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Predicting drug–target interactions through integrative
analysis of chemogenetic assays in yeast†

Marja A. Heiskanenab and Tero Aittokallio*abc

Chemical-genomic and genetic interaction profiling approaches are widely used to study mechanisms of

drug action and resistance. However, there exist a number of scoring algorithms customized to different

experimental assays, the relative performance of which remains poorly understood, especially with

respect to different types of chemogenetic assays. Using yeast Saccharomyces cerevisiae as a test bed,

we carried out a systematic evaluation among the main drug target analysis approaches in terms of

predicting global drug–target interaction networks. We found drastic differences in their performance

across different chemical-genomic assay types, such as those based on heterozygous and homozygous

diploid or haploid deletion mutant libraries. Moreover, a relatively small overlap in the predicted targets

was observed between those approaches that use either chemical-genomic screening alone or

combined with genetic interaction profiling. A rank-based integration of the complementary scoring

approaches led to improved overall performance, demonstrating that genetic interaction profiling

provides added information on drug target prediction. Optimal performance was achieved when

focusing specifically on the negative tail of the genetic interactions, suggesting that combining

synthetic lethal interactions with chemical–genetic interactions provides highest information on drug–

target interactions. A network view of rapamycin-interacting genes, pathways and complexes was used

as an example to demonstrate the benefits of such integrated and optimized analysis of chemogenetic

assays in yeast.

Introduction

Accurate identification of the cellular targets of chemical
compounds is a critical prerequisite for a rational drug develop-
ment process. Systematic analysis of target interactions for a drug
candidate enables a more global mapping of the biological path-
ways and networks that are affected by the chemical treatment.
Such network maps may offer insights into the compound’s mode
of action, toward better understanding of its genotype-specific
sensitivity or resistance. Systematic prediction of the spectrum of
potential drug–target interactions, ranging from the compound’s
intended primary targets to secondary or ‘‘off-targets’’, provides
therefore the basis for the development of more effective
therapeutic options that can avoid severe side-effects.

A number of experimental–computational strategies have
been introduced over the past decade for systematic analysis
of drugs and their targets.1–3 In particular, by taking advantage
of the genome-wide deletion-mutant collections in yeast
Saccharomyces cerevisiae, it has become possible to measure
genome-scale growth phenotype responses to combined
genetic and chemical perturbations, thereby enabling
systematic means to identify candidate drug targets in vivo.
Such chemical-genetic profiling approaches to discovering
molecular targets and mechanisms of action of compounds
involve various experimental assays, such as those based on
drug-induced haploinsufficiency profiling (HIP) or homozygous
deletion profiling (HOP), as well as their integration with
genetic interaction profiling.2,3 These profiling assays generate
a rich source of high-dimensional datasets, and custom-
designed computational data analysis methods have been
tailored for mining the data from different experimental
assays.4–7

Despite the widespread application of the chemical-genomic
and genetic profiling approaches, there is only rather scattered
information available on the performance of various experi-
mental assays and customized computational solutions in
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terms of their relative accuracy at predicting drug–target
interactions. For instance, the heterozygous deletion strain
collection has been considered as being more effective for
identification of direct targets of chemicals, while the homo-
zygous diploid or haploid deletion mutant collections are being
used to identify genes involved in buffering the drug target
pathways.2,3,5 However, to our knowledge, there are no
systematic studies of their relative performance on a common
set of shared chemicals and gene deletion mutants. Another
open question, directly related to the experimental costs of
conducting such assays, concerns whether the genetic inter-
action profiling of double-deletion mutants can really provide
any added information on drug target prediction beyond that
obtained from the HIP or HOP approaches alone.

In addition to such experimental design questions, there is
no general consensus on a computational scoring approach
that, on the basis of the experimental data, would most
accurately rank the genes according to their likelihood of being
a target of a particular compound. For instance, target identifi-
cation in the HIP approach is typically based on the fitness
defect, the so-called FD-score, which implies that the hetero-
zygous mutant deleted for the drug target shows an increased
sensitivity to the particular compound.4,6,8 In the HOP
approach, on the other hand, the haploid or homozygous
diploid deletion of the target or another gene in the same
pathway may also lead to increased resistance.9 Moreover,
despite the development of customized methods based on
profile correlation,7 or the so-called I-score,9 it remains unclear
what is the most effective way to compare the drug–mutant
relationships (either sensitivity or resistance) with the double-
mutant fitness phenotypes obtained from genetic interaction
profiling.

In the present work, we systematically compared various
drug target profiling and scoring strategies using genome-wide
datasets on S. cerevisiae, with the aim of evaluating their
relative merits and potential limitations, especially with respect
to scoring positive and negative fitness responses to chemical
treatments. We also introduce here a novel scoring approach,
named SR-score, which combines the rankings from two
scoring methods in such a manner that it places special
emphasis on the early target recognition. The systematic
evaluation was carried out using the curated STITCH database
of known and predicted drug–gene interactions as an external
benchmark set. We further investigate the reproducibility of the
target gene rankings using the replicate measurements from
the chemical-genomic assays as an internal control. Statistical
inference was used to assess the significance of the differences
observed. Finally, the optimized methods were applied to
construction of an integrated drug–target interaction network
for rapamycin treatment.

Materials and methods
Datasets

To carry out a systematic comparative evaluation among the
different approaches to score drug–target interactions, we utilized

publicly available datasets from genome-wide studies in yeast
Saccharomyces cerevisiae.4,10,11 In order to provide a direct and
unbiased comparison of the scoring results, we selected only
those gene deletion strains present in both the chemical-
genomic and genetic interaction datasets. The datasets and
the evaluation setup are illustrated in Fig. S1 (ESI†).

Chemical-genomic datasets

Two of the chemical-genomic datasets were obtained from the
yeast whole-genome heterozygous and homozygous diploid
deletion collections.4 The entire datasets consist of 5337 and
4769 deletion strains grown under 726 and 418 treatment
conditions for heterozygous and homozygous deletion collec-
tions, respectively. Here, we have completely excluded the
double-drug experiments and experiments concerning environ-
mental stress conditions. Some of the drugs were screened at
various concentrations and time-points. In such cases, the
experiment performed at the lowest concentration with a
non-missing value was selected, since drug’s specificity
decreases as concentration approaches toxicity.6,12 In a few
cases, multiple experiments met this criterion; in those cases
median of the measured fitness defects at the lowest concen-
tration was obtained. After collapsing the drug treatments and
including only those deletion strains present in the genetic
interaction dataset, the dimensions of the data matrices were
1176 � 325 for the heterozygous and 1319 � 134 for the
homozygous dataset, with 3% and 10% missing data values,
respectively.

The third chemical-genomic dataset consists of 4111 yeast
haploid deletion strains grown in 82 different chemicals or
natural product extracts.11 After including those gene deletion
strains present in the genetic interaction dataset, the dimen-
sion of the haploid dataset is 1256 � 82, with 2% missing data
values.

Genetic interaction dataset

The quantitative genetic interaction profiles used in this study
were obtained from a recent genome-wide synthetic genetic
array (SGA) study.10 The whole dataset consists of 1711 haploid
query gene deletion strains crossed to 3885 haploid array gene
deletion strains. After obtaining those deletion strains present
in the heterozygous, homozygous, and haploid chemical-
genomic datasets, the dimensions of the respective n � m
SGA matrices were 1176 � 3332, 1319 � 3857, and 1256 �
3367, respectively, where n is the number of query gene deletion
strains and m is the number of array gene deletion strains.
We used the recommended dataset with a lenient cut-off,
where only statistically significant genetic interactions are
included (p o 0.05).13 The rate of the statistically insignificant
or missing data values of the resulting data matrices was 89%
in all cases.

Scoring methods

In the present work, we systematically evaluated the perfor-
mance of three previously introduced scoring methods used
in drug target prediction (FD-score, r-score and I-score).
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These methods are described in more detail in our previous
work.14 Here, we also propose a new scoring method (named
SR-score), and show that it provides robust performance when
evaluated using the three chemical-genomic datasets.

All of these scoring methods result in a unique ranking of
each drug–target pair. There are also other approaches, such as
hierarchical clustering or the factorgram method,11 which
allow visualizing and clustering chemicals and gene deletion
strains into functionally relevant groups with similar biological
effects in an efficient way. However, such exploratory approaches
were not considered in the present study.

FD-score

The fitness defect is based on the log-ratio of the growth defect
of a deletion strain in response to a chemical treatment, relative
to its growth without the treatment. Formally, for gene deletion
strain i and chemical c, the FD-score is defined as

FDic ¼ log2
wic

�wi
;

where wic is the growth fitness of the strain i in the presence of
the chemical c and �wi is the average growth rate of the gene
deletion strain i measured under multiple control conditions
without the chemical treatment. A gene deletion strain with a
negative FD-score is defined as sensitive to the treatment, and
therefore the negative tail of the FD-score distribution has been
used to reveal potential drug–target interactions.2,4,6,15

q-Score

The r-score is based on the Pearson correlation coefficient of
the chemical-genetic and genetic interaction profiles.3,7,10,11

Formally, for two gene deletion strains i and j, the genetic
interaction score eij is

eij = wij � wiwj,

where wij is the double-mutant growth fitness, and wi and wj are
the single-mutant fitnesses. For the SGA dataset, the Pearson
correlation coefficient was calculated with respect to the query
gene deletion strain profiles. Thus, for query gene deletion
strain i and chemical c, the r-score is formally defined as

ric ¼
Pm

k¼1 FDkc � FDc

� �
eik � �eið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1 FDkc � FDc

� �2Pm
k¼1 eik � �eið Þ2

q ;

where FDc is the mean of the fitness defects for the chemical c
and �ei is the mean of the genetic interaction scores for the query
gene deletion strain i. Only those pairs of FDkc and eik, k = 1,
2,. . .,m, with non-missing values in both scores were included
in the calculation of ric. Potential drug–target interactions are
inferred according to the positive tail of the r-score distribu-
tion. Notably, since the calculation of the r-score is based on
the whole profiles, it is more robust against the missing values
in the datasets than the FD-score, which is based on single
measurements.

We also tested alternative variants of the r-score, based
either on the Spearman correlation coefficient or a simple

overlap statistic7,10 of the most sensitive (or resistant) gene
deletion strains in the chemical-genomic and genetic inter-
action profiles. However, the Pearson correlation-based r-score
was selected since it showed the best performance (data not
shown).

I-score

The I-score was recently introduced to combine the FD- and
r-scores after applying Z-score normalization to both of
them individually.9 The Z-score normalization for gene
deletion strain i and chemical c using scoring approach X is
defined as

ZicðXÞ ¼
Xic � �Xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Pn
k¼1

Xic � �Xcð Þ2
s ;

where �Xc is the mean of the scores obtained using the scoring
approach X for the chemical c. In the original work,9 the
absolute values of the Z-score-normalized FD-scores were used.
Thus, the I-score is formally defined as

Iic = |Zic(FD)| + Zic(r).

The positive tail of the I-score distribution identifies the
potential drug–target interactions. A missing value in either of
the scores FDic or ric results in a missing value in Iic as well.

SR-score

The new scoring method proposed in this work combines the
ranks obtained by the FD-score and the r-score in such a way
that it gives more weight on the top-ranking genes. First,
the gene deletion strains are ranked within each chemical
according to their FD- and r-scores, so that the most sensitive
(negative) FD-scores and the highest (positive) r-scores
obtain the top ranks. The ranks are then transformed into
the Savage-scores.16 More specifically, for a scoring approach X,
the Savage-score for a gene deletion strain i and chemical c is
formally defined as

SicðXÞ ¼
Xn

k¼ric;X

1

k
;

where ric,X is the rank of the gene deletion strain i in the
chemical treatment c obtained using the scoring approach X,
and n is the maximal rank (1176 in the heterozygous, 1319 in
the homozygous, and 1256 in the haploid dataset). Thus, the
smaller the rank, the higher the Savage-score. For gene deletion
strain i and chemical c, the SR-score is the distance of point
(Sic(FD), Sic(r)) from the origin; more formally

SRic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SicðFDÞ½ �2þ SicðrÞ½ �2

q
:

The operation of the SR-score is illustrated in Fig. S2 (ESI†).
The positive tail of the SR-score identifies potential drug–target
interactions.

There are many fundamental differences between the SR-
and the I-score. First, since the Savage-score is based on ranks,
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the ranges of the Savage-scores are always equal for both of the
FD- and r-scores, making it robust against possible outliers.
In the I-score, either one of the Z-score-normalized FD- or
r-distributions may spread wider than the other, thus putting
more emphasis on the tail of the wider distribution. Second,
the FD- and r-scores often result in somewhat complementary
rankings. Whereas the I-score puts equal weights on all observ-
ations, the SR-score stresses more the top-ranking targets and
gives only minor emphasis on later ranks. Thus, a poor perfor-
mance of either one of the FD- or r-score does not mask the
good performance of the better approach, while good perfor-
mance of both of the approaches is further enhanced in the
calculation of the SR-score. Finally, the SR-score can be calcu-
lated even if one or both of the FD- or r-scores is missing; in
such cases, a gene deletion strain with a missing value is just
ranked last in the first step.

Evaluation setup and measures

The performance of each of the four scoring approaches was
evaluated using drug–gene interactions retrieved from the
STITCH database (external evaluation), and the reproducibility
of the rankings obtained by the different approaches was
assessed using replicate measurements present in the homo-
and heterozygous datasets (internal evaluation). The workflow
for the evaluations is illustrated in Fig. S1 (ESI†).

STITCH drug–gene interactions

We assessed the performance of each scoring method using a
set of known and predicted drug–gene interactions retrieved
from the STITCH 3 database.17 In STITCH, the combined score
is assigned for each interaction based on scores derived from
experiments, expert-curated databases and literature by means
of text mining. We excluded links whose combined score is
based only on putative homologs from other species. In addi-
tion, those links that originate from the datasets used in the
present work or other research work of the respective labora-
tories were excluded. In the heterozygous dataset, 104 chemi-
cals had at least one STITCH link, and in total 893 STITCH links
were used in the evaluation. The corresponding numbers were
63 and 51 chemicals, and 934 and 795 STITCH links for the
homozygous and haploid datasets, respectively.

Replicate measurements

In order to evaluate the consistency of the results obtained by the
different scoring approaches, we used replicate measurements
present in the homo- and heterozygous chemical-genomic
profiles. We considered the experiments with identical
chemical, time-point, concentration and scanner used to
measure the array intensities as replicate measurements.
A few experiments were conducted with multiple replicate
measurements; here, we selected the cases with two replicates,
leading to 118 and 106 replicate measurements for the hetero-
zygous and homozygous datasets, respectively. The haploid
dataset was not considered in this analysis because of the lack
of replicate measurements.

Performance curves

The performance of each scoring approach was assessed by
plotting the proportion of successes as a function of the rank.
Here, ‘success’ refers either to recovering a STITCH link
(evaluation based on an external test set) or recovering a link
that was also recovered by a replicate measurement (evaluation
based on an internal control). The overall performance was
summarized using the area under the performance curve
(AUC). The AUC values are reported as normalized values using
the equation

AUCnorm ¼
1

2
1þ AUC�AUCrandom

AUCmax �AUCrandom

� �
;

where AUCrandom is the area obtained by a random scoring,
whereas AUCmax is the area obtained by the optimal scoring.
Thus, the normalized AUC is 0.5 for a random scoring and 1 for
the ideal scoring. The performance curve of a random scoring is
obtained from a hypergeometric distribution; let r denote the
rank, C the number of the drug treatments, n the number of
gene deletion strains, and Mc the number of successes in the

treatment c, where c = 1, 2,. . .C, with M ¼
PC

c¼1 Mc: Since each
treatment condition can be considered as an independent
variable Xc under the random scoring, the expected value for
the number of successes for rank r is

E
XC
c¼1

Xc

 !
¼
XC
c¼1

EðXcÞ ¼
XC
c¼1

rMc

n
¼ rM

n
:

Thus, under a random scoring, the proportion of successes
for rank r is rM

n =rC ¼M=nC: In the external evaluation, M

corresponds to the total number of STITCH links used in the
evaluation, whereas for replicates M = rC/2. In the internal
evaluation, the ideal scoring corresponds to the case in which
the proportion of successes is 0.5 for every rank r, since ideally
both of the replicates are ranked similarly. For the STITCH
links, the performance curve of the ideal scoring is obtained by
assuming that for every drug treatment c, the corresponding
numbers of the STITCH links Mc are ranked first.

In the case of the STITCH links, the performance curve of a
scoring method decreases with larger ranks, and here the whole
area under the curve is reported; similar results are obtained
when considering only the ranks smaller than 150 (Table S1,
ESI†). However, in the case of replicates, the performance curve
increases constantly with larger ranks, while only the early
ranks are often interesting in practice. Therefore, the partial
area under the curve for ranks smaller than 150 was calculated
and reported here.

Statistical analysis

For each scoring approach, we first tested whether the perfor-
mance of a scoring approach is significantly better than a
random scoring within the same dataset. Further, we also
tested whether the observed difference between two scoring
approaches within the same or between different datasets is
statistically significant.
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Evaluation against random scoring. In the case of the
STITCH links, a random performance curve is obtained as
follows; ranks were generated for every drug treatment c randomly
from the interval [1, max r] without replacement Mc times. The
corresponding AUC was calculated using these ranks, and this
AUC was compared to the AUC obtained using a specific
scoring method. The procedure was repeated 100 000 times.
The empirical p-value is the probability that a random ranking
results in a larger AUC than the observed AUC obtained by the
specific scoring method. In the case of the replicates, a similar
procedure was carried out; in this case, a random performance
curve was obtained by generating the ranks randomly for every
drug treatment.

Comparison of two scoring methods within a dataset. The
difference of two scoring methods within the same dataset was
evaluated using pairwise permutation tests. Let X and Y denote
two scoring methods which result in performance curves with
AUCX and AUCY, respectively. The observed difference is
DAUCobs = |AUCX � AUCY|. In the external evaluation, the ranks
of the STITCH links obtained using the different scoring methods
were calculated. Next, pairwise permutations were carried out for
these ranks. Using the permuted ranks, new areas AUCX* and
AUCY* were computed, and the difference of the permuted
samples becomes DAUCperm = |AUCX* � AUCY*|. This procedure
was repeated 100 000 times. The empirical p-value is the prob-
ability that a permuted difference is larger than the observed
difference. In the internal evaluation, the procedure was similar;
here, the pairwise permutations were performed using the larger
of the ranks obtained by the two replicates, which are effectively
the ranks confirming that a certain drug–target interaction was
recovered by both of the replicates. In order to make permuta-
tions computationally feasible, it was necessary to consider only
those rank pairs with ranks smaller than the cut-off (150 in this
work) in at least one of the rank pairs.

Comparison of two scoring methods between datasets. The
performance of two scoring methods between different datasets
was evaluated in a similar manner. However, since the STITCH
links may be different for each dataset, pairwise permutations
are not possible. In the external evaluation, therefore, the ranks
of the STITCH links obtained using two scoring methods were
pooled. Next, pooled permutations were carried out, where the
number of the permuted ranks is equal to the number of
observed STITCH links in both scoring methods. New areas
AUCX* and AUCY* were computed with the permuted ranks,
resulting in differential area DAUCperm = |AUCX* � AUCY*|. This
procedure was repeated 100 000 times. The empirical p-value is
the probability that a permuted difference is larger than the
observed difference.

Results
HOP approach recovers drug–target interactions more
effectively than HIP

First, we investigated the relative accuracies of the heterozygous
diploid (HIP approach), homozygous diploid and haploid
deletion (HOP approach) datasets at recovering potential

drug–target interactions. The comparative evaluations were
carried out using the conventional FD- and r-scores in the
external evaluation based on STITCH links.

In order to enable a direct comparison of the datasets, we
tested their performances using the shared set of genes and
drugs present in each dataset pair (Fig. 1). Interestingly, the
haploid dataset performed significantly better than the other
two datasets (Fig. 1A and C), whereas the homozygous gene
deletion collection was more accurate compared to the hetero-
zygous dataset (Fig. 1B). The same trends were also observed
when directly comparing all the three datasets (Fig. 1D),
although the number of overlapping drugs in this analysis
was relatively small. The overlap in the STITCH links when
using the technically similar homozygous and haploid datasets
was relatively large compared to the overlaps between the other
dataset pairs, suggesting that the homozygous diploid and
haploid deletion collections provide to some degree redundant
findings (Fig. 1A).

To make the evaluations as comprehensive as possible, we
also repeated these analyses using all the available drugs and
STITCH links within each dataset separately. In line with the
previous results, the homozygous and haploid datasets per-
formed again significantly better than the heterozygous dataset
(Table S2 and Fig. S3, ESI†). In general, the FD-score seemed to
be more accurate than the r-score in recovering STITCH links,
suggesting that these two scoring approaches may recover
somewhat different drug–target interactions, which motivates
their integration in the following sections.

Taken together, these results demonstrate the relatively poor
performance of the heterozygous diploid deletion dataset,
compared to the homozygous diploid or haploid deletion
datasets. As the haploid dataset showed the best performance,
we concentrate our further analysis on this dataset. The corre-
sponding results for the homo- and heterozygous datasets are
provided as ESI.†

Rank-based integration of two complementary approaches
improves target prediction

We next performed a systematic evaluation among the four
scoring approaches; scoring based on the chemical-genomic
profiling alone (FD-score), chemical-genomic profiles combined
with the genetic interaction profiles (r-score), z-score-based inte-
gration of the FD- and r-scores (I-score), and rank-based inte-
gration of the FD- and r-scores (SR-score). These external evaluations
were carried out using the drug–gene interactions retrieved from
the STITCH database (see ‘Materials and methods’ for details).

In the haploid dataset, each of the scoring approaches
performed significantly better than a random scoring (Fig. 2).
The r-score showed somewhat poorer performance compared
to the FD-score, but the difference was not statistically signifi-
cant (Table 1). However, the target prediction was improved
when applying the integrated scoring approaches, with the
SR-score leading to the significantly best overall performance
(Table 1). Interestingly, about half of the interactions found by
the FD- and r-scores were overlapping, suggesting that these
two approaches lead to somewhat complementary results.
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Fig. 2 Performance of the different scoring approaches in the haploid dataset. The curves illustrate the number of recovered STITCH links relative to the total number
of drug–gene pairs at varying ranks when the gene targets are ranked for each drug separately using different scoring methods. The Venn diagrams in the inset
describe the number of overlapping STITCH links from the different scoring approaches at rank 50.

Fig. 1 Comparison of the homozygous, heterozygous and haploid datasets when predicting drug–target interactions using shared sets of STITCH links. The curves
illustrate the number of STITCH links relative to the total number of drug–gene pairs at varying ranks when considering only the common gene deletion strains, drugs
and STITCH links present in the datasets under comparison. The pairwise dataset comparisons of (A) homozygous and haploid, (B) homo- and heterozygous, and
(C) haploid and heterozygous datasets are performed using the number of STITCH links and drugs denoted in each figure. In figures (A)–(C), the curves for overlapping
STITCH links of the FD- and r-scores for the two datasets are also shown along with a random overlap. In (D), the shared STITCH links in all three chemical-genomic
datasets are considered.
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The benefit of the integrated scoring approaches is that they
capture relatively large portions of the interactions found by
either the FD- or r-score alone (Fig. 2, inset).

The results obtained from the homo- and heterozygous
datasets further support the good overall performance of the
SR-score (Fig. S4, ESI†); in the homozygous dataset the improve-
ment provided by the SR-score compared to all the other
scoring methods was statistically significant, whereas in the
heterozygous dataset only the difference between the SR-score
and the poorest performing r-score was significant (Table S2,
ESI†). The overlap between the FD- and r-scores is relatively small
in the homozygous dataset and even smaller in the heterozygous
dataset, further implying that these complementary approaches
find different drug–target interactions (Fig. S4, insets ESI†).

Table S3 (ESI†) provides more detailed information on a
selected collection of direct drug–target interactions;17,18 for
example, in the heterozygous dataset, the interaction lovastatin–
HMG1 has ranks 1 and 874 when using the FD- and r-scores,
respectively. Integration of these ranks led to ranks 1 (I-score)
and 2 (SR-score). On the other hand, in the haploid dataset,
camptothecin–TOP1 interaction was ranked as poorly as 1252
using the FD-score and 185 with the r-score. When integrating

these through the I-score, the ranking was improved to 29.
In general, the SR-score in the haploid dataset results in the
best average ranking of the known drug–target interactions
(Table S3, ESI†).

Finally, we also tested how the confidence level of the
STITCH links affects the results; in all cases, the SR-score
provided consistently the best performance in all datasets when
considering all ranks (Table S1, ESI†). This indicates that the
good performance of the SR-score does not originate from any
subset of the STITCH links used in the evaluation.

Synthetic lethal genetic interactions are most informative for
predicting drug–target interactions

Next we tested which tail of the fitness defect distribution
provides most information when recovering the STITCH links
when using the FD-score alone. We considered ranking of the
gene deletion strains according to either their increased sensi-
tivity or resistance, as well as using the absolute value of the
FD-scores. In general, the FD-scores ranked according to the
increased sensitivity (that is, the negative tail of the FD-score
distribution) resulted in the best predictive value in each of the
datasets (Fig. 3 and Fig. S5, horizontal lines, ESI†).

Perhaps a more interesting question is whether the r-score can
be improved by calculating the correlations over only certain pairs
of the chemical-genomic and genetic interaction profiles, instead
of using all the pairs with non-missing values in both the FD- and
e-scores. We addressed this question by including different quan-
tiles of pairs in the calculation of correlations based on the
negative, positive or both tails of the genetic interaction as well
as the chemical-genomic profiles (see Fig. S6, ESI† for an example).

We observed that synthetic lethal genetic interactions (negative
tail of the e-score) provide most information on the prediction of
drug–target interactions (Fig. 3). More specifically, the optimal
performance of the r-score was achieved when correlations are
based on the most negative portion of genetic interactions in

Table 1 External evaluation of the scoring approaches in the haploid dataset

Diagonal: area under the curve (AUC) and p-values compared to
random. Above diagonal: pair-wise differences of AUCs (row–column).
Below diagonal: p-values for the pair-wise score differences.

Fig. 3 The effect of using negative, positive or both tails of the genetic interaction profiles (e-score) or chemical–genetic interaction profiles (FD-score). The coloured
traces describe the predicted accuracy for the r-score when using different percentages of non-missing FD- and e-score pairs selected according to the respective tail of
the SGA or haploid datasets in the calculation of correlations. The traces for the I- and SR-scores are calculated using the negative tail of the SGA dataset, which shows
the best performance. Since the FD-scores alone do not rely on correlations, their AUC values are not affected by the percentage of the pairs used.
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conjunction with the FD-score distribution ranked according
to increased sensitivity. In the haploid dataset, the optimal
percentage was 75% (referred to as r*-score), after which the
performance starts again to decrease. The r*-score showed
significant improvement in AUC-values compared to the normal
r-score (p o 0.001). For example, the rank of the gene CTA1
under hydrogen peroxide treatment decreased from 207 (r-score)
to 26 (r*-score) in the haploid dataset (Table S3, ESI†).

We then studied how the optimal r*-score affects the I- and
SR-scores (Fig. 3 and Fig. S5, ESI†). The shape of the curve
obtained with the SR-score resembles closely the curve of the
r-score, which implies that the r-score has, in general, a larger
effect on the SR-score than on the I-score (most notably seen in
the heterozygous dataset, Fig. S5, ESI†). However, both the
I- and SR-scores can be enhanced by applying the optimized
r*-score in their calculations.

Interestingly, calculating correlations according to the posi-
tive tail of the genetic interaction dataset immediately
decreased the performance of the r-score, with AUC being
eventually even worse than that of random scoring. This
suggests that leaving out even a small fraction of the most
synthetic lethal genetic interactions has clearly a negative effect
on the r-score. On the other hand, concentrating on the most
sensitive (negative) fitness defects in conjunction with the
genetic interaction profiles had hardly any effect on the r-score.
While leaving out the most sensitive drug–target interactions
decreased the r-score, the effect was smaller compared to
excluding the most negative genetic interactions. Taken
together, these results suggest that the synthetic lethal inter-
actions correspond to sensitive fitness defects in respective
genes more often than observed vice versa. Similar observa-
tions can be made also in the homo- and heterozygous datasets
(Fig. S5, ESI†), further emphasizing the significant role
that synthetic lethal genetic interactions have in drug target
prediction.

The homozygous dataset provides more reproducible
drug–target rankings than the heterozygous dataset

The consistency of the potential target gene ranking was
evaluated using the replicate measurements in the homo- and

heterozygous datasets (for details, see ‘Materials and methods’).
In these internal evaluations, the r*-score was used in the
calculation of the I*- and SR*-scores along with the FD-score
ranked according to the increased sensitivity.

The differences between the basic versions of each of the
four scoring approaches were relatively small, suggesting that
all the approaches result in equally reproducible rankings
(Table 2). When considering the best variation of each scoring
approach, however, the I*-score seems to be the one providing
the most coherent rankings (Table 2 and Fig. S7A, ESI†).
Notably, using the r*-scores in the calculations of the I*- and
SR*-scores improved significantly the performances compared
to those versions calculated with the normal r-scores (Table 2).
Hence, choosing the pairs for computing the correlations
according to the negative tail of the SGA dataset does not only
improve the recovery of the STITCH links, but also improves the
consistency of the potential target gene ranking. The complete
results obtained using the different tails of each score distribu-
tion are shown in Table S4 (ESI†).

The corresponding results for the heterozygous dataset are
provided in ESI† (Table S5 and Fig. S7B). Here, the AUC values
are, in general, again much smaller compared to those of the
homozygous dataset, suggesting that besides recovering the
STITCH links better, the homozygous dataset also provides
more coherent results. Interestingly, the positive tail, along
with the absolute values, of the FD-scores clearly outperformed
all the other methods when considering reproducibility of the
results. This indicates that the selection of the distribution, the
tail and the percentage of the pairs used in the calculation of
the r*-, I*- and SR*-scores according to the best performance at
recovering the STITCH links does not lead to the optimal
reproducibility in the heterozygous dataset.

Protein complexes are central in the interpretation of the drug
response networks

While the systematically evaluated and optimized scoring
approaches have numerous important applications, we focus
here on one particular case, namely, we constructed an example
network of drug–gene-pathway relationships. The network was
based on top 50 gene targets ranked according to the SR*-score

Table 2 Internal evaluation of the scoring approaches in the homozygous dataset

Diagonal: area under the curve (AUC); all AUCs are better than random (p o 0.001). Above diagonal: pair-wise differences of AUCs (row–column).
Below diagonal: p-values for the pair-wise score differences. r*-score: correlation based on 75% of pairs using the negative tail of the SGA dataset. I*
and SR*-scores: calculated using the negative tail of the FD-score and the r*-score. Basic versions of each of the scoring approach are in italics; the
best variations are in bold.
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under rapamycin treatment in the homozygous dataset (Fig. 4). We
chose two specific biological process terms in Gene Ontology,22

in which the corresponding genes were enriched; endosome
transport (GO: 0016197, p = 1.3 � 10�10) and regulation of
growth (GO: 0040008, p = 2.3 � 10�3).

A total of 14 of the top 50 genes were linked to either one of
these selected GO terms. Four of these genes (SYS1, VPS5,
VPS29, VPS35) were linked to more than 20% of the different
chemical treatments in the homozygous dataset according to
the SR*-score, hence defining the corresponding gene as multi-
drug resistant (MDR).4 Thus, the remaining 10 genes were
defined specific to rapamycin. The sensitivity or resistance of

the corresponding gene deletion strain was assigned based on
the sign of the FD-score. For example, target of rapamycin,
TOR1, had ranks 7 and 4 when using the SR*- and FD-scores,
respectively (ranks 92 and 14 for the r*- and I*-scores; Table S3,
ESI†). Thus, TOR1 appears in the network as a sensitive node.

Notably, each of the protein complexes present in the network
included at least one of the 14 rapamycin-interacting genes
(Fig. 4). For instance, the two targets in the RIC1p–RGP1p and
GARP complexes, RGP1 and VPS51, respectively, were found
early when using the SR*-score. While missing in STITCH, these
gene deletion strains have in fact been reported as sensitive to
rapamycin in Saccharomyces Genome Database (SGD).19

Fig. 4 An integrated network of the rapamycin-interacting genes, pathways and complexes. The network is based on the genes most related to rapamycin by the SR-
score in the homozygous dataset. Thin edges correspond to genetic interactions and thick edges to mixed genetic and physical interactions, where the color of the
edge indicates whether the genetic interaction is negative or positive. Two parallel lines indicate pure physical interactions. The sensitivity or resistance of each gene
deletion strain was assigned based on the sign of the FD-score. The gray nodes indicate those genes which are not present in the homozygous dataset (e.g. essential
genes). The nodes with bolded border lines indicate those gene deletion strains having evidence for rapamycin sensitivity in SGD (http://www.yeastgenome.org)
database.19 The protein complexes are shaded, and the background color indicates which GO process a gene is related to. The network was constructed using
Cytoscape.20 The interactions between genes were retrieved from the BioGRID,21 version 3.1.85.
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In the retromer complex, all of the four genes present in the
homozygous dataset were linked to rapamycin using the
SR*-score. Interestingly, one of these genes, VPS17, is not related
to rapamycin according to SGD or STITCH. However, this gene
shares both genetic and physical interaction partners with the
other members of the retromer complex, the deletion of which is
known to lead to rapamycin sensitivity.19 Also, the SR*-score
assigns an early rank for this gene, suggesting a potential
interaction between rapamycin and VPS17 for further study.

One of the genes, namely YPT6, seems to be a central
pathway hub (i.e. highly connected network node). While there
is evidence for this gene deletion strain being sensitive to
rapamycin in SGD, it was not among the top-ranked targets
by the SR*-score. However, the rapamycin-dependence can be
predicted based on the network’s connectivity structure, further
demonstrating the importance of such integrative analysis.

In general, most of these selected gene deletion strains
present in the network were sensitive to rapamycin, whereas
there were only a few resistant strains, YPT32, SFT2 and GGA1,
which all seem to reside in the non-central part of the network
not belonging to any of the protein complexes. As expected,
physical interactions are common within complexes, while
between-complex interactions tend to be genetic, with the
negative type being the dominant one. These results suggest
that protein complexes have a central role when modelling
polygenic response patterns to chemical treatment.

Conclusions

The comparative evaluation between the different chemical-
genomic datasets demonstrated that the haploid assay shows
the best overall performance when detecting potential drug–
target interactions, both when considering the links in the
STITCH database (Fig. 1) or the collected set of known targets
of drugs (Table S3, ESI†). This reflects the fact that screening
both the chemical-genomic and genetic interactions on the
haploid deletion mutant collection may improve the correlation-
based scoring results, when compared to those of the homo-
and heterozygous datasets. Further, as expected, the overlap in
the recovered drug–target interactions between technically
similar haploid and homozygous datasets was relatively large
(Fig. 1A). We also considered ranking the targets globally over
all the drugs in the dataset, and this analysis further supported
the good performance of the haploid dataset (Fig. S8, ESI†).

Surprisingly, the heterozygous profiling (HIP) turned out to
be less effective at recovering drug–gene interactions reported
in STITCH compared to the haploid and homozygous diploid
deletion profiling (HOP). The underlying technical similarities
between the HOP chemical-genomic assays and the haploid
double-mutant genetic interaction assays cannot account for
the better performance of the fitness defect-based method
(FD-score), since this score does not rely on the genetic inter-
actions. Neither does the lack of most of the essential genes
explain the poor performance of the heterozygous dataset com-
pared to the HOP assays (Fig. S9, ESI†). Perhaps more likely,
this result could reflect the fact that in the HIP profiling only

direct targets of the chemical under analysis are recovered,
whereas in the HOP profiling also genes involved in buffering
the drug target pathway can be detected.2,3,5 Indeed, when
studying the set of well-established direct drug–target inter-
actions, the HIP FD-score performed as expected (Table S3,
ESI†). For instance, the HIP profiling recovered as its top-rank
HMG1, the target of anticholesterol drugs atorvastatin and
lovastatin. As another example, TUB3, the target of antifungal
drugs thiabendazole and nocodazole, was also top-ranked
(ranks 1 and 12 with the FD-score, respectively). Interestingly,
the recovery of the interaction between TUB3 and nocodazole
can further be improved by the I-score (rank 1) and the SR-score
(rank 4).

In general, the target rankings based on the fitness defects
(FD-score) were more accurate at recovering the STITCH links
compared to the approach utilizing the conventional profile
correlations (r-score). However, the target detection could be
improved by applying the integrative scoring approaches (I- and
SR-scores). An advantage of the SR-score is that it captures a
wide range of drug–target links recovered either by the FD- or
r-score, with an overall improved accuracy compared to the
previously proposed integration approach (I-score). Moreover,
being rank-based statistic, the SR-score is relatively insensitive
to both outliers and missing data points, which are quite
frequent in high-throughput screening datasets. Here, for
instance, the homozygous chemical-genomic screening dataset
had a missing value rate of 10%, making the traditional
data mining approaches, such as the FD-score, vulnerable to
unobserved interactions. This may also partly explain why the
heterozygous dataset has conventionally been considered more
informative for drug target analysis.

A limitation of any correlation-based approach is that they
cannot determine whether the gene or mutation is associated
with compound sensitivity or resistance. However, by com-
bining the information obtained from the SR- and FD-scores
enables one to construct drug–target networks and to analyse
the gene nodes and their interactions with respect to sensitivity
and resistance in the context of selected biological processes
(Fig. 4). In the interpretation of such drug–gene-pathway
relationships, physical interactions and complexes were found
to provide useful information by which to decompose the
complex network into cross-connected sub-network modules.
This is in line with recent studies, which show that functional
modules, such as protein complexes and biological pathways,
are central in explaining the genetic landscape of yeast.10,13,23

Moreover, protein complexes are relatively stable in response to
chemical perturbation, even when their functional connections
are reorganized,24 suggesting that protein complexes could
serve as robust processing units when modelling, explaining
and predicting drug responses on a global network level.25

It was also found out that the pure correlation-based
approach, such as the r-score used in previous studies,3,7,10,11

seems to be sub-optimal when identifying targets of bioactive
compounds. Interestingly, the performance of the correlation-
based scoring approaches could further be enhanced by
focusing on the negative tail of the genetic interactions
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(i.e. synthetic lethal/sick interactions). This supports the earlier
results,7,11 also when using the recent quantitative SGA assays
which allow the detection of both the positive and negative
ends of the genetic interaction spectrum.10 While the positive
genetic interactions often connect functionally distinct protein
complexes,13 we showed here that the negative genetic inter-
actions were especially useful for predicting drug–target inter-
actions. In line with this observation, pathway-specific hubs in
the synthetic lethal genetic interaction network were recently
used to predict compounds that would target a given pathway
of interest.26 However, since there may be both negative and
positive genetic interactions within and between functional
modules,10,22,27,28 it seems likely that the whole spectrum of
quantitative genetic interactions is needed when eventually
moving from drug–target interactions toward predicting drug
target pathways and networks.29

Once carefully evaluated in the high-quality yeast datasets,
the same principles can later be applied to drug and target
discovery in human diseases. In particular, the concept of
synthetic lethality has recently gained much interest as a
principled strategy to develop more effective and selective
cancer treatments.30–32 However, despite the advances in bio-
technologies, such as RNA interference and high-throughput
chemical screening, which enable systematic detection of syn-
thetic lethal interactions in human cells, there remain experi-
mental and computational challenges in the discovery of new
drug targets for personalized therapies.14,33 Computational
scoring approaches, such as those evaluated here, play a major
role in the drug discovery process by identifying the most
promising chemical compounds and their cellular targets.
These results should therefore prove useful also for future
developments in network pharmacology,34 e.g., for explaining
observed polypharmacology of single drugs or predicting effec-
tive drug combinations to fight treatment resistance.35
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