in
animals.35 So far, there has been no systematic comparison of
coherent FFLs and incoherent FFLs in animals yet, especially in
cancer cells. Our study of the complete coherent FFLs in
ovarian cancer does not conflict with those previous studies
of incoherent FFLs; rather, we focused on co-regulation
mechanisms observed in cancer.35 The systematic expansion
of the properties and functions related to these recurrent

coherent FFLs in cancer provide numerous experimentally
testable regulatory relationships between 27 miRNAs, 25 TFs
and 23 critical OVC-related genes. In turn, these tested regulatory
relationships may explain the cellular wiring patterns for OVC.
Among these relationships were the six genes enriched in
ovarian cancer signaling from IPA pathway analysis, including
GJA1, E2F1, EDNRA, TCF7L1, TCF3, and BCL2 (Table S4, ESI†).
These six coding genes are connected with 16 miRNAs in our
final network. In summary, these enrichments of ovarian cancer
signaling, cell cycle, and cell differentiation not only demon-
strate the power of our pipeline to identify critical cellular events,
but also may provide a clearer picture of and urge further
experimental testing for the OVC cellular signaling pathway as
relates to non-coding molecules.

Among the 65 connected FFLs, a single gene TBP (TATA box
binding protein) has roles as both a TF and a target gene.
Because of its two-tier role, it can interlock two FFLs (TCF7L1 2

miR27b – TBP and TBP 2 miR222 – CDKN1C) rigidly. TBP and
TBP-associated factors (TAFs) belong to the transcription factor
IID, which is the trigger of transcription by RNA polymerase II.65

Though TBP was reported as widely expressed, it showed its
highest expression in the testis and ovary.66 In addition, TAFs
reportedly promote colorectal cancer cell transformation of
epithelial–mesenchymal transitions.67 The loss of the epithelial
features and change to mesenchymal phenotypes are the
characteristic features in acquiring invasiveness in ovarian
carcinoma. Combining these clues together, TBP may play
important roles during epithelial–mesenchymal transitions
in OVC.

In addition, there are three TF–miRNA pairs with joint
targets that can regulate each other reciprocally, including
miR-30c 2 RUNX2, miR-222 2 TCF3, and let-7b 2 MYCN.
This reciprocal regulation might create multiple outputs of
three joint target genes (CACNA1C, CDKN1C, and HIF3A). If
the miRNA is the initiator, it will decrease the gene expression
of the TF and joint targets in the two reciprocal loops dom-
inantly. Reciprocal results will increase joint targeting gene
expression and decrease miRNA expression if the TF is the
dominant initiator. More interestingly, miR-30c and let-7b both
belong to tumor suppressors,68 and their TF competitors
RUNX2 and MYCN are both oncogenes.

Our final network not only revealed the interlocked and
reciprocal coherent FFLs, but also delivered novel topological
and functional insights into the OVC cellular processes. For all
27 miRNAs, 17 (63%) have demonstrated effects on ovarian
cancers.13 The remaining 10 are all reported to have roles in
cancer development, including: miR-17,69 miR-193b,70 miR-301a,71

miR-301b,72 miR-106b,73 miR-27b,74 miR-30b,75 miR-32,76

miR-361-3p,59 and miR-506.77 Among these, let-7b is one of
the hubs and has 15 connectivities. However, only one FFL is
initiated by let-7b; the remaining 14 connections are all regula-
tions from TF to let-7b. Among the 14 FFLs, 4 are oncogenic
style, and the remaining 10 are unknown. The other tumor
suppressor, miR-30c, is the second highly-connected miRNA,
with 7 regulatory relationships. Two of the FFLs are self-initiated.
All the other 5 FFLs stem from oncogenic TFs. These findings
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may highlight the importance of let-7b and miR-30c as critical
tumor suppressors in OVC, which is competed by a wide range of
TFs. Though these significant regulatory relationships have been
discovered, more experimental examinations are needed to
confirm the complex output of let-7b and miR-30c under the
inferred oncogenic FFLs.

To better understand the molecular activities in the important
biological processes in OVC, we generated and analyzed the sub-
networks related to cell differentiation. For this purpose, we
extracted all the FFLs initiated by six oncogenes involved in cell
differentiation. Three-fourths of the miRNAs in this sub-network
were reported to have functions in cell differentiation. Particularly,
several miRNAs are related to epithelial–mesenchymal transition. Of
note, three miRNAs from the miR-30 family were detected in a wide
range of tissues and cells, including miR-30b in mouse mammary
glands,50 miR-30c in human adipocytes,51 and miR-30e in intestinal
cells.52 In addition, the abundance of miRNAs from miR-30
was reduced during epithelial–mesenchymal transition in human
pancreatic cells.78 However, the role of cell differentiation of the
miR-30 family in OVC has not been well studied and our results
provide a new hypothesis that miR-30 family dysregulation in OVC
might be related to cancer cell differentiation. These regulatory
circuits discovered in OVC might expand our understanding of the
function of oncogenic TFs–miRNAs through the characterization of
their direct reciprocal regulatory relationship. Additionally, these
intact regulatory networks not only systematically illuminate the
gene regulation building blocks in the underlying genetics
in cancer, but also present potential therapeutic and diagnostic
protein-coding and non-coding molecules for further evaluation.

Conclusions

In summary, this study provides a comprehensive patho-
physiological overview of coherent circuits in OVC that are
co-regulated by miRNAs and TFs. Our finding of the strong
prevalence of oncogenic coherent FFLs in serous OVC sug-
gested an oncogene-driven regulatory machine that acts upon
critical cellular processes, such as cell differentiation, in a
highly efficient and cooperative way.
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