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Designer labels for plant metabolism: statistical design
of isotope labeling experiments for improved
quantification of flux in complex plant metabolic
networks†

Shilpa Nargund and Ganesh Sriram*

Metabolic fluxes are powerful indicators of cell physiology and can be estimated by isotope-assisted

metabolic flux analysis (MFA). The complexity of the compartmented metabolic networks of plants has

constrained the application of isotope-assisted MFA to them, principally because of poor identifiability

of fluxes from the measured isotope labeling patterns. However, flux identifiability can be significantly

improved by a priori design of isotope labeling experiments (ILEs). This computational design involves

evaluating the effect of different isotope label and isotopomer measurement combinations on flux

identifiability, and thereby identifying optimal labels and measurements toward evaluating the fluxes of

interest with the highest confidence. This article reports ILE designs for two major, compartmented

plant metabolic pathways – the pentose phosphate pathway (PPP) and g-aminobutyric acid (GABA)

shunt. Together, these pathways represent common motifs in plant metabolism including duplication of

pathways in different subcellular compartments, reversible reactions and cyclic carbon flow. To compare

various ILE designs, we employed statistical A- and D-optimality criteria. Our computations showed that

1,2-13C Glc is a powerful and robust label for the plant PPPs, given currently popular isotopomer

measurement techniques (single quadrupole mass spectrometry [MS] and 2-D nuclear magnetic

resonance [NMR]). Further analysis revealed that this label can estimate several PPP fluxes better than

the popular label 1-13C Glc. Furthermore, the concurrent measurement of the isotopomers of hexose

and pentose moieties synthesized exclusively in the cytosol or the plastid compartments (measurable

through intracellular glucose or sucrose, starch, RNA ribose and histidine) considerably improves the

identifiability of PPP fluxes in the individual compartments. Additionally, MS-derived isotopomer

measurements outperform NMR-derived measurements in identifying PPP fluxes. The potency of 1,2-13C

Glc can be improved substantially by combining it with other labels (e.g. 3-13C Glc, 1-13C Glc and U-13C

Glc) in parallel ILEs. For the GABA shunt, we calculated that 100% 2-13C Ala and 100% U-13C Gln

constitute the best labels. We anticipate that the ILE designs presented in this article can enhance the

quality of flux estimates in these two complex plant pathways. In the future, these ILE designs can be

further improved by leveraging recent analytical and computational developments in isotope-

assisted MFA.

1. Introduction

Metabolic flux analysis (MFA), a powerful technique to quantify
cellular physiology,1 involves the system-wide quantification of

carbon traffic through cellular biochemical reactions. Metabolic
fluxes represent a substantial portion of the ‘‘action’’ occurring in a
cell or tissue.2 Therefore, they are as important as other indicators
of phenotype such as transcript levels, protein levels and enzyme
activities.3 Metabolic flux maps are instrumental toward a compre-
hensive understanding of metabolism.3–8 By enabling visualization
of carbon traffic in metabolic pathways,9–18 these maps can suggest
strategic metabolic engineering targets,8,19 identify unknown20,21 or
apparently futile metabolic pathways22 and potentially contribute
toward building predictive models of metabolism.3,23–25
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Isotope-assisted MFA is a powerful method of quantifying
fluxes, especially in sophisticated metabolic networks such as
those of plants. In this method the biological system of interest
is fed a designed mixture of labeled (e.g. 13C) and unlabeled
(e.g. 12C) stable isotopes in an isotope labeling experiment
(ILE). Fluxes are iteratively evaluated from the ensuing isotopic
labeling patterns (such as isotope isomers [isotopomers])
of metabolites and biomass components by computational
techniques such as metabolic network modeling, isotopomer
balancing, and global optimization.1,13,26 This task is nontrivial
because flux evaluation is a challenging parameter estimation
problem in an extensive parameter space,27 wherein the fluxes
are parameters that have to be estimated from isotopomer
abundances and other measurements.

Flux identifiability, the confidence with which a flux can be
estimated from the information contained in isotope labeling
patterns, is a valuable measure of the quality of information
obtained from an ILE. Flux identifiability depends on properties
of the ILE, and this dependence can be examined on two levels.
On one level (structural identifiability), flux identifiability
depends on (a) the layout or topology (stoichiometry and carbon
atom rearrangements) of the metabolic network under investiga-
tion, (b) which labeled carbon sources are supplied and which
atoms of these carbon sources are labeled and (c) which meta-
bolites are analyzed and which isotopomers of these metabolites
are measured. On another level (statistical identifiability), flux
identifiability also depends on (d) the values of the fluxes in the
network, (e) the relative proportions of the supplied labeled
carbon sources and (f) the measurement errors of the labeling
patterns.28 Whereas the metabolic network layout and flux
values (a and d) are beyond the control of the investigator, all
the other factors (b, c, e, f) can be chosen judiciously to enhance
flux identifiability. However, doing so is a difficult task because
the optimal choices are usually not obvious and have to be
determined by sophisticated mathematical procedures that
compare different ILE designs on the basis of their statistical
quality. Insufficient flux identifiability is an acute problem in
plant metabolic networks due to their complexity, which arises
due to the duplication of pathways in multiple intracellular
compartments with different fluxes in each compartment, the
existence of many bypasses and cyclic pathways, myriad inter-
connections between metabolic subnetworks and incompletely
known biochemistry.

This work is motivated by the success of previous investiga-
tions on microorganisms as well as in silico work on mammalian
cell and plant embryo metabolism,28–33 which showed that the a
priori design of ILEs can lead to a multifold increase in the
information obtained from the ILEs.16,28,29,34 In this article, we
report the a priori design of ILEs for quantifying fluxes in two
important plant metabolic pathways: the pentose phosphate
pathway (PPP) and the g-aminobutyric acid (GABA) shunt. The
PPP (Fig. 1a) is a central pathway in plant metabolism and
carries substantial carbon flux.35 Although the PPP wastes a
sixth of the carbon that passes through it as CO2,

36 it regenerates
the reductant NADPH (which is necessary for synthesizing fatty
acids and certain amino acids) and provides carbon skeletons for

the synthesis of nucleotides, phenylpropanoids, lignin and
some amino acids.35 Exceptionally, many plant cells contain
the PPP in both the cytosol and the plastid compartments, likely
with different carbon traffic patterns in each compartment as
dictated by metabolic demand.35 Due to this duplication and the
exchange of PPP metabolites between the duplicated pathways,
using ILEs to quantify flux through plant PPPs is challenging.
Additional properties of the PPPs that complicate this problem
include the presence of many reactions featuring substantial
carbon skeleton rearrangement and the reversibility of many
reactions that could occasionally cause a cyclic flow of carbon.
Furthermore, the complexity of the PPPs also raises several open
questions: (i) whether the compartmentation of the PPPs is
standard across plants, (ii) how the distribution of carbon traffic
in the PPPs varies with environmental conditions such as light,
temperature and nitrogen source availability, and (iii) how plants
regulate carbon traffic through the PPPs at the level of gene
expression. These questions necessitate the development of a tool
to precisely quantify carbon traffic in the PPPs.

Although previous investigations have addressed these
questions to an extent, there are gaps in knowledge and a clear
picture of PPP flux distribution across compartments is lacking.
In the pioneering MFA work of Dieuaide-Noubhani et al.,37 the
metabolic redistribution of 1-14C and 2-14C glucose (Glc) into
sucrose, free Glc and starch in maize root tip cells suggested
that the PPP was mostly active in the plastid. Subsequent work
by Shachar-Hill and co-workers5,38,39 as well as Schwender and
co-workers on Brassica napus embryos, maize embryos and
maize endosperm used models in which the oxidative branch
of PPP (from glucose-6-phosphate [G6P] to the pentose phos-
phates) was present in both the cytosol and the plastid, whereas
the non-oxidative branch (the rest of the PPP) was present only
in the plastid. However, other evidence points to the possibility
that the PPP operates in both compartments. For example,
Krook et al.40 fed 1-13C Glc to carrot suspension cells and
compared the labeling in sucrose (synthesized from cytosolic
hexose phosphates41) and starch (synthesized from plastidic
hexose phosphates42). From this, they qualitatively inferred
that the PPP is present in both the cytosol and the plastid.
Sriram et al.,9 in their work on soybean embryos, observed
substantially different isotopomer abundances in hydrolysis
products of sugars associated with glycosylated protein (derived
from cytosolic hexose phosphates) and starch, and fitted their
labeling data to a model that contained the oxidative and non-
oxidative PPPs in both the cytosol and the plastid. Allen and
co-workers conducted ILEs on soybean embryos and analyzed
the labeling patterns of amino acids belonging to the large
and small subunits of ribulose-1,5-bisphosphate carboxylase/
oxygenase, which are synthesized in the plastid and cytosol
respectively. This novel method revealed isotopic differences
between amino acids originating in the cytosol and the plastid
and also found evidence of flux through the PPP. Together,
these results suggest that the allocation of flux to the PPPs in
the different compartments may vary.43 In a recent elaborate
study, Masakapalli et al.44 fed 1-13C, 2-13C and U-13C Glc to
Arabidopsis thaliana suspension cells and examined three
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metabolic models that could best account for the concomitant
labeling patterns. These three models differed in the subcellular
localization of the PPP – one model contained the oxidative and
non-oxidative reactions of PPP only in the plastid, another model
contained the oxidative reactions in cytosol and plastid with the
non-oxidative reactions restricted to the plastid and the third
model contained the oxidative and non-oxidative reactions of PPP
in both the plastid and the cytosol. Surprisingly, Masakapalli et al.
observed that all three models explained the data equally well.

This illustrates the difficulty in identifying PPP fluxes accurately
in plant metabolic networks. Our study aims to address these
issues by determining the best isotopic labels and critical
isotopomer measurements that can help obtain additional
information that will help quantify the PPP fluxes more accurately.
Although elaborate and comprehensive MFA studies on PPP in
plants exist,9,10,18,39,44,45 there has been little focus on the design of
ILEs involving non-trivial isotope labels, especially for the PPP. We
anticipate that the PPP flux estimates of previous studies can be

Fig. 1 (a) PPP metabolic model. Glycolysis and PPP duplicated in cytosol and plastid contain 13 metabolites and 32 fluxes (19 net fluxes and 13 reversibility extents).
Flux balances allow dependent fluxes to be expressed as linear combinations of directly measurable (vInp and vgapp) and free fluxes (vg6pdh, vtktAf, vg6pdhp and
vg6pt). Dashed arrows indicate metabolites leaving the system. The plastidic compartment is enclosed by a dashed box; suffix ‘p’ indicates metabolites in the plastidic
compartment. Abbreviations: E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; Glc, glucose; G6P, glucose-6-phosphate; P5P, pentose phosphates; S7P,
sedoheptulose-7-phosphate; T3P, triose phosphates. (b) GABA shunt model. The TCA cycle in the mitochondrion, the glyoxylate shunt in the glyoxysome, the GOGAT
cycle in the plastid and the GABA shunt across the mitochondrion and the cytosol together comprise a network with 31 metabolites and 34 net fluxes. The measured
fluxes are vInp1, vInp2 and vPyr; the free fluxes are vPdh, vCitdh, vaKgdh, vMgdh, vMef, vPyrc, vGABAtk and vGogat. The intracellular compartments are separated from
each by dash lined regions. Dashed arrows indicate metabolites leaving the system. Suffixes ‘m’, ‘p’, ‘c’ and ‘g’ indicate metabolites in the mitochondrial, plastidic,
cytosolic and glyoxysome compartments respectively. Abbreviations: AcCoA, acetyl CoA; Ala, alanine; Asp, aspartate; GABA, g-aminobutyric acid; Gln, glutamine; Gly,
glycine; Glu, glutamate; Glyox, glyoxylate; aKG, alpha-ketoglutarate; Mal, malate; OAA, oxaloacetate; Pep, phosphoenolpyruvate; Pyr, pyruvate; Succ, succinate.
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significantly improved by employing the isotope labeling strategies
proposed in this article.

The GABA shunt (Fig. 1b) is a highly interconnected pathway that
acts as a crosslink between carbon and nitrogen metabolism.46 This
pathway involves the conversion of glutamate to succinate via the
non-protein amino acid GABA instead of via the tricarboxylic acid
(TCA) cycle; therefore, the GABA shunt is a bypass of the TCA cycle.
Although GABA is known to play various crucial roles in plants
(integration of carbon and nitrogen metabolism,47 defense against
insect attack48 and pollen tube development49) and animals (neuro-
transmitter46,50,51) little is known about carbon flow through the
GABA shunt46 relative to that through the TCA cycle. Researchers
have hypothesized that the GABA shunt is a metabolic highway that
carries significant carbon flux during normal conditions and even
greater flux when a plant faces stress.46 If this hypothesis is true,
then the GABA shunt is one of the first major pathways taken by
nitrogen after it enters primary metabolism. This article also reports
the design of judicious combinations of labeled carbon sources
fed in ILEs that will help test this hypothesis through MFA.
Previous isotope-assisted MFA studies of plant metabolic net-
works9,10,12,15,18,52 were designed to investigate most central carbon
metabolic pathways but did not focus on the GABA shunt.

In this article we identify isotope labels and label combinations
that improve the identifiability of important fluxes in PPP and
GABA shunt pathways. We also identify the biomass components
that contribute maximum labeling information toward flux
identifiability. Additionally, we compare the usefulness of
labeling information obtained from the two commonly used
isotopomer measurement techniques – mass spectrometry (MS)
and nuclear magnetic resonance (NMR).

2. Methods
2.1 Metabolic network models for the PPP and the
GABA shunt

We modeled metabolic networks by using steady state flux
balance equations of the form:

S�v = 0

where v is a vector containing all fluxes and S is a stoichio-
metric matrix that represents metabolite balance in terms of
the fluxes. An outcome of this relationship is that several fluxes
in the network (‘‘dependent’’ fluxes) are expressible as linear
combinations of a smaller set of parameters, which includes: (i)
a set of fluxes termed ‘‘free’’ fluxes,53 (ii) the few fluxes that are
directly measurable (e.g. carbon source uptake), (iii) reversibil-
ity extents, relevant to pairs of reversible reactions and (iv)
‘‘scrambling extents’’ which, for pairs of reactions that have
identical stoichiometries but different carbon atom rearrange-
ments, are ratios indicating how the net flux is split across the
two carbon atom rearrangements. SI (ESI†) describes a method
for determining a feasible set of free fluxes.

Our model of the PPP (Fig. 1a; SII, ESI†) is based on reaction
stoichiometries and carbon atom rearrangements from the
Kyoto Encyclopedia of Genes and Genomes (KEGG)54 as well
as previous studies of the PPP.35 This model comprises glycolysis

and the PPP, each duplicated in the cytosol and the plastid
compartments. The sole carbon source in the model is Glc
(taken up through the flux vInp). Carbon exits the network either
as triose phosphates from the plastid (flux vgapp) or as CO2

(flux vCO2x). We lumped the three carbon atom-metabolites
dihydroxyacetone phosphate, glyceraldehyde-3-phosphate,
phosphoenolpyruvate and pyruvate into a single metabolite
named triose-3-phosphates (T3P);55 we also lumped the five-
carbon atom metabolites ribose 5-phosphate, ribulose-5-phos-
phate and xylulose 5-phosphate into a single metabolite named
pentose-5-phosphates (P5P). The absence of carbon atom rear-
rangements between these metabolites and their relatively
rapid equilibration55 justify this lumping. We modeled the
intercompartmental transport of metabolites, such as the
reversible transport of G6P, P5P and T3P between the cytosol
to the plastid, as bidirectional fluxes. Overall, the metabolic
model contains 13 metabolites and 32 fluxes. Of these, two
fluxes (vInp and vgapp) are measurable, and four (vg6pdh, vtktAf,
vg6pdhp, vg6pt) are free fluxes. Additionally the model contains
13 reversibility extents. Our model of the GABA shunt (Fig. 1b;
SII, ESI†) is also based on reaction stoichiometries and carbon
atom rearrangements from KEGG and on previous studies on
this pathway.46,56 The model comprises the TCA cycle in the
mitochondrion, the glutamine (Gln)-a-ketoglutarate amino-
transferase (GOGAT) cycle in the plastid, the glyoxylate shunt
in the glyoxysome and the GABA shunt that spans the mito-
chondrion and the cytosol. We lumped the metabolites fumarate
and malate into a single pool55 and modeled the intercompart-
mental transport of metabolites as bidirectional fluxes. The
network has 31 metabolites and 65 fluxes of which three fluxes
(vInp1, vInp2 and vPyr) are measurable and eight (vpdh, vcitdh,
vpyrc, vmef, vGOGAt, vGABAtk, vmgdh, vaKgdh) are free fluxes.
Additionally the model contains 22 reversibility extents and one
scrambling extent. The only carbon sources in the model are
Ala and Gln (taken up through the fluxes vInp1 and vInp2
respectively). The metabolites pyruvate, CO2, plastidic glutamate,
mitochondrial oxaloacetate and mitochondrial glycine exit the
metabolic network.

2.2 Simulations of ILEs by cumomer balancing

We simulated the isotopomer abundances of metabolites that are
measurable by MS and NMR (SIII, ESI† lists these isotopomers) by
using cumomer balancing57 with stoichiometrically feasible flux
values. Cumomers (cumulative isotopomers) are defined as sums of
specific isotopomers. This transformation enables conversion of
nonlinear isotopomer balance equations to cascades of linear
cumomer balance equations. Cumomers can be easily transformed
back into isotopomers.57 Cumomer balancing provides identical
results to the more recent technique of elementary metabolite unit
(EMU) balancing, but may require longer simulation times.

2.3 Isotopomer measurements simulated during ILE design

For the identifiability analysis we simulated a comprehensive
list of isotopomers (Isim) of metabolites that are known to be
measurable by MS and NMR (Tables 1 and 2 list the corresponding
metabolites; SIII, ESI† lists all measurable isotopomers). Usually
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researchers use either MS or NMR to measure isotopomers;
however, since these techniques often provide complementary
labeling information for a given metabolite,58 we simulated
measurements from both techniques. To differentiate between
the fluxes of pathways duplicated in the cytosol and plastid, our
PPP model incorporated several metabolites that are known to be
synthesized exclusively in one of these two compartments. The
subcellular compartmental origins of particular metabolites are
well established59 whereas those of others may be determined
by finding the localizations of the enzymes that catalyze their
formation reactions.60–65 Metabolites predominantly or exclusively
synthesized in the cytosol include soluble Glc, ribose (from RNA)
and Ala, whereas those with a plastidic origin include Val, His, Phe
and Tyr, starch36,59 as well as Gly and Ser. Our GABA shunt
included the compartment-specific metabolites Ala, Gly, Ser Val,
Ile, Pro, Thr, Asp, Glu, Lys and Arg.

2.4 Statistical flux identifiability

The mathematical techniques of quantifying identifiability of fluxes
in a metabolic network have been established previously28,29,66 and
are discussed briefly here. The covariance of fluxes with respect to
noisy isotopomer measurements is an indicator of flux identifia-
bility, and the diagonal elements of the covariance matrix (Cov)
represent variances of the corresponding fluxes.67 The premise of
identifiability analysis is that the Cov can be computed without
prior knowledge of the true flux values. A priori identifiability
analysis thus necessitates use of guessed values of free fluxes
required to compute the matrix Cov which is given by the inverse
of the Hessian (H) of the chi-square function (w2) between Isim and
experimentally measured isotopomers (Imeas, this term vanishes
thus allowing a priori analysis, SIV, ESI†),

67

Cov(f,m) = [H(w2)]�1

Hðw2Þ ¼ @2w2

@fk@fi

where k and l are counters that go over all free fluxes. Comparing
covariance matrices obtained using different ILE designs

amounts to comparing their statistical flux identifiability.
Previous studies have used scalar statistical criteria such as A-
and D-optimality criteria to compare covariance matrices.28,29

The A-optimality criterion is defined as the trace of the covariance
matrix and the D-optimality criterion is the determinant of the
covariance matrix.

Dcrit = det(Cov)

Acrit ¼
trðCovÞ

n
;

where n is the number of rows or columns in Cov.
Acrit signifies the arithmetic mean of the variances whereas

Dcrit
1/n signifies the geometric mean of the variances. Since the

criteria are proportional to flux variances, high identifiability
corresponds to small A- and D-criteria. This work uses the
A-criterion as a measure of identifiability since it has certain
advantages over the D-criterion that were highlighted by
Libourel et al.29 Briefly, the difference between the arithmetic
mean (AM) and the geometric mean (GM) of the variances of
fluxes is greater for the D-optimal ILE designs.29 This follows
from the AM-GM inequality. This means that the D-optimality
criterion may lead to a needle shaped confidence region of
fluxes, i.e. a D-optimal ILE design may resolve all but one flux
with an acceptable confidence interval. In this work we verified
this claim for 5 pairs of optimal A- and D-designs (data not
shown).

Because the A-criterion is inversely proportional to flux
identifiability, we use the term ‘‘information yield’’ (IY), the
square root of inverse of the A-criterion, as a metric to compare
different ILE designs:

IY ¼ 1
ffiffiffiffiffiffiffiffiffi

Acrit

p

We implemented all isotopomer simulations and IY calcula-
tions on our flux evaluation computer program NMR2Flux+.9,22

NMR2Flux+ uses cumomer balancing57 (Section 2.2) to simulate

Table 1 Isotopomer measurements in Isim in the PPP model. The isotopomer abundances of amino acids and carbohydrates whose metabolic precursors are known to
be exclusively or predominantly synthesized in the cytosol and the plastid were included in Isim

Analytical technique Metabolites measured

MS Alam, Glc, Glym, Hism, Phem, ribose, Serm, starch, Tyrm, Valm

1-D or 2-D NMR Alan, Glyn, Hisn, LVAgc, LVAgp, LVArc, Phen, Sern, Tyrn, Valn

Subscripts ‘m’ and ‘n’ indicate isotopomer measurements by MS and NMR, respectively, for the same metabolite. Abbreviations: Glc, glucose;
LVAgc, levulinic acid obtained by hydrolysis of cytosolic glucose; LVAgp, levulinic acid obtained by hydrolysis of plastidic glucose; LVArc, levulinic
acid obtained by hydrolysis of cytosolic (RNA) ribose.

Table 2 Isotopomer measurements in Isim in the GABA model. The isotopomer abundances of amino acids whose metabolic precursors are known to be synthesized in
specific compartments were included in Isim

Analytical technique Metabolites measured

MS Alam, Argm, Aspm, Glym, Glum, Ilem, Leum, Lysm, Prom, Serm, Thrm, Valm

1-D or 2-D NMR Alan, Argn, Aspn, Glun, Ilen, Leun, Lysn, Metn, Pron, Sern, Thrn, Valn

Subscripts ‘m’ and ‘n’ indicate isotopomer measurements by MS and NMR, respectively, for the same metabolite.
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isotopomer abundances from a given set of fluxes, and uses
the global optimization algorithm simulated annealing68 to
evaluate fluxes from a given set of isotopomer abundances.

3. Results and discussion
3.1 Plant PPP fluxes are best identified with 100% 1,2-13C Glc
(with our set of isotopomer measurements)

The choice of appropriately labeled carbon source is para-
mount in ILE design because it crucially determines both the
amount of information obtainable from the experiment and the
cost of the experiment. Therefore, our first objective was to
determine which of the commercially available labels of Glc
provide the maximal information toward identifying fluxes in
the plant PPPs. Toward this we computed IY for ILEs that
employ each of the eight commercially available Glc labels
(ESI†) and naturally abundant Glc, mixed in different propor-
tions. This analysis (Fig. 2) revealed that the PPP fluxes are best
identified with 100% 1,2-13C Glc (IY = 21.9 [arbitrary units]),
followed by 100% 3-13C Glc (IY = 19.6) and the popularly
used16,22,44 label 100% 1-13C Glc (IY = 18.2). For all labels except
U-13C Glc, IY increases with the proportion of labeled Glc,
implying that dilution of these labels with naturally abundant
Glc reduces the information available from them. The excep-
tion, U-13C Glc, is explained by the fact that 100% U-13C Glc
completely labels all carbon atoms of intracellular metabolites
with 13C, thus resulting in no differential distribution of the
label by different pathways. Therefore, it is essential to dilute
this label with naturally abundant Glc. Additionally, U-13C Glc
generates isotopomers that are suitable for measurement by
NMR;10,69 therefore, it is not surprising that this label is often
employed at proportion as low as 5%10 and 10%.70

Furthermore, we analyzed the performances of 55 Glc labels
that, to our knowledge, are commercially unavailable except
through custom synthesis (all isotopomers of Glc except those
listed in SV, ESI†). Nine of these 56 Glc labels performed better
than 1,2-13C Glc, of which the three best labels were 100%

3,4,5,6-13C Glc (IY = 23.7), closely followed by 100% 1,2,4-13C
(IY = 23.3) and 3,5,6-13C Glc (IY = 22.9) (Table 3).

3.2 In silico ILEs corroborate the superiority of 1,2-13C Glc
over 1-13C Glc in identifying PPP fluxes

The results presented above lead to the question: how does an
IY value translate into actual flux identifiability – does the
slightly higher IY of the best commercial label 1,2-13C Glc
(IY = 21.9) over the popularly used label 1-13C Glc (IY = 18.24)
imply that 1,2-13C Glc is significantly better in identifying PPP
fluxes? To answer this question, we performed in silico ILEs as
follows: from arbitrarily chosen values of the four free fluxes in
the PPP model, we simulated isotopomer abundances resulting
from ILEs employing either 100% 1,2-13C Glc or 100% 1-13C Glc.
We then treated these simulated isotopomer abundances as
surrogate experimental measurements and allowed NMR2Flux+
to evaluate, by minimizing w2 through global optimization, a set
of fluxes that best accounted for these surrogate measure-
ments. Repeating this flux evaluation several (478) times from
random initial points, we selected the evaluations that con-
verged to w2 values less than 20 (corresponding to a confidence
level of 99.96% for four degrees of freedom). This resulted in
distributions for each flux (Fig. 3 and 4), which we compared to
the initially chosen (‘‘true’’) flux values from which we had
simulated the isotopomer abundances.

Interestingly, some fluxes had bimodal distributions, e.g.
vt3pt (Fig. 3a), vpfk, vpgifp, vpfkp, vg6pdhp and vg6pt (not
shown), whereas other fluxes had unimodal distributions, e.g.
vtktAf (Fig. 4b). The bimodal distributions exhibited a major
peak close to the true flux value and a minor peak far away from
it. For instance, the major peak in the distribution of the flux
vt3pt represented 385 out of 478 (B81%) flux evaluations and
was centered around the true flux value of 0.2, whereas the
minor peak that represented the remaining 19% of the flux
evaluations was centered away from the true flux value (Fig. 3a).
However, the points on the minor peak corresponded to w2

values between 7 and 20; therefore, using a stringent cutoff
of w2 o 7 completely eliminated the minor peak (Fig. 3b).
Applying a w2 o 7 cutoff to eight other fluxes that initially
showed a bimodal distribution eliminated their minor peaks
and retained the major peaks centered around the true flux

Fig. 2 100% 1,2-13C Glc outperforms other commercially available Glc labels in
estimating PPP fluxes. This plot depicts simulated IY against extent of labeling of
Glc. The values on the horizontal axis indicate the percentage of the label in the
supplied Glc; the rest of the supplied Glc is naturally abundant.

Table 3 Performances of commercially unavailable Glc labels for the plant PPP
network. This list contains the top 10 best-performing Glc labels. All labels are at
100% of total Glc. Nine Glc labels perform better than 1,2-13C Glc, which is the
best performing amongst the commercially available Glc labels

Atom(s) of Glc labeled 13C IY

3,4,5,6 23.7
1,2,4 23.3
3,5,6 23.2
1,4,5,6 22.9
2,3 22.6
3,4,6 22.6
1,2,5 22.3
2,4,5,6 22.0
2,3,6 21.9
1,2,4,5,6 21.7
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values. This suggests that accurate identification of PPP fluxes
requires a stringent w2 cutoff value heuristically learned from a
priori simulations. In the distributions discussed in the rest of
Section 3.2 (Fig. 4), we only consider flux sets corresponding to
w2 o 7.

These flux distributions showed that while both 1,2-13C Glc
and 1-13C Glc identified certain fluxes equally well (e.g. the
cytosolic oxidative PPP flux vg6pdh), 1,2-13C Glc identified
certain fluxes significantly better than 1-13C Glc (e.g. the non-
oxidative PPP flux vtktAf) (Fig. 4a and b). Furthermore, 1,2-13C
Glc was able to reasonably identify certain fluxes that were not
at all identified by 1-13C Glc (e.g. the intercompartmental T3P
transport flux vt3pt) (Fig. 4c). Apart from corroborating the
identifiability results of Section 3.1, this outcome demonstrates
that relatively small increases in IY could translate into
significant differences in flux identifiability. Overall, 1,2-13C
Glc identified as many as 10 out of the 19 fluxes in the model
very close to their ‘‘true’’ values, including glycolytic fluxes in
the cytosol (vpgif, vpfk) and the plastid (vpgifb) and the oxidative
PPP flux in the cytosol (vg6pdh) (SV, ESI†). However, 1,2-13C Glc
does not identify all fluxes satisfactorily – certain fluxes,

including glycolytic fluxes in the plastid (vpfkp), the oxidative
PPP fluxes in the plastid (vg6pdhp) and the fluxes of the
intercompartmental G6P and P5P transporters (vg6pt, vp5pt)
(SV, ESI†) were not well identified by this label. Therefore we
examined if combining this label with other labels would
increase flux identifiability (Section 3.7).

3.3 Is 1,2-13C Glc always the best choice for the plant PPPs?

Two recent investigations that have focused on designing labels
for mammalian PPPs serve as a benchmark for our work. In a
study that focused on the mammalian PPP (unicompartmental
model, reactions of the PPP assumed irreversible),71 Crown and
Antoniewicz identified 100% 2,3,4,5,6-13C Glc and its comple-
ment 100% 1-13C Glc as the best Glc labels for this pathway. In
another study focused on mammalian primary metabolic

Fig. 3 Enforcing stricter criteria for the w2 goodness-of-fit function can improve
flux estimates and eliminate bimodal distributions. We simulated isotopomer
abundances for ILEs employing 100% 1,2-13C Glc, treated these simulated
isotopomer abundances as surrogate experimental measurements and then, by
minimizing w2 through global optimization, evaluated a set of fluxes that best
accounted for these surrogate measurements. We repeated this flux evaluation
478 times from random initial points to obtain a flux distribution. Enforcing a
goodness-of-fit criterion of w2 = 20 (corresponding to a confidence level of
99.96% for four degrees of freedom) gave bimodal distributions for some fluxes
(the distribution of the flux vt3pt is shown here); enforcing the stricter criterion of
w2 = 7 eliminated the minor peak and retained the major peak around the ‘‘true’’
flux value from which we had originally simulated the isotopomer abundances.
Therefore, enforcing a stricter goodness-of-fit fitting criterion can significantly
improve flux estimates.

Fig. 4 In silico ILEs with 100% 1,2-13C Glc estimate several fluxes better than
100% 1-13C Glc. We obtained flux distributions as explained in the caption of
Fig. 3 and the text. The flux (a) vtktAf is more identifiable by the in silico ILE with
100% 1,2-13C Glc (red symbols and line) than with 100% 1-13C Glc (blue symbols
and line), as the distribution corresponding to 1,2-13C Glc clusters is closer to the
true flux (dotted line). Both labels identify the flux (b) vg6pdh to nearly the same
extent. The flux (c) vt3pt is identifiable only with 100% 1,2-13C Glc. This illustrates
the superiority of 1,2-13C Glc over 1-13C Glc in estimating fluxes in the
compartmented plant PPPs.
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pathways including the PPP (unicompartmental model, reversible
reactions included),31 Metallo et al. identified 1,2-13C Glc as the
best among 11 Glc labels for estimating PPP and glycolysis fluxes.
Interestingly, our work converged the result of Metallo et al. – we
identified 1,2-13C Glc as the best commercially available label
and its complement 3,4,5,6-13C Glc as the best commercially
unavailable label for the plant PPPs. This similarity is despite
several major differences between the metabolic network models
and isotopomer measurements considered by Metallo et al.
and our study – our PPP model contains compartmentalized
duplicates of the PPP and glycolysis as well as intercom-
partmental transport reactions, a hallmark of plant cells.
Additionally, we have considered a larger number and variety
of readout metabolites, including essential amino acids not
synthesized by mammalian cells, sugars and nucleic acids as
well as two complementary isotopomer measurement techni-
ques (NMR and MS). Metallo et al. rationalized the superiority
of 1,2-13C Glc by showing that if Glc were labeled at the C-2
atom, it would enrich a larger number of carbon atoms of PPP
metabolites than if it were labeled at other carbon atoms
(e.g. C-4). This is due to the repeated breakage and re-formation
of the C-1–C-2, C-2–C-3 and C-3–C-4 bonds of Glc in the
reversible reactions of the PPP; conversely, the bonds between
C-4–C-5 and C-5–C-6 remain largely intact.31,35

To advance this line of reasoning, we examined how many
isotopomer abundances change significantly (by 40.01 units
on a scale ranging from 0 to 1 units) when the two most
important fluxes in the PPP network – the oxidative PPP fluxes
in the cytosol (vg6pdh) and the plastid (vg6pdhp) – are each
perturbed by 20%. This calculation showed that 100% 1,2-13C
Glc surpasses both 100% 1-13C Glc and 30% U-13C Glc in both
the sum of isotopomer abundance changes (Fig. 5a) and
the number of altered isotopomers (Fig. 5b). However, this
result applies to the set of MS- and NMR-derived isotopomer
measurements considered in our model (SIII, ESI†). Although
this is a large set of isotopomers, MS and NMR can only

measure a subset of all 2n isotopomers of an n-carbon metabolite.
Unexpectedly, we found that if all 2n isotopomers of each biomass
component could be measured (instead of our subset of MS- or
NMR-derived measurements), 30% U-13C Glc surpasses the other
two labels in both the sum of isotopomer abundance changes
(Fig. 5c) and the number of altered isotopomers (Fig. 5d).
Therefore, 1,2-13C Glc is the best label for the plant PPPs with
respect to the subset of isotopomers that can be measured by the
currently popular versions of MS (single quadrupole) and NMR
(2-D [13C, 1H] HSQC52,72 or [1H, 1H] TOCSY52). However, the
measurement of all possible isotopomers of all PPP metabolites
may potentially result in a new experimental design. Quantify-
ing the abundances of all isotopomers of the five-, six- and
seven-carbon metabolites of the PPP may require significant
advancement of the measurement techniques. However, recent
developments such as tandem MS can measure all 2n isotopo-
mers of four-carbon metabolites such as Asp.73,74 Therefore, it
is reasonable to expect that further improvements may make it
possible to measure a large fraction of the 2n isotopomers of
each PPP metabolite.

3.4 Superior performance of 1,2-13C Glc is largely
independent of PPP flux values

A central premise of statistical flux identifiability analysis is
that the information contained in an ILE is generally indepen-
dent of the values of the fluxes. Therefore, the best labels
determined by assuming one set of flux values should also be
the best labels for any stoichiometrically feasible set of flux
values. To examine if this was the case, we repeated the analysis
described in Section 3.1 and Fig. 2 for 36 randomly chosen
combinations of free flux values that spanned the stoichio-
metric range of the metabolic network. This analysis (Fig. 6)
revealed that 100% 1,2-13C Glc was the best-performing label in
32 of the 36 (89%) combinations of flux values and that 100%
3-13C was the second best Glc label in 20 out of 36 (56%)
combinations. The consistent performance of 1,2-13C Glc over a

Fig. 5 MS- and NMR-derived isotopomer abundances are most sensitive to flux changes in the ILE with 100% 1,2-13C Glc. To examine the sensitivities of isotopomers to
flux changes, we simulated ILEs employing 100% 1-13C, 100% 1,2-13C and 30% U-13C Glc, and specifically examined how the perturbation of the cytosolic oxidative
PPP flux vg6pdh (1.0 - 0.8) and the plastidic oxidative PPP flux vg6pdhp (1.0- 1.2) alters isotopomer abundances. (a) The sum of changes and (b) the number of
changes 40.01 in the MS- and NMR-derived subset of isotopomer abundances indicate that 100% 1,2-13C Glc renders the isotopomer abundances most sensitive to
the given flux changes. Interestingly, (c) the sum of changes and the (d) number of changes 40.01 in all 2n isotopomers of all PPP metabolites indicate that 30% U-13C
Glc renders isotopomer abundances most sensitive to the given flux changes.
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range of feasible flux values validates the premise stated above
and suggests that this label should provide significant informa-
tion for most plant PPP networks. Some of the isotopomer
abundances in Isim were absent in these simulations; nonetheless,
this does not affect the performance of the Glc labels.29

3.5 Labeling information contained in hexose and pentose
sugars is critical in elucidating PPP compartmentation

Traditionally, isotope-assisted MFA involves the measurement
of labeling in proteinogenic amino acids derived from acid
hydrolysis of a cell pellet or a protein extract.69,70,75 This
experimentally straightforward technique provides metabolic
information from various parts of the central carbon metabolic
network because the biosynthetic precursors of the amino acids
are distributed throughout this network. However, this may be
inadequate for the plant PPPs. The complex carbon rearrange-
ments and intercompartmental transfer of sugars in the plant
PPPs may not be reflected in the few amino acids that originate
from PPP metabolites. The measurement of labeling in hexose
and pentose sugars of the PPP may perhaps reveal more
information, especially on compartmentation. For example,
carbohydrates such as intracellular sucrose or Glc and sugars
in glycosylated protein (mannose, glucosamine) reflect cytosolic
hexose phosphates, whereas starch reflects plastidic G6P. There-
fore, a comparative analysis of the isotopomers of these
compounds can potentially reveal differences between cytosolic
and plastidic G6P pools, as conceptualized by Roscher et al.45

and experimentally demonstrated by Sriram et al.9 Similarly,
ribose in nucleic acids likely has a predominantly cytosolic
origin; hence its isotope labeling may contrast with the pentose
backbone of histidine, which has a plastidic origin. Conse-
quently, comparing the isotopomers of ribose from nucleic acids
and histidine from protein will reveal differences in the P5P
pools of the cytosol and the plastid.

However, the extraction, processing and analysis of many of
the aforementioned compounds are laborious and not surpris-
ingly, their concurrent measurement for isotope-assisted MFA
is rare and has not been reported for plants. Therefore, it is
worthwhile to computationally analyze the incremental benefit
of measuring the labeling in hexose and pentose sugars.

Toward this, we simulated IY for ILEs with varying proportions
of 1,2-13C Glc by sequentially including in Isim labeling
measurements from the following biomass components:
(i) only proteinogenic amino acids, (ii) intracellular glucose,
(iii) starch and (iv) RNA ribose. Clearly, each successive labeling
measurement substantially increases IY, the highest incremental
benefit being in the case of RNA ribose (Fig 8a).

Further, to examine whether metabolic information from
hexose and pentose sugars is more pronounced in MS or NMR
measurements, we calculated IY for exclusively MS measure-
ments (Fig. 7a) and exclusively NMR measurements (Fig. 7b).
With NMR, one can measure hexose and pentose sugars
through their five-carbon acid hydrolysis product levulinic acid
(LVA):72 LVA resulting from hydrolysis of glycosylated protein is
LVAgc, that resulting from starch hydrolysis is LVAgp and that
resulting from ribose hydrolysis is LVArc. Again, each succes-
sive labeling measurement provides significant additional
information with the highest incremental benefit being in the
case of ribose-derived LVA (Fig. 7a and b).

The concurrent measurement of hexose and pentose phos-
phate pools from the cytosol and the plastid increases IY likely
because it disentangles the effects of the oxidative and the non-
oxidative PPPs in the two compartments. In both the cytosol
and the plastid, G6P loses its C-1 carbon atom to form P5P in
the oxidative PPP. Therefore, reduced labeling of cytosolic or
plastidic G6P in an ILE employing 1-13C Glc or 1,2-13C Glc can
reveal the presence of the oxidative PPP in the corresponding
compartment. However, the complex carbon rearrangements in
the downstream non-oxidative PPP in both compartments can
confuse this interpretation. For example, high fluxes through
the cytosolic oxidative PPP and the plastidic non-oxidative PPP
can superimpose over each other, making the compartmenta-
tion unidentifiable. However, many of the rearrangements in
the non-oxidative PPP are captured in the pentose phosphates
synthesized in the respective compartments. Therefore the addition
of pentose phosphate isotopomer measurements from the cytosol
and the plastid can provide information orthogonal to that
contained in the hexose phosphates. This explains the superior
performance of the combination of isotopomer measurements
from intracellular glucose, starch, RNA and histidine.

3.6 MS outperforms NMR in identifying PPP fluxes

The simulations presented above also shed light on the relative
efficacies of MS- and NMR-derived isotopomers in estimating
PPP fluxes. MS and NMR measure different linear combina-
tions of the isotopomers of a particular metabolite:58 MS
measures the mass isotopomer abundances of metabolite frag-
ments, whereas 1-D NMR measures positional 13C enrichments
and 2-D NMR measures populations of isotopomers containing
different sequences of 13C-13C or 12C-13C bonds. As per the
results in Fig. 7, MS measurements yield substantially higher IY
values than NMR measurements; therefore, MS is clearly better
than NMR in measuring fluxes through the plant PPPs. It could
be argued that this is due to the higher analytical sensitivity of
MS – based on our previous experience and the literature,9,58

errors in MS-derived isotopomer abundances are typically less

Fig. 6 Superior performance of the 1,2-13C Glc label is consistent across different
sets of free flux values. Calculation of IY for 36 ILEs with different sets of free flux
values shows that (a) 100% 1,2-13C Glc performs the best for 89% of the free
flux combinations and (b) 100% 3-13C Glc performs second-best for 56% of free
flux combinations, thus validating the premise that the identifiability analysis is
fairly independent of free flux values.
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than 0.005 (or 0.5%), whereas errors in NMR-derived abundances
are of the order of 0.01 (or 1%). To examine whether MS measure-
ments were superior solely due to their higher precision, we
compared the MS and NMR measurements of the same meta-
bolites at the same precision level. Fig. 7c and d depict that even if
MS- and NMR-derived isotopomers had identical precision, MS
gives higher IY values than NMR. This implies that, for the given
metabolites whose labeling was measured, MS performs better
than NMR in identifying plant PPP fluxes because the types of
isotopomers it measures are more sensitive to PPP fluxes, and not
only because it is a more precise technique. In other words, the MS
measurements confer higher structural identifiability due to their
increased sensitivity to PPP fluxes as well as higher statistical
identifiability due to their higher precision. The superiority of MS
over NMR is specific to the PPPs; the relative strengths of these
techniques may compare differently for a network with a different
topology.

3.7 Performance of Glc labels in pairs and triads of ILEs in
estimating PPP fluxes

We quantified the performance of ILEs that simultaneously
employed pairs of commercially available Glc labels (SV, ESI†)
at different proportions (data not shown). This analysis
revealed that there was no merit in using mixtures of Glc labels,
because in general, an ILE employing a mixture of two labels

had a lower IY than ILEs that individually employed each label
constituting the mixture. For instance, an ILE employing a
mixture of 50% 1,2-13C Glc and 50% 1-13C Glc (IY = 17.5) had a
lower IY than one employing 100% 1,2-13C (IY = 21.9; Fig. 2) or
100% 1-13C Glc (IY = 18.2; Fig. 2). This is because a mixture of
two labels suffers from the dilution effect that occurs when a
single label is diluted with a naturally abundant version of the
carbon source (Fig. 2). Isotopomers resulting from one of
the two labels mask those of the other, thus diminishing the
information obtained from the label mixture.

Nevertheless, the deployment of two Glc labels in two or more
parallel ILEs followed by flux evaluation from the combined
measurements of both the ILEs should enhance flux identifiability.
This will leverage the unique information offered by the two labels
without allowing one to mask the other.12,29 To explore this
possibility, we examined the performance of pairs and triads of
commercially available Glc labels when used in parallel ILEs. All
labels performed relatively better when paired with 100% 1,2-13C
Glc and relatively worse when paired with 50% U-13C Glc (Fig. 8a).
The pair {1,2-13C, 3-13C Glc} performed the best (Fig. 8a), with the
performance of each label increasing with increase in its
proportion and reaching a maximum at 100% proportion of
both labels (Fig. 8b). The IY of the combination {100% 1,2-13C,
100% 3-13C Glc} was 29.5 (Fig. 8a), significantly higher than
that of just 100% 1,2-13C Glc (IY = 21.9; Fig. 2).

Fig. 7 Measurement of isotopomers of hexose and pentose metabolites with cytosolic and plastidic origins substantially improves identifiability. IYs of ILEs with
different percents of 1,2-13C Glc and including isotopomer measurements of different biomass components by (a) MS and (b) NMR show that ribose isotopomers
contribute substantially to improving identifiability of compartmented PPP fluxes. Additionally, for the same metabolite and measurement error, the ability of the (c)
MS to accurately identify the PPP fluxes is greater than that of the (d) NMR. Abbreviations: LVAgc, cytosolic glucose-derived levulinic acid, LVAgp, plastidic glucose
(starch)-derived levulinic acid; LVArc, cytosolic ribose-derived levulinic acid.
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Identifying optimal triads of ILEs was a more difficult
problem due to the large number of possible triads. To circumvent
this difficulty, we locked 100% 1,2-13C Glc as one of the labels in
the triad (due to its superior performance established in Section
3.1–3.4). Then we explored two other labels that could be used with
1,2-13C Glc in parallel experiments. The triad {100% 1,2-13C Glc,
100% 1-13C, 100% 3-13C Glc} performed the best with IY = 34.8
(Fig. 9), significantly higher than the best pair {1,2-13C, 3-13C Glc}
(IY = 29.5; Fig. 8a) or single label 1,2-13C (IY = 21.9; Fig. 1).

We investigated the best labels or label combinations for the
plant PPPs when exclusively MS-derived or exclusively NMR-
derived isotopomer measurements are available (Table 4; all

labels at 100% proportion). 1,2-13C, 3-13C and 1-13C Glc
consistently featured amongst the top labels, 1,2-13C Glc being
more prominent when MS measurements are available and
3-13C Glc being more prominent when NMR measurements are
available. This suggests that more or less the same set of labels
is optimal when either MS or NMR measurements are available,
although the use of MS leads to substantially greater flux
identifiability.

3.8 Performance of labeled carbon sources for the GABA
shunt

We chose Ala and Gln as the carbon sources for the GABA
shunt network because they enter this network via completely
different routes – Ala enters through the mitochondrial TCA
cycle and Gln through the plastidic GOGAT cycle. Therefore,
their differential labeling can potentially provide significant
flux information for this network. We evaluated IY for com-
monly available Ala and Gln labels (SV, ESI†) at different
proportions. Table 5 lists the five best performing labels of
Ala and Gln, of which the combination {100% 2-13C Ala, 100%
U-13C Gln} has the highest IY (= 71.8) toward estimating GABA
shunt fluxes. The combination {100% 2-13C Ala, 75% U-13C Gln}
has nearly the same IY (= 70.3) as 75% 3-13C Gln and may serve
as a good substitute especially as it offers high identifiability at
less than 100% proportion, i.e. at reduced experimental cost.

The fluxes in the GABA network are more interlinked than
those in the PPP network due to the presence of many cyclic
pathways. This makes it difficult to track the fates of different
carbon atoms. Additionally, the fates of labeled carbon atoms
originating from Ala and Gln cannot be distinguished from
each other once they are assimilated into succinate (Succm).
Thus speculating on the reasons for the relative merits of
different Ala and Gln labels is not easy. Nevertheless, simulations

Fig. 8 Identifiability of PPP fluxes improves upon pooling isotopomer abundances
from two parallel ILEs. (a) The axes list the 100% Glc labels (50% in the case of
U-13C) in two parallel ILEs – ILE1 and ILE2. Each bubble represents a pair of
parallel ILEs whose IY was obtained by pooling the isotopomer measurements
from these ILEs. Both the sizes of the bubbles and their color (as indicated in the
color bar) are independently proportional to IY. Pooling isotopomer
measurements from ILEs with 100% 1,2-13C Glc and 3-13C Glc (IY = 29.5,
highlighted by a red arrow) is the most advantageous and better than the single
ILE with 100% 1,2-13C Glc (IY = 21.9). (b) IY (lighter shades of gray correspond to
increased IY as shown in the color bar) of pooled isotopomer measurements from
ILEs with 1,2-13C and 3-13C increases with increase in their proportions, i.e.
dilution of any of the two labels with naturally abundant Glc is undesirable.

Fig. 9 Performances of Glc labels for triads of ILEs. This bubble plot is similar to
the one in Fig. 8a. After locking 100% 1,2-13C Glc as one label, we determined IYs
for triads of ILEs employing this label and two other Glc labels. Pooling
measurements from ILEs using 100% 1,2-13C Glc, 100% 3-13C Glc and 100%
1-13C Glc, respectively, is the most advantageous, with IY = 34.8.
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showed that an ILE employing 100% 2-13C Ala and 100% U-13C Gln
generated a greater number of isotopomers in the GABA network
than other ILEs (data not shown), which partially explains the
superior performance of this label combination.

4. Summary and outlook

This article explores in substantial detail the design of ILEs
toward quantifying fluxes through two important, complex,
compartmented plant metabolic pathways. We determined
optimal combinations of commercially available Glc labels for
the PPP as well as Ala and Gln labels for the GABA shunt.
In particular, we established that given currently popular iso-
topomer measurement techniques (single quadrupole MS and
1-D or 2-D NMR), 1,2-13C Glc is a powerful and robust label for
the plant PPPs. We also calculated that its potency can
substantially be improved by combining it with other labels
(e.g. 3-13C Glc, 1-13C Glc and U-13C Glc) in parallel ILEs. We
showed that measuring the labeling patterns of hexose and
pentose moieties synthesized exclusively in the cytosol or the
plastid is important toward evaluating fluxes in the individual
compartments. Specifically, the concurrent measurement of
RNA ribose, intracellular glucose or sucrose and starch, although
laborious, adds critically to the information obtained from the
ILE. Additionally, we showed that MS outperforms NMR in
identifying fluxes in the PPPs. The label designs and measure-
ments proposed in this study have not been simultaneously
employed for plant MFA. End-users of this work should bear in
mind that although our metabolic models are representative of
typical scenarios in plant cells, our optimal ILE designs
obtained are most directly applicable to the ILEs employing

the carbon sources and isotopomer measurements that we
have considered. Researchers employing other labeled carbon
sources (e.g. sucrose instead of glucose for the PPP), signifi-
cantly different isotopomer measurements (e.g. certain intra-
cellular metabolites not considered by us) or techniques (e.g.
tandem MS) should repeat our analyses with appropriate
changes to the model. Furthermore, the choice of labeled
substrates, usually the largest contributing factor to flux
identifiability, is heavily influenced by the costs of the sub-
strates. The results of our study are not cost-sensitive since
changes in prices are dependent on factors beyond the control
of investigators. Therefore, we have examined ILE designs
involving both commercially available ‘‘catalog’’ labels and
exotic, expensive labels that may be available only through
custom synthesis. Ultimately, a balance of the aforementioned
factors will enable an end-user to select an appropriate ILE.
Currently, we are employing the label designs proposed in this
study to investigate metabolic fluxes in Arabidopsis thaliana and
poplar cell suspensions.

Designing ILEs is a rigorous computational process due to
the variety of available labels and measurement possibilities
that need to be optimized. Nevertheless, it offers valuable
insights into performing an efficient ILE and ensures that
maximum information is gained from the ILE. In the future,
this work can be advanced by making use of recently reported
improvements in isotope MFA on the analytical and computa-
tional fronts. On the analytical front, it is necessary to expand
the spectrum of intracellular metabolites whose labeling is
analyzed as well as to use high resolution instruments such
as liquid chromatography-MS.76 In this context, Antoniewicz
and co-workers’ tandem MS methodology73,77 and novel NMR
methods are likely to enable the measurement of a much larger
subset of isotopomers than is currently possible. On the
computational front, it is essential to use optimization algorithms
to efficiently probe the multidimensional space of all available
isotope labels for a given ILE. Recently, Stephanopoulos and
co-workers applied a genetic algorithm,31 while Palsson and
co-workers applied Monte Carlo sampling toward this purpose.78

Furthermore, Antoniewicz and co-workers have pioneered an
EMU-based technique that rationally deduces the optimal labels
for an ILE by tracing the number of different ways a product

Table 4 Performance of Glc labels when Isim comprised solely MS- or solely NMR-derived isotopomer measurements. This list contains five of the best performing Glc
labels and their IYs for single, pairs and triads of ILEs. MS measurements have higher IYs when compared to corresponding NMR measurements

Measured by

Best five single ILEs Best five paired ILEs Best five triads of ILEs

Label IY Label 1 Label 2 IY Label 1 Label 2 Label 3 IY

MS 1,2 20.3 1,2 1 27.3 1,2 1 3 32.6
MS 1 17.7 1,2 3 27.0 1,2 1 2 32.5
MS 3 17.7 1,2 2 26.6 1,2 1 4 32.3
MS 2 16.8 1,2 4 26.4 1,2 3 2 32.0
MS 6 13.7 1,2 6 25.5 1,2 3 4 32.0
NMR 3 7.5 3 1,2 10.6 1,2 3 4 11.9
NMR 1,2 7.1 3 4 9.4 1,2 3 2 11.8
NMR 2 5.2 3 2 9.3 1,2 3 6 11.5
NMR 4 4.0 4 1,2 9.0 1,2 3 1 11.0
NMR 5 3.7 3 6 8.9 1,2 3 5 10.9

Table 5 Five best-performing Ala and Gln labels for the GABA shunt network. An
ILE with 100% 2-13C Ala and 100% U-13C Gln corresponds to the best IY

Ala label Percent Ala Gln label Percent Gln IY

2 100 U 100 71.8
2 100 U 75 70.3
2 100 U 50 68.1
2 100 3 75 65.8
2 100 3 100 65.6
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isotopomer can be synthesized from given substrate isotopomers.
Current implementations of this technique32,71 have focused on
illustrative or irreversible networks; in the future this technique
may provide significant insights on complex networks such as the
ones explored in this article. Finally, methods that integrate other
omics studies such as transcriptomics and proteomics with MFA
can augment and enhance the flux information available from
isotope MFA.
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28 M. Möllney, W. Wiechert, D. Kownatzki and A.A. de Graaf,
Bidirectional reaction steps in metabolic networks: IV. Optimal
design of isotopomer labeling experiments, Biotechnol. Bioeng.,
1999, 66, 86–103.

29 I. G. L. Libourel, J. P. Gehan and Y. Shachar-Hill, Design of substrate
label for steady state flux measurements in plant systems using the
metabolic network of Brassica napus embryos, Phytochemistry, 2007,
68, 2211–2221.
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