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In silico modeling and evaluation of Gordonia
alkanivorans for biodesulfurization†

Shilpi Aggarwal, I. A. Karimi* and Gregorius Reinaldi Ivan

The genus Gordonia is well known for its catabolic diversity and ability to transform several compounds

including the various recalcitrant polyaromatic sulfur heterocycles (PASHs) found in the fossil fuels.

In fact, some strains offer the unique ability to desulfurize even benzothiophene (BT) and other

thiophenic compounds, which most of the commonly studied rhodococci strains cannot. In this work,

we present the first genome scale metabolic model for G. alkanivorans, a desulfurizing strain, to enable

a holistic study of its metabolism and comparison with R. erythropolis. Our model consists of 881

unique metabolites and 922 reactions associated with 568 ORFs/genes and 544 unique enzymes.

It successfully predicts the growth rates from experimental studies and quantitatively elucidates the

pathways for the desulfurization of the commonly studied sulfur compounds, namely

dibenzothiophene (DBT) and benzothiophene (BT). Using our model, we identify the minimal media for

G. alkanivorans, and show the significant effect of carbon sources on desulfurization with ethanol as

the best source. Our model shows that the sulfur-containing amino acids such as cysteine and

methionine decrease desulfurization activity, and G. alkanivorans prefers BT over DBT as a sulfur source.

It also suggests that this preference may be driven by the lower NADH requirements for BT metabolism

rather than the higher affinity of the transport system for BT. Our in silico comparison of R. erythropolis

and G. alkanivorans suggests the latter to be a better desulfurizing strain due to its versatility for both

BT and DBT, higher desulfurization activity, and higher growth rate.

Introduction

The combustion of fossil fuels releases various pollutants such
as the oxides of carbon (COx), nitrogen (NOx), and sulfur (SOx).
SOx, in particular, have attracted increasingly stringent regula-
tions due to their harmful effects on the environment and
human health.1 Desulfurization is a key step in the pre-processing
of fossil fuels to achieve compliance with these regulations.
At present, hydrodesulfurization is the most common method
for desulfurization. In addition to being expensive and energy-
intensive, it requires extreme conditions of temperature and
pressure to remove sulfur from certain recalcitrant compounds
such as dibenzothiophene (DBT), benzothiophene (BT), and
their derivatives.2 Furthermore, being non-specific in action, it
leads to the undesirable hydrogenation of certain non-sulfur
aromatic compounds that contribute to the lubricating property
and thermal stability of the fuels. Therefore, there is a need for

developing efficient, specific, and economical desulfurization
methods. To this end, biodesulfurization is considered a pro-
spective alternative.

Biodesulfurization employs whole microbes or their
enzymes as catalysts to remove the sulfur atom selectively from
the various recalcitrant compounds present in the fossil fuels.1

Several strains of Pseudomonas, Rhodococcus, Mycobacterium,
Gordonia, etc. have been studied for their ability to metabolize
various polyaromatic sulfur heterocycles (PASHs) present in
fossil fuels. Most desulfurization studies in the literature
have used DBT as the model compound. While several rhodo-
cocci strains exhibit non-destructive desulfurization of DBT,
R. erythropolis IGTS8 was the first to be identified3 and has
received the most attention. However, most rhodococci are
unable to show high activity for the alkyl derivatives of DBT
and show no activity for BT and other thiophenic compounds.
Furthermore, there are only limited biochemical and genetic
studies of bacteria that exhibit desulfurization of both DBT and
BT.4,5 Since fossil fuels do contain these compounds in signi-
ficant amounts, it is critical to study microbes that possess
activity for compounds other than DBT. Furthermore, because
desulfurizing these compounds requires distinct pathways,
bacterial strains that possess the associated genes for all these
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pathways are clearly desirable. Gordonia is an attractive genus
in this regard, because its members exhibit much metabolic
versatility.6

Numerous Gordonia strains exhibit higher desulfurization
activities5,6 than the rhodococci and for a broader range of
PASHs.5,7–11 Of them, G. alkanivorans5,7,12,13 desulfurizes DBT
via the well-known 4S pathway14 that non-destructively elim-
inates the sulfur atom from DBT with the concomitant release
of 2-hydroxybiphenyl (HBP), the sulfur free compound. The 4S
pathway in G. alkanivorans is conferred by three genes namely
dszA, dszB, and dszC.7 The dszABC genes of G. alkanivorans are
highly similar to those from R. erythropolis. However, besides
DBT, it can also specifically cleave the C–S bond in BT and
other thiophenes. Because of its ability to desulfurize a wider
range of PASHs, G. alkanivorans appears to offer some advan-
tage over R. erythropolis for biodesulfurization. Moreover,
G. alkanivorans strains are reported15 to show nearly 2–10 times
higher desulfurization activities than the desulfurizing
R. erythropolis strains. In other words, it has the greater ability
to reduce the overall sulfur content of the fossil fuels.

In spite of its promise, desulfurization studies with
G. alkanivorans are far more limited than those with R. erythropolis.
Although it does offer higher desulfurizing activity than
R. erythropolis, the activity levels are still not acceptable for
commercial application. Thus, there is a need to identify and
study the factors and host functions that may play key roles in
controlling the extent of desulfurization by G. alkanivorans.
However, the complexity of metabolic networks makes it diffi-
cult to predict or identify such host functions intuitively or
using a trial-and-error experimental approach. Since cellular
activities are invariably and intricately coupled, a holistic
study of the various metabolic functions occurring within
G. alkanivorans besides the desulfurization of PASHs is essential
to understand the interactions between the various compo-
nents of its metabolic network. Such a study would also allow
one to compare Gordonia strains with rhodococci in a theore-
tical and comprehensive manner. However, no such holistic
study on Gordonia exists in the literature.

Constraint-based metabolic models16 have successfully been
used to perform such holistic studies to elucidate relationships
among various metabolic activities both qualitatively and quanti-
tatively. These models, constructed based on the genomic and
biochemical information of an organism, clearly establish the
correspondence between its gene(s), protein(s) and metabolic
function(s). They are easier to build, as they require only
stoichiometric rather than kinetic information about various
metabolic reactions. Nevertheless, they provide an effective
framework for studying genotype–phenotype relationships,
interactions among various metabolic activities, and internal
flux distributions associated with various metabolic activities
under given environmental conditions. Such constraint-based
genome-scale metabolic (GSM) models have been reconstructed
and analyzed widely for several industrially important bacterial
strains such as Escherichia coli,17,18 R. erythropolis,19,20 Saccharo-
myces cerevisae,21,22 and Zymomonas mobilis,23 and even mam-
malian cells such as mouse hydridoma.24,25 Once constructed,

these models can be very useful in exploring the possible states
and properties of the metabolic network of an organism.

This work reports the first in silico GSM model for
G. alkanivorans. It covers the key metabolic pathways such as
central metabolism, amino acids biosyntheses, nucleotide
metabolism, and sulfur metabolism that describes the assimi-
lation of sulfur into biomass. It can help in understanding
the metabolic architecture of G. alkanivorans, and its host
functions related to desulfurization. We validate the model
using the available desulfurization and growth data in the
literature,11 and use it to study the effects of various medium
components such as carbon sources, amino acids, and vitamins
on the desulfurization activity of G. alkanivorans. We assess the
properties of its metabolic network such as flexibility and
robustness using flux variability26 and gene essentiality
analyses. Finally, we use flux sum analyses27 to study qualitatively
and quantitatively the effect of intracellular metabolites on
growth and desulfurization activity and propose several experi-
mentally testable conditions and modifications that may help
enhance the desulfurizing activity of G. alkanivorans.

Results and discussion
Reconstructed GSM of G. alkanivorans

Our initial draft model comprised 739 reactions. However, it
failed to show any cell growth on substrates known to be
utilized by G. alkanivorans. We found that nearly 60% of all
precursor metabolites could not be synthesized by the draft
model. For instance, the draft model was unable to produce
amino acids such as methionine and histidine, although
G. alkanivornas is known5 to synthesize them and survive
without any external supply. Our draft model also showed zero
growth with DBT and BT as sole sulfur sources, although
G. alkanivorans is known5 to metabolize them. Therefore, we
added relevant pathways and reactions based on the information
available in the literature and databases.5,14,28,29 As mentioned
earlier, G. alkanivorans offers the advantage of desulfurizing a
wider range of PASHs such as the alkyl derivatives of BT, DBT,
and thiophene. However, we could not include such alkyl
derivatives in our model, as their metabolic pathways and
intermediates are still unknown. Thus, there is a clear need
for obtaining genetic and biochemical data for the associated
metabolic pathways in G. alkanivorans.

GapFind revealed 279 DEMs that could not be produced in
the initial draft of our model, as they were disconnected from
the rest of the network either upstream or downstream. Gapfill
could identify the possible candidate reactions to restore the
connectivity for only 140 of the 279 DEMs. We performed
BLASTp analyses for assigning putative ORFs to the enzymes
associated with these reactions. To ensure that we do not add
reactions indiscriminately to our model, we used a high e
cut-off of 10�30 to include only the reactions with a strong
evidence of ORFs. We could locate ORFs for only 62 (B22%)
DEMs, thus we did not include other reactions.

Our final curated model consists of 881 unique metabolites
and 922 reactions associated with 568 ORFs/genes and 544
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unique enzymes. Of these 922 reactions, 67 account for the
transport of various metabolites across the membrane, while
the rest (855) account for intracellular metabolic activities.
Table 1 lists the features of our GSM model. The BLASTp
analyses identified possible annotations for 55 ORFs in
G. alkanovirans, which are given in Table 2. However, the model
still has 217 DEMs, which warrants further biochemistry studies.

Model validation

We mimicked the experiments of Rhee et al.11 and compared
the growth rates predicted by our model with their experi-
mental values. From their experiments, we inferred glucose to
be limiting, as its complete depletion from the medium
triggered the stationary phase. So we computed and used
specific uptake rates for glucose at several time points to
constrain our model. We assumed unlimited supply for other
medium components, as they were in excess. As seen in Fig. 1,
our predicted biomass growth rates are in close agreement with
the experimental data of Rhee et al.11

Minimal media and growth

Gordonia strains are known for their metabolic versatility6 and
demand no special nutrients to the best of our knowledge.
Thus, we infer that they can synthesize all the necessary
precursor metabolites from simple sources in a medium. How-
ever, it is desirable to identify the essential nutrients and their
alternatives based on our model.

Rhee et al.11 used a rich medium (as described in Materials
and methods) to study the growth of G. alkanivorans with DBT
as the sole sulfur source. Using our model, we simulated
growth by removing one nutrient at a time from the rich
medium of Rhee et al.11 From that, we identified glucose,
oxygen, an ammonium salt, a phosphorus source, and DBT to
comprise the minimal medium. As alternatives, we identified
BT, cysteine, and sulfate for sulfur, and glutamate for both
carbon and nitrogen.

Iida et al.30 experimented with 31 carbon substrates. We
used our in silico model to simulate their experiments and
detect cell growth on these 31 sources. In each simulation, we
specified 1 mmol per gdcw per h uptake of a different substrate
as the sole carbon source along with the minimal media and
maximized cell growth. Table 3 compares our model predictions
with the observations of Iida et al.30 Our model predicts growth
correctly for 16 of the 31 substrates. We observe both false positive
and false negative results for the remaining 15 substrates.

In the former, our model shows false growth, while in the
latter, it fails to show growth. These errors arise, because the
biochemical information on G. alkanivorans is still incomplete.
Further work in this regard is warranted. Since our model lacks
regulatory mechanisms, this is another source of error. How-
ever, model predictions in this case may be improved by
incorporating regulatory information.

Gene essentiality

Most cells can withstand disturbances at the genetic as well as
metabolic levels by utilizing alternative genes, enzymes, and
pathways depending on their environment. However, the non-
functionality of certain reactions and genes may be lethal for a
cell. We studied the robustness of G. alkanivorans metabolism
by assessing its ability to exhibit in silico growth in the case of
gene knockouts or mutations. The utilization of a pathway, and
thus the essentiality of its reactions and genes, will in general
depend on medium components. We used five minimal media
with alternative carbon sources of ethanol, fumarate, oxoglutarate,
pyruvate, and glutamate, and evaluated the essentialities of
genes and reactions for each medium. For reactions, we
removed one reaction at a time by setting its flux as zero, and
maximized cell growth on minimal medium. If the model could
not produce cell mass, then we classified the reaction as
essential, and vice versa. Similarly, for genes, if the removal of
a gene prevented cell growth, then we classified that gene as
essential, and vice versa. To remove a gene, we set the fluxes of
all its associated reactions to zero in our in silico model.
However, if a reaction was controlled by two or more isozymes,
then the reaction was kept active in the absence of any one of
the associated genes.

We identified 116 reactions and 75 genes to be essential
irrespective of the medium. As seen in Fig. 2, most essential
reactions belong to the amino acids metabolism followed by
nucleotides metabolism, central metabolism, and cell wall
metabolism. Any reduction in their activity levels may reduce
growth or prove lethal for G. alkanivorans. The difference in the
numbers of essential reactions and essential genes is due to
isozymes, as several reactions are catalyzed by enzymes that
multiple genes encode. These reactions are essential at the
metabolic level, but not the genetic level.

Flux variability

Metabolic network models normally exhibit multiple alternative
solutions for flux distributions. Flux variability analysis (FVA26)
allows us to study the range over which a given flux can vary
in alternative solutions. We performed an FVA on our model
for an ethanol uptake of 10 mmol per gdcw per h and unrest-
ricted supplies of other essential nutrients. For the maximum
cell growth, we computed the minimum and maximum
possible fluxes for each reaction. Nearly 85% of the reactions
showed significant flux variations. The remaining 15%
represent the inflexible parts of the metabolism for growth,
which mainly include the biosynthesis pathways for amino
acids and nucleotides. We also observed that the non-oxidative
part of the pentose phosphate pathway (PPP) showed no flux

Table 1 Features of the reconstructed genome scale model of G. alkanivorans

Features Properties

Reactions in genome scale mode 922
No. of ORFs included 568
No. of enzymes included 544
Intracellular reactions 855
Transport reactions 67
Metabolites in genome scale model 881
Internal metabolites 814
External metabolites 67
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variation and operated in the reverse manner, which high-
lights the importance of PPP for growth. Besides replenishing
NADPH, PPP also produces sugars for the synthesis of nucleo-
tides. In this case, the non-oxidative part operates in the reverse
to supply ribose-5-phosphate for nucleotide biosynthesis.

This is in agreement with the role of non-oxidative part
of PPP for the synthesis of ribose-5-phospate for nucleotides.31

Since the nucleotide biosynthesis pathways show fixed
fluxes, we can infer that their fluxes are coupled with those
of PPP.

Table 2 List of new possible annotations for G. alkanivorans

E.C.No. Enzyme name Current annotation NCBI accession NE value

EC 1.1.1.103 L-Threonine 3-dehydrogenase Alcohol dehydrogenase ZP_08767112.1 3.00 � 10�29

EC 1.1.1.29 Glycerate dehydrogenase D-3-Phosphoglycerate dehydrogenase ZP_08766341.1 1.00 � 10�20

EC 1.1.1.81 Hydroxypyruvate reductase Putative oxidoreductase ZP_08767993.1 3.00 � 10�22

EC 1.2.7.6 Glyceraldehyde-3-phosphate dehydrogenase
(ferredoxin)

Putative dehydrogenase ZP_08767188.1 3.00 � 10�04

EC 3.1.4.17 30,50-Cyclic-nucleotide phosphodiesterase Putative LuxR family transcriptional regulator ZP_08766296.1 3.00 � 10�12

EC 3.2.1.122 Maltose-60-phosphate glucosidase Molybdenum cofactor biosynthesis protein A ZP_08767656.1 8.00 � 10�05

EC 3.5.4.21 Creatinine deaminase Putative hydrolase ZP_08765243.1 7.00 � 10�04

EC 1.1.1.17 Mannitol-1-phosphate 5-dehydrogenase Putative phosphoribosylglycinamide
formyltransferase 2

ZP_08768014.1 0.0001

EC 1.1.1.26 Glyoxylate reductase D-3-Phosphoglycetate dehydrogenase ZP_08766341.1 1.00 � 10�42

EC 1.1.1.36 Acetoacetyl-CoA reductase 3-Oxoacyl-[acyl-catrien-protein] reductase ZP_08768232.1 6.00 � 10�44

EC 1.1.1.60 2-Hydroxy-3-oxopropionate reductase 3-Hydroxyisobutytate dehydrogenase ZP_08765584.1 3 � 10�44

EC 1.1.1.65 Pyridoxine 4-dehydrogenase Putative aldo/keto reductase ZP_08764692.1 7 � 10�11

EC 1.1.1.79 Glyoxylate reductase (NADP+) D-3-Phosphoglycerate dehydrogenase ZP_08766341.1 1.00 � 10�42

EC 1.1.1.83 D-Malate dehydrogenase (decarboxylating) 3-Isopropylmalate dehydrogenase ZP_08766340.1 8.00 � 10�81

EC 1.1.5.8 Quinate dehydrogenase (quinone) Putative non-ribosomal peptide synthetase ZP_08767228.1 8.00 � 10�04

EC 1.17.3.2 Xanthine oxidase Putative xanthine dehydrogenase ZP_08766184.1 2.00 � 10�52

EC 1.18.6.1 Nitrogenase Chromosome partitioning protein ParA ZP_08768173.1 7.00 � 10�11

EC 1.2.1.22 Lactaldehyde dehydrogenase Succinate-semialdehyde dehydrogenase ZP_08765499.1 4.00 � 10�91

EC 1.2.7.5 Aldehyde ferredoxin oxidoreductase Hypothetical protein GOALK_120_00670 ZP_08768084.1 3.00 � 10�06

EC 1.2.7.7 3-Methyl-2-oxobutarroate dehydrogenase
(ferredoxin)

Putative oxidoreductase ZP_08766668.1 3.00 � 10�05

EC 1.21.4.3 Sarcosine reductase Putative acetyl-CoA acetyltransferase ZP_08764801.1 7.00 � 10�05

EC 1.3.1.78 Arogenate dehydrogenase (NADP+) Prephenate dehydrogenase & ZP_08765663.1 2.00 � 10�26

EC 1.3.99.10 Isovaleryl-CoA dehydrogenase Acyl-CoA dehydrogenase ZP_08765489.1 4.00 � 10�79

EC 1.4.3.21 Primary-amine oxidase Adenosylcobinamide kinase ZP_08763719.1 0.0007
EC 1.4.99.5 Glycine dehydrogenase (cyanide-forming); Putative ferredoxin reductase ZP_08764700.1 2.00 � 10�09

EC 1.7.2.2 Nitrite reductase (cytochrome; ammonia-forming) Ethanolamine ammonia-lyase large subunit ZP_08767599.1 0.0002
EC 1.7.7.2 Ferredoxin-nitrate reductase Putative nitrate/sulfite reductase ZP_08764724.1 1.00� 10�175

EC 2.1.1.2 Guanidinoacetate N-methyltransferase Hypothetical protein GOALK_050_00300 ZP_08765250.1 0.016
EC 2.1.3.1 Methylmalonyl-CoA carboxytransferase Pyruvate carboxylase ZP_08766189.1 5.00 � 10�13

EC 2.1.4.1 Glycine amidinotransferase Isocitrate lyase ZP_08765259.1 9.00 � 10�04

EC 2.3.1.182 (R)-Citramalate synthase Putative 4-hydroxy-2-oxovalerate aldolase ZP_08765376.1 1.00 � 10�13

EC 2.3.3.10 Hydroxymethylglutatyl-CoA synthase 3-Oxoacyl-[acyl-carrier-protein] synthase III ZP_08764811.1 6.00 � 10�07

EC 2.4.2.28 S-Methyl-50-thioadenosine phosphorylase Purine nucleoside phosphorylase ZP_08766163.1 6.00 � 10�17

EC 2.5.1.82 Hexaphenyl diphosphate synthase
[geranylgeranyl-diphosphate specific]

Putative polyprenyl diphosphate synthase ZP_08765134.1 2 � 10�33

EC 2.5.1.83 Hexaphenyl-diphosphate synthase
[(2E,6E)-farnesyl-diphosphate specific]

Putative polyprenyl diphosphate synthase ZP_08765134.1 2.00 � 10�33

EC 2.5.1.84 All-trans-nonaphenyl-diphosphate synthase
[geranyl-diphosphate specific]

Putative polyprenyl diphosphate synthase ZP_08765134.1 3.00 � 10�42

EC 2.7.1.100 S-Methyl-5-thioribose kinase Hypothetical protein ZP_08767309.1 3.00 � 10�06

EC 2.7.1.48 Uridine kinase Uracil phosphoribosyltransferase ZP_08766161.1 2.00 � 10�18

EC 3.1.1.17 Gluconolactonase Hypothetical protein ZP_08765725.1 6.00 � 10�12

EC 3.1.2.4 3-Hydroxyisobutyryl-CoA hydrolase Hypothetical protein ZP_08764807.1 3.00 � 10�66

EC 3.2.1.93 Alpha,alpha-phosphotrehalase Alpha-glucosidase ZP_08767019.1 3.00 � 10�82

EC 3.2.2.1 Purine nucleosidase Putative ribonucleoside hydrolase ZP_08767439.1 4.00 � 10�25

EC 3.5.1.59 N-Carbamoylsarcosine amidase Putative hydrolase ZP_08765823.1 200 � 10�40

EC 3.5.2.10 Creatininase Putative creatininase family protein ZP_08767265.1 7 � 10�18

EC 3.5.2.15 Cyanuric acid amidohydrolase Hypothetical protein ZP_08768158.1 0.006
EC 3.5.3.9 Allantoate deiminase Putative M20D family peptidase ZP_08766098.1 1.00 � 10�08

EC 3.5.4.1 Cytosine deaminase Putative cytosine deaminase ZP_08764308.1 2.00 � 10�67

EC 3.5.4.12 dCMP deaminase tRNA-specific adenosine deaminase ZP_08765661.1 2.00 � 10�19

EC 3.5.5.1 Nitrilase Putative carbon–nitrogen hydrolase ZP_08767356.1 1.00 � 10�11

EC 4.1.2.20 2-Dehydro-3-deoxygluconate aldolase Putative citrate lyase beta subunit ZP_08765089.1 1.00 � 10�05

EC 4.2.1.66 Cyanide hydratase Putative amidohydrolase ZP_08767351.1 4.00 � 10�10

EC 4.2.1.84 Nitrile hydratase Thiocyanate hydrolase gamma subunit ZP_08768164.1 2 � 10�48

EC 5.1.3.6 UDP-glucuronate 4-epimerase UDP-glucose 4-epimerase ZP_08763819.1 2 � 10�17

EC 6.2.1.25 Benzoate-CoA ligase Putative fatty-acid-CoA ligase ZP_08763669.1 1.00 � 10�60

EC 6.2.1.4 Succinate-CoA ligase (GDP-forming) Succinyl-CoA synthetase beta subunit ZP_08766733.1 2.00 � 10�70
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Metabolite essentiality

Metabolites are the key players in cellular metabolism. Even if
the net accumulation of an internal metabolite may be zero, its
overall activity (consumption/generation) level inside the cell is
a key indicator of its importance. FSA27 attempts to determine
this level of activity for a metabolite, and the effect of changes
in that level on cellular phenotypes.

We studied the growth of G. alkanivorans on ethanol using
our model. For a fixed uptake of 10 mmol per gdcw per h and
maximum growth, we computed the base flux sum for each
metabolite. Of the 814 internal metabolites, only 34% had a
positive flux sum, while the remaining 66% had no activity. The
former were mainly the cofactors essential for growth. When we
maximized the flux sums under maximum growth, nearly 26%
of the internal metabolites showed no activity. These were the
dead-end metabolites that could not be eliminated from the
model using the available data, observations, and procedures.
Some metabolites (B10%) showed infinite flux sum due to the
presence of cycles27 in our metabolic network. As expected,
cofactors showed consistent activity. When we minimized the
flux sums, 24% of the metabolites seemed essential for growth.
They are mostly associated with the essential reactions identi-
fied in previous studies.

We also repeated the flux sum analysis to study the effects of
various metabolites on the desulfurization of DBT and BT. The
desulfurization of DBT (BT) varies linearly with the flux sums
of the intermediate metabolites in the 4S (BT metabolism)
pathway. Thus, any attenuation in these flux sums would
reduce the desulfurization exhibited by G. alkanivorans. In
addition to these intermediates, NADH, oxygen, and ferricyto-
chrome c are essential for DBT (BT) desulfurization.

Impact of media on desulfurization

Studies32–35 have shown that medium composition has a pro-
minent effect on the desulfurizing activity of R. erythropolis.
However, no such studies exist for G. alkanivorans. In the
absence of such experimental work, our in silico model helps
shed some light on the impact of medium components such as
carbon sources, amino acids, and vitamins on the desulfurizing
activities of G. alkanivorans.

Carbon sources

Biodesulfurization is considered a potential alternative to the
conventional hydro-desulfurization process, as it may reduce
costs significantly.1 In biodesulfurization, an effective but
inexpensive carbon source is required for cell growth.36 We
evaluated 17 carbon sources (acetate, citrate, ethanol, formate,
fructose, fumarate, gluconate, glucose, glutamate, glycerol,

Fig. 1 Experimental and simulated growth rates at various glucose uptake rates
from Rhee et al.11

Table 3 Utilization of various carbon sources examined by Iida et al.30 and as
predicted by model. A ‘+’ means the compound can be utilized as a sole carbon
source while a ‘�‘ means that it cannot be

Carbon source
Experimental
utilization

In silico
utilization

D-Galactose + �
L-Rhamnose � �
D-Ribose + +
Sucrose + +
Turanose + �
Arabitol + �
Inositol + +
Glucarate + �
Gluconate + +
D-Glucosaminic
acid

+ +

Caprate + �
Citrate + +
4-Aminobutyrate � +
2-Hydroxyvalerate + �
2-Oxoglutarate + +
Pimelate + +
Succinate + +
Benzoate + �
3-Hydroxybenzoate + �
4-Hydroxybenzoate + �
Phenylacetate + �
Quinate + �
L-Alanine + +
L-Aspartate + +
L-Leucine + �
L-Proline + +
L-Serine � +
L-Valine � �
Putrescine + +
Tyramine + �
Acetamide � �

Fig. 2 Distribution of essential reactions over various cellular subsystems in
G. alkanivorans.
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lactate, malate, oxaloacetate, oxoglutarate, pyruvate, and succinate).
We performed 17 simulations with one carbon source at a time.
Assuming an uptake of 20 mg per gdcw per h for each source,
we predicted the maximum cell growth rate and corresponding
desulfurization activity. Ethanol appears (Fig. 3) to be the best
for both growth and desulfurization. The carbon sources as
compared to ethanol (growth of 0.027 h�1 and desulfurization
of 3.3 mmol HBP per gdcw per h) have the 100% basis rank as
follows: fumarate (80%) > oxoglutarate (78.79%) > pyruvate
(78.43%) > glutamate (78.24%) > succinate (78%) > acetate E
fructose E glucose E lactate (76.86%) > glycerol (75%) > citrate
(71.88%) > oxaloacetate (69.70%) > malate (69.11%) > formate
(50%). This ranking remained unchanged even for BT as the
sole sulfur source.

As discussed by Aggarwal et al.,20 NADH production and
usage could explain why ethanol is the best. For the cell to
consume 1 mol DBT as a sulfur source via the 4S pathway
requires 4 moles of NADH. Additionally, NADH is required for
other growth related activities. The carbon nutrient is the main
source of this energy. It affects the cofactor regeneration in
cellular metabolism. Therefore, a carbon source that provides
more NADH during its metabolism is likely to support higher
desulfurization and growth. One mole of ethanol generates two
additional moles of NADH. This is the highest among all 17
substrates, and thus it seems to be the best substrate for both
growth and desulfurization.

Vitamins and amino acids

Yan et al.35 observed that the addition of nicotinamide and
riboflavin improved desulfurization by R. erythropolis signifi-
cantly. No such studies exist for G. alkanivorans. Therefore, we
studied the impact of nicotinamide, riboflavin, and the twenty
amino acids on the desulfurizing activity of G. alkanivorans
using our model. Using a fixed uptake (1 mmol per gdcw per h)

for glucose and unlimited uptake of other medium compo-
nents, we obtained a growth rate of 0.17 h�1 and a desulfuriza-
tion rate of 0.021 mmol per gdcw per h. Then, we added
nicotinamide, riboflavin, and amino acids individually at
1 mmol per gdcw per h uptake and simulated growth again.
Nicotinamide and riboflavin affected neither growth nor desul-
furization. It is possible that they act at the regulatory or
transcriptional rather than the metabolic level as hypothesized
by Yan et al.35 Since our model does not include these effects, it
is unable to show the impact of nicotinamide and riboflavin.

In contrast, some amino acids did affect the growth of and
desulfurization by G. alkanivorans. Fig. 4 shows the relative
effects of various amino acids on desulfurization. Arginine,
histidine, isoleucine, leucine, lysine, phenylalanine, trypto-
phan, tyrosine, and valine affected neither growth nor desulfur-
ization. In contrast, cysteine and methionine had strong effects
on desulfurization. While no desulfurization occurred in the
presence of cysteine, it was reduced by 63% in the presence of
methionine.

The effect of cysteine is similar to what Aggarwal et al.20

showed for R. erythropolis, and we can explain as follows. Like
R. erythropolis, G. alkanivorans can use cysteine as a sole sulfur
source. Using cysteine is energetically less expensive than DBT,
as 1 mole DBT requires additional 4 moles of NADH.20 There-
fore, the cell prefers to consume cysteine rather than DBT, and
no DBT desulfurization occurs.

The reduced desulfurization in the presence of methionine
may be due to the inability of G. alkanivorans to produce all the
sulfur-containing metabolic precursors solely from methionine.
For instance, they cannot produce cysteine, L-homocysteine,
coenzyme A, etc. solely from methionine, and hence need an
additional sulfur source such as DBT or BT. While this may be
real, but no evidence exists in the literature, it may well be a gap
in our model, which prevents the use of methionine as a sole

Fig. 3 Specific desulfurizing activities for an uptake rate of 20 mg per gdcw per h of various carbon sources.
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sulfur source. As with cysteine, the use of methionine is
energetically more favourable than DBT. Thus, the cell uses it
as much as possible first before using DBT, lowering desulfur-
ization. This is different from what Aggarwal et al.20 observed
for R. erythropolis.

Alanine, asparagine, aspartate, glutamine, glutamate, glycine,
proline, serine, and threonine improved growth and desulfuriza-
tion greatly. These, in contrast to cysteine and methionine, can
serve as sole carbon sources as well. Thus, they supplement
glucose and promote higher growth and cofactor regeneration.
Since sulfur is essential for growth, higher growth leads to
greater sulfur usage and higher desulfurization.

Desulfurization of BT and DBT

Several PASHs such as the thiophenic compounds (BT, DBT
and their derivatives) in fossil fuels are usually recalcitrant to
hydrodesulfurization. Most studies use DBT as the model
sulfur compound representative of most of these PASHs.
However, BT is not utilized by several DBT-desulfurizing
strains,11,28,37 as it may be desulfurized via a different pathway
and genes. Since G. alkanivorans can utilize both BT and DBT as
sole sulfur sources,5 it is critical to study the desulfurization of
BT as well. Alves et al.5 studied the desulfurization of BT
and DBT, when supplied simultaneously in a glucose-based
medium to G. alkanivorans. They found that BT was consumed
preferentially before DBT. They opined that this was probably
due to the presence of a non-specific uptake system for thio-
phenic compounds with a higher affinity for BT than DBT. We
used our model to study this. We assumed a fixed uptake of
glucose (20 mg per gdcw per h) with unlimited supplies of BT
and DBT, and maximized biomass growth. The model
consumed BT only with a growth rate of 0.021 h�1 and a
desulfurization rate of 2.55 mmol per gdcw per h. This corre-
sponds to the minimum in silico sulfur requirement of the cell

for maximum growth at a glucose uptake of 20 mg per gdcw per h.
In subsequent simulations, we gradually reduced the uptake of
BT from 2.55 mmol per gdcw per h to zero. As expected, the DBT
uptake gradually increased (Fig. 5) to meet the cellular demand
of sulfur. Clearly, our model is in agreement with the experi-
mental results of Alves et al.5 Since our model has no regulatory
mechanism, and its uptake system has no bias for DBT or BT,
we may rule out the non-specific uptake factors for explaining
the preference of BT over DBT. Instead, energy usage offers a
plausible explanation. 1 mole BT requires 2 moles NADH, while
1 mole DBT requires 4 moles NADH. Thus, for the cell, BT is a
better sulfur source than DBT energetically.

Next, we examined the effects of BT and DBT on growth. We
performed two simulations. In the first, we provided BT, and in
the second, we provided DBT as the sole sulfur source. For both
cases, we fixed their uptake rates at 20 mg per gdcw per h with
unlimited supply of glucose and other nutrients. The maximum
growth rate was 1.24 h�1 with BT, and 0.90 h�1 with DBT.

Fig. 4 Specific desulfurizing activities for an uptake rate of 1 mmol per gdcw per h of various amino acids.

Fig. 5 Effect of increasing the BT uptake rate on specific DBT desulfurization.
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Thus, BT promotes higher growth than DBT. This can also be
explained by the lower energy requirements of BT as mentioned
in the previous paragraph.

Comparison with R. erythropolis model

As mentioned earlier, R. erythropolis is the most widely studied
bacteria for desulfurization, but G. alkanivorans shows desul-
furization activity for a wider range of PASHs. However, it would
be desirable to compare these two bacteria under the same
conditions. For this, we studied the desulfurization of DBT and
BT individually by the existing genome scale metabolic model
of R. erythropolis20 and our reconstructed model of G. alkani-
vorans. We maximized cell growth for a fixed glucose uptake of
1 mmol per gdcw per h with unlimited supplies of DBT/BT and
other minimal nutrients. Both R. erythropolis and G. alkanivorans
can utilize DBT as the sole sulfur source and give out HBP
as the desulfurized product in the medium. However,
G. alkanivorans can utilize BT, but R. erythropolis cannot. This
suggests that G. alkanivorans can indeed be a more suitable
biocatalyst for desulfurizing the fossil fuels, which normally
have a spectrum of DBT, BT, and their derivatives.

Next, we performed simulations to compare the desulfurizing
activities of G. alkanivorans and R. erythropolis. We maximized
biomass for 1 mmol per gdcw per h uptake of glucose as the
sole carbon source and unlimited supply of DBT as the sole
sulfur source. We observed that the growth rate and the corre-
sponding desulfurizing activity were higher for G. alkanivorans
(0.15 h�1, 18.13 mmol HBP per gdcw per h) than R. erythropolis
(0.14 h�1, 13.54 mmol HBP per gdcw per h). Note that the
desulfurization activity exhibited by the two strains increases
with the increase in glucose uptake rates as shown in Fig. 6.
However, for any fixed value of glucose uptake, the desulfuriza-
tion activity observed with G. alkanivorans is higher than that
with R. erythropolis.

We then used the two models to compute the minimum
sulfur requirements (in terms of DBT) of the two strains for a

unit growth rate. Supplying all the nutrients in excess, we
minimized the DBT uptake for a fixed biomass growth rate
of 1 h�1. G. alkanivorans needed 120 mmol per gdcw per h of
DBT versus 93.90 mmol per gdcw per h for R. erythropolis.
These analyses show that G. alkanivorans possesses higher
desulfurization activity than R. erythropolis under the same
medium conditions, thus it is likely to be a better catalyst for
biodesulfurization.

Materials and methods
Model reconstruction

The reconstruction of a GSM model for an organism requires
the identification and classification of its metabolite reactions
and the establishment of their appropriate gene–protein-
reaction (GPR) associations. It is an iterative process involving
the collection and processing of diverse information about
cellular metabolism, biochemistry, and various strain-specific
parameters of the organism.38 We reconstructed the GSM
model of G. alkanivorans in three steps: (i) constructing an
initial draft model based on genome annotations, (ii) model
improvement to enable cell growth, and (iii) model analysis for
identifying and filling network gaps based on biochemical
information.

For reconstructing an initial draft model of G. alkanivorans,
we annotated the genome sequence of G. alkanivorans using the
tools available on the online annotation server RAST.39 We
manually processed this information to establish the GPR
associations and assign appropriate gene(s) to the various
enzymes and their corresponding reactions in the metabolic
network. We also checked all reactions for elemental balancing.
Then, we cross-checked the GPR associations and the reaction
directionality with the information available for G. alkanivorans
in KEGG40 and MetaCyc.41 We incorporated any additional
reactions or pathways that were available in MetaCyc and
KEGG. We removed all the reactions that accounted for the
polymerization of monomers and conversion of general class
compounds such as ROH, RCOOH, etc.

After this, we identified several broken pathways, dead end
metabolites (DEMs), and missing reactions in the model, which
arise mainly due to the lack of metabolite connectivity and
presence of gaps in the network.42 To complete and enhance
our model, we employed several means. First, we looked for
additional reactions based on the literature evidence and other
biochemical information. Second, we used optimization-based
automated procedures of GapFill and GapFind, proposed by
Kumar et al.,42 to identify and restore the connectivity of the
DEMs and to identify and fill the remaining network gaps. We
used GAMS/CPLEX 10.043 to execute these procedures and
systematically determine and eliminate these network gaps by
restoring the connectivity within the metabolic network. All
these required adding new reactions into the model, for which
no genetic evidence is currently available. Therefore, we tried to
identify and assign possible ORFs that may potentially encode
for these missing functions. For this, we performed BLASTp
searches between the translated set of genes associated with

Fig. 6 Effect of specific glucose uptake rates on specific desulfurizing activity of
G. alkanivorans and R. erythropolis.
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these additional reactions in various databases and the genome
of G. alkanivorans. While we used a high e cut-off of 10�30 for
most network improvement reactions, we used a low cut-off
of 10�5 for some reactions to enable the essential activity of
biomass generation.

Desulfurization pathway for BT

DBT is metabolized by G. alkanivorans via the widely studied
‘4S’ pathway.1,20 However, BT is utilized via a distinct path-
way as shown in Fig. 7. Limited work28,37 exists on this
BT-desulphurization pathway, and it does not provide any
details on the stoichiometry and associated enzymology. There-
fore, we took the detailed reactions from the UM-BBD data-
base.29 As shown in Fig. 7, BT is desulfurized via a 4-step process.
In the first two steps, BT is oxidized via the action of benzothio-
phene monooxygenase to benzothiophene-S,S-dioxide with
benzothiophene-S-oxide as the intermediate. Then, benzothio-
phene-S,S-dioxide is further oxidized to (Z)-2-(2-hydroxyphenyl)-
ethenesulfinate by the benzothiophene-S,S-dioxide monooxygenase.
Finally, (Z)-2-(2-hydroxyphenyl) ethenesulfinate is desulfurized
to o-hydroxystyrene through the specific cleavage of the C–S
bond by 2-(20-hydroxyphenyl)benzene sulfinate desulfinase.
The resulting sulfur atom is released as a sulfite moiety.

As we can see from Fig. 7, the two pathways (4S vs.
BT-desulfurization) use different enzymes. Not only this, they
have different energy requirements in terms of reducing equiva-
lents. The BT-desulfurization requires 2 moles of NADH per
mole of BT, while the ‘4S’ pathway requires 4 moles of NADH
per mole of DBT. Therefore, the former seems to be more
energy-efficient than the latter.

Experimental studies

We used the experimental data of Rhee et al.11 for validating
our in silico model. Rhee et al.11 isolated and studied DBT

desulfurization characteristics of Gordonia sp. CYSK1. They
used a minimal salt medium (MSM) consisting of 5.0 g glucose,
5.0 g K2HPO4, 1.0 g NaH2PO4, 1.0 g NH4Cl, 0.2 g MgCl2, 0.01 g
CaCl2�2H2O, 1 ml of sulfur-free trace element solution dissolved
in EDTA, and 1 ml of vitamin solution. The MSM was supple-
mented with DBT dissolved in ethanol at a concentration of
100 mM. They cultured in 250 ml Erlenmeyer flasks containing
50 ml of MSM at 30 1C on a gyratory shaker. During the culture,
they measured concentration profiles of glucose via reverse-
phase HPLC, DBT and HBP via GC, and cell growth via
absorbance at 600 nm. They observed that the cells gave HBP
as the final desulfurized product and did not re-assimilate it as
a carbon source.

We used the experimental data of Iida et al.30 to study the
utilization of various carbon sources. Iida et al.30 studied
substrate utilization patterns of several Gordonia strains.

Model analyses

For analyzing and predicting phenotypes, the constraint-based
GSM models typically solve the following linear optimization
problem (Flux Balance Analysis or FBA), which is based on
the assumption that intracellular metabolites are at pseudo
steady state:

Maximize=minimize Z subject to
XJ

j¼1
Sijnj ¼ bi;

where i represents metabolites (i = 1,2,. . ., I), j represents
reactions ( j = 1,2,. . ., J), Z represents an appropriate cellular
objective, nj (�No nL

j r nj r nU
j oN) is the flux of reaction j,

bi (�N o bL
i r bi r bU

i o N) is the flux of metabolite i, bi = 0
for each internal metabolite i, bi > 0 for the release of an
external metabolite, bi o 0 for the uptake of an external
metabolite, and S (i � j) is the matrix of stoichiometric
coefficients. The model can be constrained further by fixing

Fig. 7 Pathways for desulfurization of benzothiophene (BT) and dibenzothiophene (DBT).
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the fluxes (bi) of one or more extracellular metabolites based on
their experimentally measured uptake/release rates, setting
realistic bounds on various fluxes, or demanding a known
maintenance energy for the organism. The solution of the
FBA model gives the possible flux distributions that may
represent the metabolic state of a cell under given environ-
mental conditions.

To solve the FBA model, we need a cellular objective (Z).
Several cellular objectives such as maximum cell growth, mini-
mum substrate utilization, minimum maintenance energy,
etc.44 have been used in the literature. Cell growth is the most
common, as microbial cells have evolved to maximize growth. It
can be expressed as a synthetic reaction consuming multiple
biomass precursor metabolites in some ratios, which can be
determined from cell composition. In the absence of any data
in the literature on the cellular composition of G. alkanivorans,
we adapted information from the metabolic models of a related
organism, Corynebacterium glutamicum.45,46 Such adaptation
from related organisms is an established practice in the recon-
struction of metabolic models.16 We used MetaFluxNet47 and
GAMS/CPLEX 10.043 to solve and analyze our FBA model.

Conclusion

We have presented the first genome scale metabolic model for
G. alkanivorans. We have identified 55 new genome annotations
to explain some functionalities missing from its current gen-
ome annotations. Our model successfully predicts and explains
the limited experimental observations reported in the litera-
ture. It suggests that ethanol may be the best carbon source
among the sixteen studied in this work. Also, the model
analyses show that the presence of sulfur containing amino
acids, cysteine and methionine in the medium, can reduce the
desulfurization activity of G. alkanivorans. Our model also
confirms the experimental observations that BT is preferen-
tially desulfurized over DBT by G. alkanivorans. However, it
suggests that BT’s lower energy requirements in terms of NADH
rather than specific uptake mechanisms may be a better
explanation for this preference. Further, our analyses show that
NADH plays an important role in desulfurization, thus
re-engineering G. alkanivorans for improved supply/regeneration
of NADH is likely to increase desulfurization. Our model
appropriately captures the inter-relationships between the var-
ious metabolic activities occurring within G. alkanivorans and
can be used to study other properties of its metabolic network
and devise metabolic engineering strategies for obtaining
improved strains. Our comparative study of R. erythropolis
and G. alkanivorans suggests that G. alkanivorans can be a
better desulfurizing strain as it can desulfurize both BT and
DBT, and also exhibits higher desulfurization activity.
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