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Bridging the layers: towards integration of signal
transduction, regulation and metabolism into
mathematical models
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Steffen Klamt,c Miguel Rochad and Julio Saez-Rodriguez*a

Mathematical modelling is increasingly becoming an indispensable tool for the study of cellular processes,

allowing their analysis in a systematic and comprehensive manner. In the vast majority of the cases, models

focus on specific subsystems, and in particular describe either metabolism, gene expression or signal

transduction. Integrated models that are able to span and interconnect these layers are, by contrast, rare as

their construction and analysis face multiple challenges. Such methods, however, would represent extremely

useful tools to understand cell behaviour, with application in distinct fields of biological and medical

research. In particular, they could be useful tools to study genotype–phenotype mappings, and the way

they are affected by specific conditions or perturbations. Here, we review existing computational

approaches that integrate signalling, gene regulation and/or metabolism. We describe existing challenges,

available methods and point at potentially useful strategies.

Introduction

The functioning of a cell requires multiple processes to work in
an orchestrated manner. Basic properties of cellular life, such as
proliferation, macromolecule synthesis and degradation, and
cellular metabolism, have to be tightly controlled. Failure in
the regulation of these cellular functions, for example through
mutations of specific genes, can result in another cellular
phenotype and, eventually at the organism level, in severe
diseases such as cancer.1

Cellular metabolism comprises catabolic pathways, which
break down molecules to produce energy, and anabolic reaction
routes, which provide the essential building blocks required by
the cell to synthesise the molecules it consists of and, thus, to
enable homeostasis and growth. The required enzymes catalysing
these metabolic processes are encoded in the genome and are
translated from the intermediate messenger RNA (mRNA). A cell
needs to control and adapt its enzyme production and behaviour
depending on its requirements. This is achieved through diverse

regulation mechanisms at the level of transcription (where DNA is
copied into RNA) and translation (where mRNA is decoded into
proteins).2 Finally, the cell has to sense its environment to react
accordingly via signal transduction mechanisms that are closely
related to regulatory mechanisms through signalling cascades.3

All these processes are clearly interconnected (as illustrated
in Fig. 1) but have usually been studied separately in distinct sub-
disciplines of cellular biology. While all types of biological molecules
and interactions directly or indirectly influence all processes,
there are three main layers with distinct characteristics:
(i) metabolism: the production and consumption of diverse
small molecules (metabolites) in enzyme-driven metabolic
reactions, (ii) gene regulation: the control of the abundance
and translation of transcripts (mRNA) and consequently
proteins, and (iii) signalling: the interaction of proteins that
generate and process flows of information.

The phenotype of a cell results from the interoperation of
the three different layers of biological processes since, as stated
above, they are linked through diverse types of interactions. An
important, well-known example is the regulation of blood sugar
in humans.4 The liver regulates the level of sugar in the blood
by releasing or storing it in the form of glycogen. Glucose levels
are exquisitely regulated by complex control mechanisms driven
by extracellular signals. The main hormonal drivers are insulin
and glucagon, both being synthesised and released from
specialised pancreatic cells in a glucose-dependent manner.
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The information contained in these extracellular signals is
decoded and translated by liver cells via signalling and regula-
tory processes.

Complex diseases are systemic phenomena affecting multi-
ple cellular processes. For example, cancer is characterised by a
deregulation of the mechanisms that govern transduction of
extracellular signals into the gene expression system, but also
by an impaired functioning of its metabolic machinery.5 Hence,
only an integrated view of the processes involved can lead to a
comprehensive understanding that may shed new light on the
development of these diseases and, therefore, provide new
treatment opportunities.

Mathematical modelling has become a key methodology for
gaining a deeper understanding of complex biological pheno-
mena and for predicting phenotypes under different conditions.
Similarly to what happens in experimental studies, signalling, gene
expression, and metabolism are often modelled separately and
integrated models are still scarce. Accordingly, mathematical form-
alisms have been developed independently, tailored to the nature of
the biochemical interactions and molecules involved, and to the
specific features of the processes in each domain. Some efforts have
attempted to connect these different processes, both experimentally
and computationally. Given the complexity of the task, studies in
this direction so far have been limited in number and scope.6

We believe that the time has come to address this challenge.
The main motivation, in our opinion, is the rapid development

of high-throughput measurement techniques for these different
types of data, associated with the corresponding ‘omics’ label: in
historical order, genomics, transcriptomics (gene expression),
proteomics and metabolomics. While there are undoubtedly
many challenges, modelling approaches that leverage these data,
as well as improved parameter optimisation algorithms7 and
high-performance computing, should be a major avenue of
research in the coming years in systems biology. This should
lead to a broad range of potential applications in biotechnology,
biomedicine, and pharmaceutical research.

In this review, after a brief summary of existing modelling
approaches for signalling, metabolic, and gene regulatory processes,
we describe recent efforts to connect these layers (Fig. 2).

Different layers are modelled with different
mathematical formalisms

All cellular processes, from the basic to the most complex,
result from the interaction of a large number of biological
molecules. On a structural basis, these interactions can be
described as networks, usually as graphs or, more generally,
hypergraphs. Graphs are composed of nodes (e.g. proteins) that
are connected via edges, the latter representing some relationship
between pairs of nodes. Hypergraphs, additionally, facilitate the
representation of relationships with more than two interacting

Fig. 1 Schematic of the interconnection among signalling, gene regulation and metabolism. In a cell, signalling networks are activated by external signals, e.g.
ligands (grey shapes) binding to a receptor (black semi-circles) located in the cell membrane. The signal is then internally propagated in the cell by means of e.g.
protein phosphorylation cascades. These cascades may lead to alterations in the expression of genes by activating or inhibiting transcription factors (TFs). Gene
regulatory networks control the transcriptional level of genes, and thus the production of messenger RNA molecules, which are subsequently translated into proteins.
These proteins are in turn involved in cellular functions, including signal transduction and the catalysis of metabolic reactions. Specific metabolites are known to affect
proteins’ activity (e.g. binding to the allosteric site) and can also influence gene regulation. As illustrated in the scheme, signalling, gene regulation, and metabolism
are tightly interconnected showing that the systems’ behaviour can only be accurately modelled and understood by properly integrating the sub-systems. The
interactions between the molecules are represented by edges: arrow shaped edges represent activating interactions; blunt edges represent inhibitory interactions; and
edges with a circle on the top end depict enzyme reaction catalyses.
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components; for instance, in the case of a reaction with two
reactants and one product.8 As stated in the introductory section,
previous modelling approaches have distinguished among meta-
bolic, signalling, and gene regulatory networks. In this section, we
will give a brief overview of these networks and the corresponding
modelling formalisms, pointing the interested reader to dedicated
reviews for further information on these topics. Importantly, we
will focus on modelling formalisms that are based on networks.
These can be used to simulate perturbations (such as stimuli,
mutations, or drug treatments), thus predicting how these altera-
tions affect the network elements.

There is currently no single modelling formalism that can cover
all biological aspects. Different types of biological networks are
modelled using different formalisms that properly suit and repre-
sent their behaviour and specific properties. On the one hand,
ordinary differential equations (ODEs) describing the underlying
biochemistry are often used, as they are detailed and have high
explanatory power. However, their applicability is limited due to the
difficulty to obtain the necessary model parameters. They also have
limited scalability, and thus they are, in general, not applicable to
genome-scale models and simulations. On the other hand, less
detailed approaches like Boolean networks and constraint-based
models have been used in larger networks. Choosing the best
modelling formalism is a trade-off between detail and complexity.

Signalling networks

Signal transduction pathways define the cellular response to
external stimuli, which often reach the cell in the form of small

chemical compounds, such as hormones. These molecules typically
bind to proteins in the cell membrane, known as receptors, and
trigger the activation of signalling pathways. These pathways are
interconnected via crosstalk mechanisms, leading to complex
networks that process, spread, and amplify extracellular
information, finally altering gene expression, cell proliferation,
differentiation and apoptosis, as well as metabolism.9,10

Signalling networks can be mathematically represented
using different types of formalisms. One can roughly distinguish
between a mechanistic (biochemical) description, based on the
chemical reactions that underlie signal transduction, and a
causal description, where connections between nodes (typically
proteins) correspond to a node’s effect on the other, without
describing these processes in molecular detail.9

Within the causal set of formalisms, arguably the simplest
modelling approach is the Boolean representation of networks,
identifying a node’s state to be either active/on or inactive/
off. Boolean networks can be modelled as dynamic systems,
following the state of nodes over a (discrete) time range,11 or by
studying their basic input–output behaviour based on logical
steady-states.12 Despite their simplicity, Boolean models can
reveal important structural features of signalling pathways.13–15

Moreover, they can be refined or extended in various ways
including multi-level logic, fuzzy logic, probabilistic Boolean
networks, and logical ODEs.13

Mechanistic formalisms benefit from describing the process
details, although this increases the model complexity.
Mechanistic models are most commonly modelled as a set of

Fig. 2 Overview of formalisms for modelling signalling, gene regulatory, and metabolic networks. Multiple formalisms and simulation methods can be used to model
and analyse each biological system. Due to specific biological features, some mathematical formalisms are more suitable for specific systems (see main text). Some
methods can model different types of systems, using either different (e.g. SR-FBA40) or the same mathematical formalism.47 Specific references are only used for the
cases where a general term is not available; see main text for more references. Bettenbrock et al.,44 iFBA,49 idFBA50 and Karr et al.6 represent the first efforts to
integrate the three different systems. König et al.47 and Mosca et al.48 presented a metabolic ODE model approximately integrating the hormonal control via insulin,
glucagon and epinephrine as underlying signalling networks are not incorporated.
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biochemical reactions.10 A more sophisticated and principled
way consists of writing rules describing the interactions among
the different proteins that are then instantiated into biochemical
reactions.16 In both cases, one often generates ODEs to be
simulated, while in some cases (in particular when one
simulates individual molecules), stochastic formalisms are
used. Finally, spatial localisation in the cell is very important
for signal transduction, and is sometimes explicitly considered
when building models.10

Gene regulation

Gene regulatory networks are responsible for the control of
gene expression and, therefore, have direct impact on virtually
all processes in the cell. It is vital that certain genes are kept
at their adequate expression levels at specific times and in
certain cell types, in order to assure correct cell function and
survival.17,18 Broadly speaking, the process of gene expression/
activation encompasses gene transcription into an mRNA
molecule, which is subsequently translated into a protein.
The encoded proteins may then take part in the metabolic
network by catalysing chemical reactions, act as transcription
factors (TFs) responsible for inducing and suppressing gene
expression, or simply transduce post-receptor signalling via
enzymatic cascades. Many different mechanisms can be involved
in regulation, working both at the level of transcription or at the
post-transcriptional or post-translational levels. Although the main
molecules involved in these processes are arguably TFs and sigma
factors, other molecules such as riboswitches or microRNAs
may also take part.19,20 Direct enzyme regulation by metabolites
is also possible.

Given this large set of possible interactions, the construction
of regulatory networks is far from trivial and our knowledge is
still very limited. Indeed, substantial work has been devoted to
reverse-engineer these networks from experimental data,21,22

mainly at the gene expression level, but also considering, for
instance, transcription factor binding sites and protein–DNA
interactions. Popular methods to reconstruct these networks
include Bayesian inference, approaches based on mutual informa-
tion, and modular approaches to reduce the problem’s complexity.22

These have resulted in a few genome-scale models, mostly
restricted to transcriptional regulatory networks, for well studied
microbes such as Escherichia coli, as well as numerous other
networks of small/medium scale for sub-systems of interest in
biomedical research.

Similarly to the signal transduction networks, formalisms
for representing regulatory networks range from Boolean
approaches for larger-scale networks to ODEs for small/
medium-sized networks.18

Metabolism

A key difference between gene regulatory/signalling and metabolic
networks is that the former carry signal flows, whereas metabolic
pathways generate mass flows. For this reason, logical or Boolean
networks are not suitable for describing metabolic networks.

Large-scale metabolic networks have been used for some years
now, being usually represented as biochemical (mechanistic)

networks solely based on the stoichiometry and reversibility
of the reactions involved.23 By assuming pseudo steady-state
conditions, i.e. the concentrations of all intracellular compounds
remain constant, various functional properties and capabilities of
metabolic networks can be explored and phenotypes can be
predicted under different environmental and genetic conditions.
Most of the techniques belong to the class of constraint-based
methods which include flux balance analysis, metabolic flux
analysis, pathway analysis by elementary modes or extreme path-
ways.24 There is a rapidly increasing number of stoichiometric
genome-scale metabolic models that have been reconstructed and
verified using such methods, including organisms like Escherichia
coli,25 yeast26 or human.27 Stoichiometric models and constraint-
based techniques have also been used to compute intervention
strategies for Metabolic Engineering28–30 or to tackle biomedical
issues related to biological discovery including elucidation31

and targeting32 of cancer mechanisms.
Regarding kinetic models of metabolism, only small-scale

metabolic networks are usually modelled using ODEs and only
a few with a larger size exist.33–35 Simulation of large metabolic
models requires a huge computational effort, therefore model
reduction is often used to reduce the size of the model and
consequently the complexity of the mathematical problem.36

In eukaryotic cells, compartmentalization represents an
important issue that has to be properly addressed for developing
predictive models.37 Division of the cell into different compart-
ments enabled specialization of organelles for carrying out specific
metabolic functions. Important conditions for the performance of
metabolic enzymes such as pH, energy, cofactors or, generally,
metabolite concentrations have been evolutionary optimized
and are specific for the metabolic role of the compartment.
Current genome-scale stoichiometric models already include
compartmentalization.25–27

Integrating different layers: the challenge
and state of the art

Building an integrated model that accounts for interactions
from all three layers and merges signalling, gene regulatory and
metabolic networks could, in principle, be achieved by writing
down the underlying biochemical reactions and transforming
them into ODEs; such an approach has been already used to
model any of the layers separately. At the level of state variables,
ODEs do not distinguish between metabolites, genes, or signalling
molecules. Furthermore, any interaction type (e.g., a metabolic
conversion of a metabolite or ligand binding to a receptor)
can be formally described by suitable kinetic rate laws. The
integration of the different layers into ODE models would be
computationally very challenging due to the different time
scales of the processes (from seconds to a few minutes for
signalling and metabolism to hours for gene regulation) giving
rise to stiff ODEs. These problems might become tractable by
suitable numerical methods. However, as mentioned above,
building models of larger integrated networks requires a level
of information that is very rarely available, even for a single
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layer. Therefore, it is not expected that fully mechanistic
ODE models integrating all layers will become available in
the near future.

In the case of qualitative modelling, formalisms have been
developed tailored to the different types of large-scale networks,
but their integration is not straightforward. At least for signal-
ling and regulatory networks, similar modelling formalisms
(e.g. logical models) can often be used, as signal flows are a key
characteristic of both network categories. In those cases, model
merging becomes, in principle, feasible but is actually rarely
done. The reasons for this lack of integrated models might be
the lack of knowledge about the molecular interfaces between
the layers, and the absence of suitable data simultaneously at
both levels. Furthermore, as stated above, different time scales
need to be considered for each layer, which is often difficult in
qualitative models. Connecting gene regulation or signalling
with metabolism is additionally hampered by the different
types of interactions (signal flows vs. mass flows) that imply
different semantics in model descriptions.

To summarise, no single mathematical formalism currently
seems capable of simulating the phenotype of a cell taking
signalling, gene regulation and metabolic systems into account.
In previous work, several methods have been presented to
integrate two of these layers. We review these cases in the next
sections, and in the last section efforts to address integrated
models covering the three layers are described.

Metabolism and regulation

In this section, strategies to connect regulatory networks
(represented as Boolean or probabilistic models) with meta-
bolic networks (described as stoichiometric/constraint-based
models) will be discussed. Regulatory FBA (rFBA)38 was one of
the first attempts to integrate a regulatory layer, represented as
a Boolean model, with a metabolic model. The regulatory
Boolean network specifies the set of ‘‘inactive’’ enzymes for a
given environment and a cellular state. This information is
then used to constrain the fluxes of the respective reactions in
the metabolic layer, simulated using FBA. This framework was
used to simulate growth in batch cultures of Escherichia coli,39

using the first genome-scale integrated model including metabolic
and regulatory layers. The model was used to predict dynamic flux
profiles by a series of steady-state simulations of the metabolism,
assuming that the regulation layer works at a slower time scale, and
is approximately constant within those intervals.

A similar strategy, named steady-state regulated FBA (SR-FBA),40

introduced a unified constraint-based approach. Here, a mixed
integer linear programming (MILP) formulation was used to
address the underlying optimisation problem. The formulation
combined binary variables for the regulatory layer and real
valued variables for the reaction fluxes. It also included distinct
types of constraints representing the metabolic layer (from
FBA) and the regulation interactions, all integrated in a single
framework. This revealed feasible combined regulatory and
metabolic states. Both rFBA and SR-FBA simulate the metabolic
phenotype of a metabolic network under different environ-
mental and genetic conditions (e.g. after knockout of certain genes).

Besides having a higher predictive power than FBA, they also
reveal insights into novel types of regulatory mechanisms.
However, despite their added value, these approaches have
two main weaknesses. As the regulatory interactions are repre-
sented using Boolean logic, the metabolic reactions are limited
to a binary response (on vs. off). Furthermore, rFBA and SR-FBA
encounter problems with cyclic networks and cannot account
for regulatory feedbacks from the metabolic back to the
regulatory layer. These feedbacks can take place, for example,
when certain metabolites (or metabolite concentrations) affect
the transcription of certain genes.

PROM (probabilistic regulation of metabolism)41 is another
method proposed for connecting transcriptional regulatory
networks with metabolism. Here, regulatory networks are repre-
sented by a probabilistic model, which is inferred (for a given
organism) from gene expression data. Thus, PROM allows for a
more quantitative description of regulatory events, instead of simple
on/off rules. However, it may also have problems when closing back
the circuit from the metabolic to the regulatory layer.

Another approach capable of directly integrating high-
throughput measurements with metabolic network models is
integrative omics-metabolic analysis (IOMA) which quantitatively
integrates proteomic and metabolomic data with genome-scale
metabolic models.42 The method formulates a quadratic
programming (QP) problem to search for a steady-state flux
distribution in which flux through reactions with measured
proteomic and metabolomic data is as consistent as possible
with kinetically derived flux estimations. Hyduke et al. provides
an overview on methods for interpreting omics data with
stoichiometric models.43

Some other efforts focused on integrating modules of meta-
bolic and gene regulatory processes at the level of ODEs. A
larger example of such a model was presented by Bettenbrock
and colleagues,44 who quantitatively described the regulation of
uptake and metabolism of various carbohydrates in Escherichia
coli. By incorporating regulatory and metabolic events and by
fitting the kinetic model against a large set of measurements, a
complex phenomenon such as catabolite repression could be
adequately described in a dynamic and quantitative manner. As
stated above, such a fully mechanistic description based on
ODEs does not seem feasible for large-scale networks.

Signalling and gene regulation

As mentioned above, similar modelling formalisms are often
used for signalling and regulatory networks (e.g. logical models
or influence graphs). At the technical level, it should therefore
be relatively straightforward to merge models from the two
different layers.

However, this is actually rarely done, possibly because the
interfaces between these two layers are not well characterised.
These interfaces are actually not simple; Stelniec-Klotz and
colleagues46 recently inferred jointly a signalling and regulatory
network, identifying complex relationships between these
layers. Accordingly, there are only a few examples of models
linking signalling with gene regulation, and these are on a
relatively small-scale level.45,46
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Signalling and metabolism

There are also a few simple models that account for both
metabolism and signal transduction. Arguably, the low number
of models in this case is due to the fact that a direct interaction
from signalling to metabolism is rare, and most of the time
occurs via gene regulation (e.g. signalling pathways affecting
the expression of metabolic enzymes). König et al. presented a
small dynamic model of the regulated hepatic glucose meta-
bolism integrating insulin, glucagon, and epinephrine hormones
and corresponding enzyme activity changes.47 The model was set
up using ODEs and the enzymes’ phosphorylation state was
formulated by directly mapping hormonal states into different
kinetic functions for each state, without considering explicit
signalling pathways.

Using a similar approach, Mosca et al. presented a dynamic
metabolic model in which the cellular metabolic steady state
condition was adapted to present two different phenotypes in
HeLa cells.48 These two phenotypes are due to the regulatory
effect of the PI3K/AKT/mTOR signalling pathway. The metabolic
effects of the signalling pathway were modelled as modifications of
the maximum rate (vmax) of distinct metabolic reactions. However,
as in the previous model, the PI3K/AKT/mTOR signalling pathway
was not described mathematically.

Integrated approaches: towards a whole-cell model

Some advanced approaches – integrated FBA (iFBA)49 and
integrated dynamic FBA (idFBA)50 – have been proposed. Both
methods are based on the rFBA approach and both are able to
integrate signalling pathways with the metabolic and regulatory
layers.

iFBA has been applied to integrate different formalisms to
create a medium scale model of Escherichia coli: the rFBA
model for selected pathways of E. coli, including FBA simula-
tion for the metabolic layer and Boolean networks for
the regulatory part, is combined with an ODE model of the
phosphotransferase system. This approach demonstrated a
strategy to integrate modules of ODE/Boolean representations
of metabolic/regulatory processes with FBA models. Importantly,
regulatory events (and thus the resulting reaction activities) are
modelled as simple binary variables.

In contrast, idFBA requires an integrated stoichiometric
reconstruction of the three layers, incorporating slow and fast
reactions in the framework. Slow reactions are incorporated
directly into the stoichiometric matrix with a time-delay, while
fast reactions rely on the pseudo steady-state assumption
of FBA. idFBA was applied to the analysis of a prototypic
integrated system of yeast.50

To the best of our knowledge, the largest integrated model
that has been published so far is the whole-cell model of
Mycoplasma genitalium,6 accounting for more than 500 genes. Con-
sistent with our statement given above, the authors also concluded
that no single formalism could capture the diverse types of cellular
processes. Consequently, in their approach they divided the total
functionality of the cell into 28 sub-modules. Each sub-module
was modelled using a specific mathematical representation.

For example, metabolism was modelled using flux-balance
analysis, whereas RNA and protein degradation were modelled
as Poisson processes. The integration of the sub-modules
during the whole-cell simulation was done based on the
assumption that they are approximately independent of short
timescales (less than 1 s). Simulations were then performed
in discrete time steps: at each step the sub-modules are
run independently, but depend on the values of variables
determined by the other sub-modules at the previous time
step. Hence, the different modules work autonomously for
one second and then exchange material and information
according to given rules.

This hallmark study is a proof of concept showing that all
the processes in a cell can be modelled in an integrated
fashion, assuming different time-scales of operation.

Conclusion and future directions

We expect increasing interest in developing models and
methods that can represent and predict the cell’s phenotype,
considering different types of biological interactions, in parti-
cular metabolism, gene regulation and signalling. Integrated
computer models covering all sub-systems should eventually
lead to an overall perspective of the molecular mechanisms of
the cell.6 Importantly, many diseases involve different layers,
and therefore such models should have a broad applicability in
biomedicine. Insulin, the key hormone in diabetes develop-
ment and treatment, controls signalling processes besides sugar
metabolism. Also, recent work has shown that metabolism in
cancer is partially controlled by signalling networks.51–53 With
the advent of high-throughput experimental data, network
reconstruction is moving towards an integration of all kinds of
biological molecules based on different types of ‘omics’ data.

To develop models that integrate different types of biological
networks into models that can be simulated, three computational
aspects need to be addressed: (i) a mathematical formalism has
to be adopted to represent each layer; (ii) a simulation method
capable of accounting for the different types of systems has to
be developed; and (iii) the interactions among different layers
have to be identified and modelled. The proper solution is
dependent on the specific problem at hand. For example, small
models can be integrated using differential equations (ODEs).
In contrast, larger models can be integrated using formalisms
and simulation methods that best fit each layer. When different
layers are modelled/simulated with different formalisms and
methods, interfaces among them need to be established. An
important issue to take into account is the proper compart-
mentalization of each biological entity and interaction, which
affects model predictive capabilities, but is still hard to achieve
with current modelling tools.

The recent breakthrough by Karr and colleagues to assemble
a predictive whole-cell model of a simple organism6 should
inspire the development of similar models in more complex
organisms. The complexity of a human cell (genome size and
complex regulation, vast variety of biological molecules and
interactions, etc.) is overwhelming, and our knowledge of many
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biological processes (e.g. RNA regulation) is still fairly limited.
Whole-cell computational models for higher organisms and in
particular humans are, in our opinion, still a long way away.

Nevertheless, these integrated models should be a long-term
grand goal of systems biology as tools to enhance our under-
standing of biological complexity and human disease.
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